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Abstract: The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and
metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques
provide a more holistic molecular perspective of studied biological systems compared to traditional
approaches. However, due to their inherent data differences, integrating multiple omics platforms
remains an ongoing challenge for many researchers. As metabolites represent the downstream
products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools
and approaches routinely used in this field could assist with the integration of these complex
multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods,
software tools and databases) along with a variety of recommendations and a list of continuing
challenges as identified during a peer session on multi-omics integration that was held at the recent
‘Australian and New Zealand Metabolomics Conference’ (ANZMET 2018) in Auckland, New Zealand
(Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers
and other members of the community wishing to perform multi-omics studies. We also believe that
these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems
biology to be realized.

Keywords: mathematical modeling; data analysis; data integration; experimental design; quantitative
omics; databases; translational metabolomics; pathway analysis; metabolic networks

1. Introduction

Systems biology is an interdisciplinary research field that requires the combined contribution of
chemists, biologists, mathematicians, physicists, and engineers to untangle the biology of complex living
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systems by integrating multiple types of quantitative molecular measurements with well-designed
mathematical models [1,2]. The premise and promise of systems biology has provided a powerful
motivation for scientists to combine the data generated from multiple omics approaches (e.g., genomics,
transcriptomics, proteomics, and metabolomics) to create a more holistic understanding of cells,
organisms, and communities, relating to their growth, adaptation, development, and progression to
disease [3–12].

Over the past decade technological advancements in next-generation DNA sequencing [13],
SNP-chip profiling [14], transcriptome measurements via RNA-seq [15], SWATH-based proteomics [16],
and metabolomics via UPLC-MS and GC-MS techniques [17,18] have greatly increased the ease, and
significantly reduced the cost, of collecting rich, multi-omics data. As a result, many researchers are
now conducting comprehensive multi-omics experiments, and more data scientists are attempting
to integrate these data sets to create new and meaningful biological knowledge [19–25]. In a
clinical setting, a growing number of private companies (e.g., www.arrivale.com, www.viome.com,
www.molecularyou.com) are now also using the same low-cost, high throughput technologies to offer
multi-omics and precision health assessments.

While large-scale omics data are becoming more accessible, and multi-omics studies are becoming
much more frequent—real multi-omics integration remains very challenging. This is because many
of the specific analytical tools and experimental designs traditionally used for individual omics
disciplines (e.g., genomics, transcriptomics, and proteomics) are not sufficiently well-suited to permit
proper comparisons or intelligent integration across multiple omics disciplines. For instance, the
preferred collection methods, storage techniques, required quantity and choice of biological samples
used for genomics studies are often not suited for metabolomics, proteomics or transcriptomics.
Similarly, qualitative methods commonly used in transcriptomics and proteomics are not suited to the
quantitative methods used in genomics. While transcriptomics and proteomics are increasingly more
quantitative (i.e., RNA-seq in transcriptomics and stable labeled isotope tagging in proteomics), it is
increasingly pertinent to compare the applicability and accuracy/precision of quantification strategies
(e.g., absolute vs. relative quantification). Furthermore, carefully integrated multi-omics data must
be ‘deconstructed’ into single data sets before being deposited into omics-specific databases in order
to make it publicly available. These issues underline the fact that high-quality multi-omics studies
require: 1) proper experimental design, 2) thoughtful selection, preparation, and storage of appropriate
biological samples, 3) careful collection of quantitative multi-omics data and associated meta-data, 4)
better tools for integration and interpretation of the data, 5) agreed minimum standards for multi-omics
methods and meta-data, and 6) new resources for the deposition of intact multi-omics data sets.

Interestingly, many of the experimental, analytical and data integration requirements that are
essential for metabolomics studies are actually fully compatible with genomics, transcriptomics and
proteomics studies. In other words, due to its closeness to cellular or tissue phenotypes, metabolomics
can provide a ‘common denominator’ to the design and analysis of many multi-omics experiments. It
also provides broadly useful guidelines for sampling, handling and processing. Therefore, a greater
awareness of metabolomics by other omics researchers or by researchers performing multi-omics
experiments could significantly improve the quality and utility of integrated-omics research. To take
this integration a step further, it will be critical to be able to associate integrated omics data with the
meta-data in the context of the studies being undertaken. For instance, data from host-associated
microbiomes can also now be integrated with the exometabolome data to better understand the
mechanistic bases of their associations [26].

During the most recent Australian and New Zealand Metabolomics Conference (ANZMET 2018)
held in Auckland, New Zealand (from 30 August to 1 September, 2018), the listed authors participated
in a peer session on ‘systems biology and multi-omics integration’. The peer session was attended by
>20 senior researchers and early to mid-career scientists actively working in the field of metabolomics
as well as other omics disciplines. This article summarizes many of the viewpoints raised by those who
attended the conference and participated in the peer session. It also provides some guidance on how
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experimental designs, methods and analytical tools used in metabolomics can facilitate multi-omics
studies and data integration.

2. Designing Experiments Suitable for Multi-Omics Integration

Massive increases in throughput and spectacular reductions in costs has enabled multi-omics
studies to be routinely performed at a scale not previously imagined. Although each omics platform
allows a comprehensive survey for a particular molecular phenotype, the cross-talk between multiple
molecular layers cannot be properly assessed by a reductionist approach that analyzes each omics layer
in isolation [23]. Instead, systems biology approaches that integrate data from different omics levels
offer the potential to improve our understanding of their interrelation and combined influence [27].
A conceptual model for designing a systems biology experiment is depicted in Figure 1. The first
step for any system biology experiment is to capture prior knowledge and to formulate appropriate,
hypothesis-testing questions. This includes reviewing the available literature across all omics platforms
and asking specific questions that need to be answered before considering sample size and power
calculations for experiments and subsequent analysis. For example, what is the scope of the study?
What are the restrictions for the study? What perturbations will be included/controlled? How will the
perturbations be measured? What dose(s)/time point(s) are required? What/which omics platforms
will provide the most value? What omics platforms are optional noting that not all platforms need to
be accessed to constitute a systems biology study nor do they all provide information that is necessarily
required? How will experiments be replicated taking into account biological, technical, analytical and
environmental replication? Will individuals be analyzed or will biological samples be pooled? What
is the scientific rationale for pooling/not pooling? Does the experimental design properly address
these questions? If yes, sample size and power calculations can be assessed and experiments can be
planned/performed. If no, the design principals need to be re-evaluated until all criteria are fulfilled.
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Figure 1. A conceptual model for designing a systems biology experiment.

A high quality, well-thought-out experimental design is the key to success for any multi-omics
study. As mentioned above, this includes careful consideration of the samples or sample types, the
selection or choice of controls, the level of control over external variables, the required quantities
(biomass) of the sample(s), the number of biological and technical replicates, and the preparation
and storage of the samples. Additionally, other important factors that need to be considered while
designing good multi-omics experiments are the meta-information collected about the samples, the
selection of omics methods used and the requirements for data storage, bioinformatics, and computing
capabilities. Lastly, it is of utmost importance to ensure that sufficient time and financial resources are
available to carry out the experiments.

A successful systems biology experiment requires that the multi-omics data should ideally be
generated from the same set of samples to allow for direct comparison under the same conditions.
However, this is not always possible due to limitations in sample biomass, sample access or financial
resources. In some cases, generating multi-omics data from the same set of samples may not be the
most appropriate design. For instance, the use of formalin fixed paraffin-embedded (FFPE) tissues
is compatible with genomic studies, but is incompatible with transcriptomics and, until recently,
proteomic studies. This is because formalin does not halt RNA degradation [28], and it induces protein
cross-linking [29]. Furthermore, paraffin interferes with mass spectrometry performance (affecting
both proteomics and metabolomics assays). It is only with the recent advancement of MS technology
that very deep and quantitative proteomic profiling of FFPE tissue has become achievable. However,



Metabolites 2019, 9, 76 4 of 31

until such time that specialized high-end instrumentation is more broadly available, FFPE analysis
remains an issue for many researchers looking to perform multi-omics experiments [30,31]. Another
example of multi-omics incompatibility can occur over the choice of biological matrix for a given
study. For instance, urine may be an ideal bio-fluid for metabolomics studies, but it has a limited
number of proteins, RNA and DNA, making urine a poor choice of biological matrix for proteomics,
transcriptomics, and genomics studies. However, on the other hand, blood, plasma or tissues are
excellent bio-matrices for generating multi-omics data. This is because they can be quickly processed
and frozen to prevent rapid degradation of RNA and metabolites, which would render them unusable
for transcriptomic or metabolomics studies [32].

Sample collection, processing, and storage requirements (and limitations) need to be factored
into any good experimental design. These variables may affect the types of omics analyses
that can be undertaken. Some experiments may have logistical limitations that delay or limit
immediate freezing, such as field-work or travel-related restrictions. However, FAA (Federal Aviation
Administration)-approved commercial solutions are now available for transporting cryo-preserved
samples onboard flights. Other limitations may include sample size restrictions (collecting samples
that are too large or too small to process at a single time point or by a single individual) or initial
sample handling procedures that may influence biomolecule profiles (e.g., handling live animals).
Therefore, careful consideration as to how effectively collected samples can be used, particularly for
metabolomics and transcriptomic studies, along with the downstream consequences for data analysis
and interpretation is required. Other considerations for experimental design and strategies that should
also be considered are shown in Table 1. Recognizing and accounting for these effects early in the
experimental design stage will help mitigate their impact on results and down-stream data processing.
For more information on the relationship between variance in the data, statistical power, the degree of
insights one can gain (e.g., the problem of overfitting when developing statistical models), please refer
to the following references [33–35].

Sample size relative to resource allocation is one of the main factors affecting experimental design
in multi-omics studies. That is, how can one ensure that the sample size is adequate to provide
the statistical power needed to detect significant differences while still managing scarce resources
(time/money)? As a general rule, the number of variables measured or measurable in a given omics
experiment often dictates the number of samples that should be collected and measured (Table 1).
Nearly all omics experiments measure hundreds to thousands of variables (metabolites, proteins, genes,
transcripts and SNPs). Therefore, the number of biological samples should be sufficient to provide the
required statistical power. Underpowered studies may not have the ability to detect associations. This
can lead to data misinterpretation and generation of many false negatives and false positives. In single
omics experiments, larger sample sizes are often required to overcome this problem. Furthermore,
different omics technologies often have different sample size requirements. These number of samples
required for statistical power also greatly depends on the extent of variation within and between the
treatments, which is reflected statistically in the “effect size”, as described below.

As a general rule, fully quantitative studies (targeted metabolomics and proteomics) require fewer
samples than non-quantitative studies (untargeted metabolomics and proteomics). This is due to the
greater analytical precision/accuracy that is achievable with targeted and fully quantitative omics
measurements. Likewise, for omics studies where the effect size is inherently small (e.g., ambiguous
disease phenotypes, most SNP or CNV studies) the number of samples often has to be in the tens
of thousands, while in other studies where the effect size is inherently large (e.g., strong disease
phenotypes or strong omics signals) the number of samples can be much smaller. For example, the
number of samples/patients needed to fully identify, understand or model a simple monogenic disorder
such a phenylketonuria (PKU) is on the order of one or two [36], while the number of samples/patients
needed to fully identify, understand or model a complex disease, such as schizophrenia, may be on
the order of hundreds of thousands [27,37]. Power calculations can be a useful tool to help estimate
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sample numbers. However, the information on effect size needed for this is often not known until a
good body of pilot multi-omics data has already been collected.

Table 1. Potential limitations while designing multi-omics studies and possible strategies to
overcome them.

Potential Limitations Strategies to Overcome Limitation

Limited biomass of sample
• small sample or limited accessibility to sample

(e.g., single cell, skin or saliva swab) [38]

• Pooling
• Specific methods for small samples (e.g.,

methods for single cell omics)

Heterogeneity of cell type/ composition (e.g.,
microbiome community, whole organism, tissue or
single cell). Proportions of multiple cell types in a
sample can change substantially and shift omics
profile [27].

• Replication
• Adequate sample size (n)
• Homogenization
• Reference samples/data

Differences in specific biomolecules in sample types
(e.g., urine may have many metabolites but very few
proteins, DNA and RNA in comparison to blood,
stool or tissue samples).

• Choose appropriate sample for omics analysis or
appropriate omics analyses for sample based
on hypothesis.

Technical artifacts, including batch effects.

• Reference and quality control (QC) samples
• Internal standards
• Randomization
• Appropriate statistical models (e.g., mixed

effects) to account for batch effects [27]

Multiple testing
• loss of statistical power

• Replication
• Adequate sample size

Background contamination (e.g., in a microbiome
study stool samples will have host DNA, RNA,
protein, and metabolites)

• Specific methods depending on omics analysis
and contamination (e.g., rRNA or host depletion
for RNA extraction for meta-transcriptomics)

• Background control/reference samples

Differences in analytical platforms and integrating
data sets of multi-omics that measure fundamentally
different biomolecules

• Standard control samples used across all omics
data sets may help to harmonize measurements
and variations

Based on the multi-omics studies conducted by our laboratories as well as studies described in
the literature, we contend that the experimental design requirements of metabolomics experiments are
highly compatible with most multi-omics studies. The adoption of metabolomics experimental design
requirements by other omics disciplines could greatly facilitate multi-omics research. Metabolomics
experiments are highly compatible with multiple bio-sample types including blood, serum, plasma,
cells, cell culture and tissues [28]. These same bio-samples are also preferred for transcriptomics,
genomics and proteomics studies. For example, samples intended for metabolomics studies must be
stored at−80 ◦C (to prevent enzymatic degradation of the metabolites and also to stop ongoing metabolic
activities). This storage protocol for samples also ensures that RNA and protein integrity is maintained
for transcriptomics and proteomics studies [28]. The sample processing times for metabolomics must be
relatively quick (minutes) due to the rapid metabolism of metabolites in most bio-samples [28]. Rapid
sample processing times are also required for transcriptomics and modestly rapid sample processing
times are required for proteomics studies. Adhering to metabolomics processing times ensures that all
other samples being used in a multi-omics study will not be compromised. Likewise, metabolomics
experiments typically require more material than genomic, proteomic or transcriptomic experiments,
therefore the collection of sufficient material for a metabolomics experiment will almost guarantee that
enough material will be available for all other omics experiments. Metabolites are also particularly
sensitive to environmental influences (diurnal cycles, heat, humidity, diet, age, developmental stage
and social interactions) and the tracking of sample meta-data is very important to mitigate the effects
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of environmental confounders. While environmental confounders are generally less significant for
transcriptomics and proteomics studies (and almost negligible for genomics studies), the careful
tracking of environmental, social, dietary or other meta-data is a wise practice for all multi-omics
studies to facilitate transparency and reproducibility.

Multi-omics analyses should ideally be guided by the sampling guidelines listed above and by
the experimental hypothesis being tested. For example, metabolomics would be appropriate in an
experiment where metabolic changes are expected but may be less useful if the hypothesis is predicting
changes in genetic regulation, especially in upstream signal reception and transduction. Phenotypic
landscapes reflect the epigenetic, transcriptional, translational and post-translational implementation
of an organism’s genomic information. To establish direct causal and functional associations between
genotype and phenotype, it is essential to observe intermediate molecular levels, such as transcript,
protein and metabolite abundance [21]. Using one type of omics technology to drive an integrated
analysis can be a good strategy to effectively link data sets and build evidence for causation rather
than just correlating multiple untargeted data sets. One option for multi-omics integration is to use
top-down data reduction approaches that employ genomics or transcriptomics data as a basis to predict
phenotypic responses and changes in key signaling and metabolic pathways (Figure 2). Targeted
metabolomics and/or proteomics analyses can then be used to measure and validate the functional
activity of identified pathways. A benefit of this top-down data reduction approach is that the coverage
from genomics/transcriptomics data is inherently greater and so changes in regulation, transport and
metabolism may be captured more easily. Limitations include cost (sequencing many samples can
become expensive) and the fact that the relationship from gene to protein to metabolite is not necessarily
proportional. Therefore, expression differences may not always correlate to functional differences.
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An alternative approach to top-down data reduction integration is bottom-up data reduction
integration approaches, using either global or targeted metabolomics as the starting point to guide other
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omics analyses (Figure 2). Metabolites represent the endpoint of gene-environment interactions, and so
they are closer to, and more representative of, phenotypic differences. In this approach, metabolomics
data are used to target subsequent up-stream proteomics or transcriptomics analyses to uncover
mechanistic genes or proteins driving the process/es. Metabolite measurements are relatively quick and
affordable compared to many other omics measurements, thus making this approach more appealing
from a cost-benefit perspective. However, the coverage of the metabolomics layer is often far more
limited than the coverage from the genome or transcriptome layer. This modest coverage may limit
the systems biology “search space” and thereby limit the interpretation of the final results.

3. Multi-omics Data Integration

Data integration has been characterized as the key bottleneck to all multi-omics studies [33].
This is because data integration requires input and interpretation by a diverse range of scientists
or specialists, as previously described. Some of these specialists are needed to evaluate the quality
and validity of the study (experimental) design, as well as the quality of the data acquired from the
instrument. Assuming that the data obtained are of high quality and are properly validated (see
Section 2), a number of approaches can be followed for analyzing and interpreting multi-omics data.
These include: (1) post-analysis data integration, (2) integrated data analysis, and (3) systems modeling
techniques. Post-analysis data integration and integrated data analysis are primarily discovery tools or
hypothesis generators that are intended to reveal new insights or provide some high-level mechanistic
understanding. Systems modeling techniques are primarily interpretive or hypothesis testing tools
intended to describe mechanistic insight mathematically. Systems modeling can also be used to predict
system-wide responses or even treatments (e.g., identifying interventions). Here we briefly summarize
these three approaches for multi-omics data integration and the methodologies and tools associated
with them.

3.1. Post-Analysis Data Integration Approaches

In a post-analysis data integration approach, different omics data sets are first analyzed in isolation,
and then key features are “networked” or stitched together through the synthesis of significant features
at joint nodes in an overall model pathway (Figure 3). This approach has been used in a diverse range
of studies, including the assessment of biological wastewater treatment systems [22], the exploration of
microbial resistance of marine sediments after an oil spill [39] and studying the permafrost microbial
ecosystem [40]. Post-analysis data integration is also used by some precision health or precision
nutrition companies to generate client-specific interpretations.
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3.2. Integrated Data Analysis Approaches

In contrast to post-analysis data integration, the integrated data analysis approach employs
specialized tools to merge different omics data sets prior to undertaking any further data analysis and
interpretation [41]. This enables the shared similarities between each omics approach and platform to be
statistically derived, as opposed to relying on human interpretation or human biases (Figure 3). Table 2
provides a list of tools that are currently available and can be used in integrated omics data analysis.
For instance, methods, such as orthogonal two-way projection to latent structures (O2PLS) and its
variant OnPLS, were developed to extract systematic variation that is common to two (or multiple)
sets of omics data [42–45]. In clinical science, these methods have been used to evaluate combine
metabolomics and proteomic data in a xenograft model of human prostate cancer [46], or to interrogate
biological interactions between six different omics data sets in asthma [47]. In environmental science,
the same techniques have been used to characterize stress responses or adaptations to different day
lengths in poplars [48,49] or to investigate marine sediments [50,51]. Other methods for investigating
ecosystem homeostasis with multi-omics approaches have been recently reviewed [52]. Furthermore,
the web-based platform 3Omics enables the integration of human transcriptomics, proteomics and
metabolomics data [36]. In particular, 3Omics generates inter-omics correlation network to aid data
visualization. In addition, this “one-click” platform also assists in statistical analyses of the integrated
omics data and is able to perform pathway and gene ontology enrichment. Another popular web-based
platform for integrated omics data analysis is “MetaboAnalyst” [53]. As shown in Table 2, this tool is
able to integrate and analyze metabolomics data with transcriptomics, proteomics, and genomics data
and can be used for data generated for a wide range of biological samples including human, animal,
plants and microorganisms.
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3.3. Systems Modeling

In addition to post-analysis data integration and integrated data analysis techniques, the third
approach to data integration is also available—namely systems modeling. Systems modeling and
simulation techniques are valuable tools for understanding and even predicting the details of complex
biological systems [54]. Model-based integration methods rely on a well-defined understanding
of the system being investigated in order to compare new experimental findings against modeled
predictions. Such an understanding is often based on having comprehensive, pre-existing genomic,
transcriptomics and/or metabolomics data on the system being studied. These modeling systems
may incorporate dynamic/kinetic models that solve systems of differential, or partial differential
equations [55], agent-based kinetic models [56], or Petri-Net models [57] or they may involve steady
state models, such as flux-balance models [58]. Interestingly, almost all of these systems modeling
approaches are anchored with metabolic reactions and extensive metabolomics data.

Some of the most impressive examples of multi-omics integration and many of the most
compelling successes in systems biology have been achieved through systems modeling methods.
For example, in the 1990s Palsson and co-workers quantitatively predicted growth and byproduct
secretion in E. coli by modeling cellular metabolism and developed the concept of flux balance
modeling [59–62]. Subsequently, the first successful attempt to model a living cell kinetically was the
E-cell project led by Masanori Tomita in 1999 [63,64]. This project focused on modeling the kinetic
dynamics of metabolic pathways and the control of enzyme production through gene expression
of Mycoplasma genitalium. This single cell model integrated experimental metabolomics data with
genomics, transcriptomics and proteomics data. The E-cell concept was later extended to modeling
human erythrocyte metabolism [65,66]. Several practical outcomes have been achieved with the
E-cell erythrocyte model including an improved understanding of erythrocyte hypoxic responses [66],
enhanced blood storage methods [67], and the development of a new nucleo-base solution for extended
blood storage [68]. By the mid-2000s particularly impressive simulation work was being done with
modeling E. coli [69]. This led to the successful prediction of dozens of conditionally essential genes
in E. coli [70] through metabolic flux-balance modeling. Similar work using Petri-Net models led
to the identification of key protein and gene regulators in E. coli glycogen metabolism [71]. These
activities inspired the development of a variety of open source tools and mark-up languages for system
modeling, such as the Systems Biology Markup Language or SBML [72], CellML [73], Cell System
Markup Language or CSML [74] as well as modeling tools, such as Cell Illustrator [74].

Extensions from single cells to multi-cellular systems and multi-organ systems started to occur
around 2013 with the appearance of Recon 2, a community based global reconstruction of human
metabolism [12]. This comprehensive model incorporates cell and tissue-specific metabolomics data,
proteomic data and gene expression data for the human body and its many cell types. Through
Recon 2 and its later derivatives, it has been possible to model the effects of common drugs on human
metabolism [75] to predict the effects of disease-gene mutations [76] and to model disease conditions,
such as inflammatory bowel disease [77]. Of particular note is the development of the COBRA
(Constraint-Based Reconstruction and Analysis) system for working with Recon 2. COBRA permits
integrated modeling of metabolism and macromolecular expression (proteome or transcriptome)
at a genome-scale [78,79]. Over the past three years, the COBRA modeling system has been used
to create a 3D model of gene variation in human metabolism—Recon3D [80]. COBRA has also
been used as a tool to develop models in order to subsequently predict dietary supplements for
treating Crohn’s disease [81] and to integrate human and gut microbiome metabolism with nutrition
and disease in the Virtual Metabolic Human database [82]. The extension of systems modeling to
microbiome studies (where metabolomics is integrated with metagenomics) is becoming particularly
popular. For example, Noecker et al. [83] integrated taxonomic and metabolomics data to predict the
effects of community ecology on metabolite concentrations. These predictions were evaluated with
measured metabolome profiles from the vaginal microbiome and it was concluded that predicted
species composition correlated with identified putative metabolic mechanisms [83]. The availability
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of previously published data on the vaginal microbiome and its metagenomics data were key to the
success of this model [84–88].

As seen from the above examples of systems modeling for multi-omics integration, as well as
through many other examples, most multi-omics systems models are based on some form of metabolic
model or metabolic readout [11,20,83,89–91]. This is true even though they invariably include genomics,
proteomics and/or transcriptomics data in the model. This fact serves to emphasize the key role that
metabolomics must play in multi-omics integration, especially as it relates to systems modeling. The
reason why metabolomics plays such an integral role in systems modeling and multi-omics integration
is because it can be quantitative. Systems modeling cannot be performed without accurate values or
accurate concentrations as inputs and, likewise, systems models cannot be easily verified without
accurate, quantitative concentrations as outputs. Metabolomics can deliver both (quantitative input and
output data), making it extremely valuable to systems modelers. It should be noted that quantitative
proteomics also meets this requirement, albeit at a level that is not as close to the observed phenotype
as the metabolome. Therefore, the central challenge for systems modeling is the collection of accurate,
quantitative reference data on the genome, the transcriptome, the proteome or the metabolome. As a
result, model-based integration is often limited to only those systems that are already well defined
(i.e., common model organisms) or systems for which accurate, quantitative multi-omics data have
been collected.

3.4. Software Tools, Databases and Approaches for Multi-Omics Integration

Biswapriya et al. [92] recently reviewed different tools available for multi-omics data integration
in detail. This work highlights the fact that numerous databases, software tools, and approaches are
now freely accessible to assist with integrating multi-omics data sets, regardless of the multi-omics
data integration approach.

As listed in Table 3, a number of context-specific databases and tools have been developed (i.e.,
targeted towards the integration of omics data from specific animal models, medical and clinical studies,
and selected plant species) and are in use. While most available databases are fairly general, there is a
range of databases with a specific focus [93]. For instance, certain species-specific databases are now
publicly available that include data on the genome, transcriptome, proteome and/or metabolome of
several model organisms. These include the mouse genome database or MGD [94], FlyBase (Drosophila
spp) [95], WormBase (Caenorhabditis elegans and helminth) [96], the E. coli metabolome database or
ECMDB [97], the EcoCyc database [98], the Yeast metabolome data or YMDB [99], the Plant Metabolic
Network or PMN [100] and the Saccharomyces genome database or SGD [101], just to name a few.
There are also extensive databases on humans that contain rich data on the human genome, proteome,
metagenome and/or metabolome. These include the Human Metabolome Database or HMDB [102],
Recon 2 [12], Recon3D [80] and the Virtual Metabolic Human database [82]. In addition to these
species-specific resources, there are also general multi-species resources on genes and proteins, such
as GenBank and UniProt [103,104], multi-species collections on metabolites, such as ChEBI [105],
and MetaboLights [106], multi-species collections on lipids, such as Lipid Maps [107], multi-species
collections on proteomics or protein expression data, such as PRIDE [108], and multi-species pathway
databases, such as KEGG [109], Reactome [110] and MetaCyc [111]. Additional details on these
databases are provided in Table 3.
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Table 2. Summary of multi-omics integration software tools and web applications (adapted from Fondi and Liò [90] and Beale et al. [112]).

Software Tool Omics Integrated Domain Functionality Type of license Reference

3Omics
• Transcriptomics
• Proteomics
• Metabolomics

Medical (human)

- Correlation network analysis
- Co-expression analysis
- Phenotype generation
- KEGG/HumanCyc

pathway enrichment
- GO enrichment
- Name to ID conversion

Open [41]

BiofOmics
• Transcriptomics
• Proteomics
• Metabolomics

Biofilm - Experiment library
- Data depository

Open [113]

BioCyc/MetaCyc
• Genomics
• Proteomics
• Metabolomics

Unspecified

- Online encyclopedia of metabolism
- Predicted metabolic pathways in

sequenced genomes
- Enzyme data set
- Metabolite database

Open [111]

Cell Illustrator 5.0
• Genomic
• Transcriptomics
• Proteomics

Unspecified

- Draw biological pathway models
and simulations

- Run biological cellular simulations and
graphical display results

Licensed [74]

CellML
(Open source XML
language)

• Transcriptomics
• Proteomics
• Metabolomics

Unspecified - Open source language for biological
cellular models

Open [73]

COBRA

• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Unspecified
- Genome scale integrated modeling of

cell metabolism and
macro-molecular expression

Open [12,79]
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Table 2. Cont.

Software Tool Omics Integrated Domain Functionality Type of license Reference

Cytoscape with
MODAM, and;
Cytoscape with
OmicsAnalyzer

• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Unspecified

- Multi-Omic Data Miner and
OmicsAnalyzer were designed as an
accessible and handy Cytoscape plugin
that facilitates omics analysis

- Compile all biologically-relevant
information regarding the model
system through web link
associationMap the network
components with multi-omics data

- Model omics data

Open [114,115]

E-Cell
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified (Cells)
- Modeling, simulation, and analysis of

complex, heterogeneous and
multi-scale cellular systems

Open [63]

Escher
• Genomics
• Proteomics
• Metabolomics

Unspecified

- Web application for visualizing data on
biological pathways.

- Rapidly design new pathway maps
based on user data and
genome-scale models

- Visualize data related to genes or
proteins on the associated reactions
and pathways

- Identify trends in common genomic
data types

Open (MIT license) [116]

Gaggle Variety of omics platform
bioinformatics solutions Unspecified

- Inoperability of the following tools:
- Bioinformatics resource manager
- Cytoscape
- DataMatrixViewer
- KEGG
- Genome Browser
- MeV
- PIPE
- BioTapestry
- N-Browse

Open [117]
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Table 2. Cont.

Software Tool Omics Integrated Domain Functionality Type of license Reference

GIM3E
(Gene Inactivation
Moderated by
Metabolism,
Metabolomics and
Expression)

• Transcriptomics
• Metabolomics

Unspecified

- Establishes metabolite use
requirements with metabolomics data

- Model-paired transcriptomics data to
find experimentally
supported solutions

- Calculates the turnover
(production/consumption) flux
of metabolites

Open; Phython based and
requires COBRApy 0.2.x. [118]

INMEX
(Integrative meta-analysis
of expression data)

• Transcriptomics
• Metabolomics

Medical and Clinical - Meta and integrative analysis of data
- Pathway analysis

Open [119]

IMPaLA
(Integrated Molecular
Pathway Level Analysis)

• Transcriptomics
• Proteomics
• Metabolomics

Medical and clinical - Enrichment analysis
- Pathway analysis

Academic only [120]

Ingenuity Pathway
Analysis

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Medical (human)
and clinical.

- Metabolic pathway analysis
- Network visualization
- Data integration
- Upstream regulator analysis
- Mechanistic networks
- Causal network analysis
- Downstream effects analysis

Commercial [121]

IOMA
(Integrative
Omics-Metabolic
Analysis)

• Proteomics
• Metabolomics

Unspecified
- Integrates proteomics and

metabolomics data to predict
flux distributions

Open [20]

KaPPA-View • Transcriptomics
• Metabolomics

Plants - Integrates transcriptomics and
metabolomics data to map pathways

Open [122]
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Table 2. Cont.

Software Tool Omics Integrated Domain Functionality Type of license Reference

MADMAX
(Management and
analysis database for
multiple omics
experiments)

• Metagenomics
• Transcriptomics
• Metabolomics

Plants, Medical and
Clinical

- Integrates omics data
- Statistical analysis and

pathway mapping
Open [123]

MapMan
• Metagenomics
• Transcriptomics
• Metabolomics

Plants (developed
for use with
Arabidopsis. Includes
more species)

- Compare data across these two species
- KEGG classification
- Classification into KOG clusters
- Mapping expression responses

Open [124,125]

MarVis-Pathway
(Marker Visualization
Pathway)

• Metagenomics
• Transcriptomics
• Metabolomics

Unspecified

- Toolbox for interactive ranking,
filtering, combination, clustering,
visualization, and functional analysis
of data sets containing intensity-based
profile vectors

Academic only [126]

MassTrix • Transcriptomics
• Metabolomics

Unspecified
- Integration of data
- Generation of colored pathway maps

KEGG data analysis
Open [127]

MetaboAnalyst

• Genomics
• Transcriptomics
• Proteomics
• Metabolomics

Plants, Microbial,
Microbiome,
Medical and Clinical

- Data processing and statistical analysis
- Pathway analysis
- Multi-omics integration

Open [53]

MetaboLights • Metabolomics Unspecified

- Database for storing metabolomics
experiments and derived information

- Database for cross-species and cross
omics technique

Open [106]

MetScape 2 • Transcriptomics
• Metabolomics

Medical and Clinical - Integrates data from KEGG and
EHMN databases

Open [128]

mixOmics
(R package)

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified
- Integration of data
- Chemometric analysis

(similarity/difference)
Open [129]
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Table 2. Cont.

Software Tool Omics Integrated Domain Functionality Type of license Reference

OmicsPLS

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified

- Integration of data
- Chemometric analysis

(similarity/difference)
- R-package with an open-source

implementation of two-way
orthogonal PLS

Open [130]

Omickriging
(R package)

• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Unspecified - Integration and visualization of
omics data

Open [131]

Omix visualization tool

• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Unspecified - Integration and visualization of
omics data

Annual license fee [132]

PaintOmics • Transcriptomics
• Metabolomics

100 top species of
different biological
kingdoms

- Integration and visualization of
transcriptomics and
metabolomics data

Open [133]

PathVisio 3
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified

- Integration of omics data
- Visualize omics data based on common

data nodes and interactions in
the pathway

Open (Apache) [134]

ProMeTra • Transcriptomics
• Metabolomics

Medical and Clinical

- Interactive visualizations of metabolite
concentrations together with transcript
measurements mapped on the
pathways and GenomeMaps

Open [135]

Reactome

• Genomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified
- Multi-omics data visualization
- Metabolic map of known biological

processes and pathways
Open [110]
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Table 2. Cont.

Software Tool Omics Integrated Domain Functionality Type of license Reference

Recon3D
• Genomics
• Proteomics
• Metabolomics

Human
- Computation resource and

comprehensive human metabolic
network model

Open [80]

SimCell

• Genomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified - Graphical modeling tool Open [56]

SIMCA

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified
- Integration of data
- Chemometric analysis

(similarity/difference)
Commercial [136]

VANTED
(Visualization and
Analysis of Networks
with related Experimental
Data)

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified

- Comparison of multiple omics
data sets

- Visualization of metabolic maps
- Correlation networks analysis

Open [137]

VitisNet

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Grapes - Integration of data
- Visualization of connectivity

Open [138]

xCellerator • Proteins
• Metabolomics

Unspecified - Mathematica package designed to aid
biological modeling

Open [55]
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Table 3. List of databases that aid multi-omics data integration process.

Database Omics Domain Functionality Type of license Reference

ChEBI • Metabolomics Unspecified - Metabolomics database and ontology Open [105]

E. coli metabolome
database (ECMDB) • Metabolomics Microbial - Annotated metabolomics and

metabolite pathway database
Open [97]

FlyBase • Genomics
• Transcriptomics

Drosophila - Genes and RNA-seq data of different
Drosophila spp

License [95]

GenBank (database) • Proteomics
Numerous (over
100,000 organisms)

- Proteomics database
- Open access, annotated collection of all

publically available nucleotide
sequences and their protein transitions.

Open [103]

Human Metabolome
Database (HMDB) • Metabolomics Human - Human metabolite and

pathway database
Open [102]

KEGG

• Genomes
• Transcriptomics
• Proteomics
• Metabolomics

PlantsAnimalsMicrobes

- Collection of databases dealing with
genomes, biological pathways,
diseases, drugs, and
chemical substances.

Open and licensed. [109]

Lipid Maps • Lipidomics Unspecified
- Lipids database, ontology, and

resource for standards and protocols
relating to lipidomics

Open [107]

Plant Metabolic
Network (PMN)

• Genomics
• Proteomics
• Metabolomics

Plants
- Plant-specific database containing

pathways, enzymes, reactions,
and compounds

Open [100]

PRIDE • Proteomics Unspecified - Proteomics database Open [108]
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Table 3. Cont.

Database Omics Domain Functionality Type of license Reference

ProMeTra • Transcriptomics
• Metabolomics

Medical and Clinical

- Interactive visualizations of metabolite
concentrations together with transcript
measurements mapped on the
pathways and GenomeMaps

Open [135]

Reactome

• Genomics
• Transcriptomics
• Proteomics
• Metabolomics

Unspecified

- Database for molecular details of
signal transduction, transport, DNA
replication, metabolism, and other
cellular processes

Open [110]

Saccharomyces genome
database (SGD) • Genomics Microbe (yeast) - Database for genome sequence of

Saccharomyces spp
Open [101]

UniProt • Proteomics Unspecified - Proteomics database Open [104]

Wormbase • Genomics Helminths

- Database that contains information on
biology, genetics, and genomics of
Caenorhabditis elegans and
other nematodes

Open [96]

Yeast metabolome data
(YMDB)

• Metabolomics Microbe (yeast) - Metabolite database Open [99]
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While there are many open access databases to help with multi-omics integration, a variety
of open-access tools are also available to help with statistics and visualization of multi-omics data.
These include tools to facilitate data quality checks, data normalization and data transformation (e.g.,
MetaboAnalyst 4.0 and mixOmics). They also include software to assist with performing multivariate
statistics, data clustering and data interpretation. Many multi-omics integration tools include methods
to generate and view interactive correlation or association maps (hairballs), as well as metabolic and
signaling pathways. A number of these tools and databases are listed in Tables 2 and 3.

4. Challenges in Multi-Omics Integration

Meaningful biological interpretation of multi-omics data requires a constant evolution of databases
and data analysis tools. Analytical and data analysis platforms have improved substantially over the
past decade, however, multiple challenges still exist [139]. Here, we identify and discuss some of the
key pitfalls and challenges that appear to be hindering the progress in multi-omics integration and
systems biology research. However, we acknowledge that some of these challenges might be solved in
the near future while new challenges may arise with time.

4.1. The Nature of the Omics Data Sets

Omics data are inherently highly variable and noisy. Furthermore, most omics data are only
qualitative in nature, making it very hard to reproduce and even harder to compare. When only
qualitative data are available, multi-omics integration, particularly from multiple sources, becomes
difficult, if not almost impossible [90,140,141]. While DNA sequence data are often very accurate and
highly reproducible (error rates of <0.001%), they are widely considered qualitative with a large number
of false positives based on the sheer number of reads obtained: transcriptomic, proteomic, metagenomics
and the majority of metabolomics data are highly qualitative and poorly reproducible, as reflected in
reported false discovery rates (FDR) and adjusted p-values [26,142–145]. Many of the difficulties that
these omics techniques have are inherent to the practices or measurement methods adopted by many
platform users. For example, most proteomics researchers do not use well-defined peptide reference
standards or isotopically labeled peptide standards for identification or quantification. Likewise,
many microarray/transcriptome researchers use inherently qualitative microarray technologies and
do not use universal reference materials with precisely known numbers of transcripts. Similarly,
most metagenomics labs do not employ standard OTU definitions or standardized 16S-RNA to
consistently identify microbes. It is now well-accepted by the microbiome community now that even
RNA-Seq counts are not the actual counts, rather they represent relative abundances of those transcripts.
Similarly, the vast majority (>80%) of published metabolomics studies are also qualitative, with little
or no use of multiple reaction monitoring (MRM) or well-defined metabolite reference standards
or isotopically labeled metabolite standards. As a result, omics labs that analyze exactly the same
material using similar or identical omics technologies (i.e., comparing one metabolomics/proteomics
approach to another comparable metabolomics/proteomics approach) will often get wildly different
results [26,142–145], so much so that in some instances upward trends in one data set, could become
downward trends in another.

Even if the problems with the omics technologies could be controlled or managed through
improved availability and use of reference standards and standardized operating protocols, there
still remains a problem with significant inter-laboratory variations in sample storage, extraction and
handling protocols. These issues are often related to the skills, organization, and patience of individual
technicians or researchers. Sample-specific factors, such as the population structure in the sample,
the cell or tissue composition, inherent sampling biases, batch effects, and other technical artifacts
can add further heterogeneity to omics measurements as does the way in which different classes of
biomolecules behave and interact (e.g., response time, stability, half-life, regulation).

Precisely measured, quantitative data that is calibrated to standard reference materials, checked
against authentic standards, assessed with quality controls and measured with universal standard
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operating protocols (SOPs) is what is needed for robust, reproducible multi-omics integration. This type
of high quality, quantitative data are actually obtainable via genomics, metabolomics, and proteomics.
They are potentially obtainable via transcriptomics [146] and meta-genomics [147]. When quantitative
data are available, it is possible to perform multi-omics integration. It is also possible to perform robust
intra- and inter-lab comparisons (i.e., ring trials). Examples of this can be seen with the impressive
results described in the systems modeling section (see Section 3.1) where essentially all of the baseline
data sets used for modeling were obtained from open-source quantitative data repositories.

The lack of sufficient meta-data is another key hurdle to the successful integration of multi-omics
data sets [89]. Often considerable time, money and effort may go into the collection of molecular
omics data, while very little effort goes into collecting the meta-data about the samples, organisms
or patients. Meta-data are information about the data, which typically includes where, when and
how the data were collected as well as information about the observable phenotypes of the samples.
Meta-data are important to enabling reproducibility and biologically relevant interpretation of omics
results. For example, in the case of plant multi-omics analysis information about the soil type, soil
composition, watering conditions, temperature trends, relative humidity, plant age, season, light levels
and plant breed can have a significant impact on metabolite, protein and transcriptome measurements.
For cell or tissue culture multi-omics analyses, important meta-data could include information about
the cell types, cell sex, cell growth media, cell oxygenation levels, and cell generation. For animal
studies, meta-data could include information about age, sex, weight, feeding levels, feed composition,
strain or breed, cage location, light conditions, activity, diurnal cycle, health status and proximity to
other animals. For human studies, meta-information including age, sex, job type, ethnicity, marital
status, BMI, smoking/drinking habits, lifestyle, exercise, diet, health status, drug intake, diurnal cycle,
menstrual cycle, and ethnicity should be collected, as they could also affect omics measurements.
Meta-data could also be considered in the form of ionomics or metallomics data from the cells or tissues
being investigated. Without taking into account these confounders, it is often difficult to identify clear
signals in the molecular data or signals may be misinterpreted (e.g., one may misidentify a molecular
trend that is simply due to an age difference). If these meta-data are not captured, the collection of
large data sets is required to mitigate the sources of variation [148], which may greatly increase the
cost of a multi-omics study.

4.2. Dispersed Data Sets and Non-Interoperable Tools

There is no shortage of data tools and software available for multi-omics integration, as clearly
demonstrated by the size and scope of Table 2. Often, the available multi-omics databases are of very
high quality and exceptionally well curated and many of the software tools are well designed and
maintained. However, it is clear that researchers (including many of the authors of this manuscript)
may be unaware of all of these tools and what they may offer. This problem may be due to the sheer
number of resources (now numbering hundreds) or the lack of a central repository which catalogs, links
and rates or summarizes these tools. A third reason may be the tendency of researchers to ‘stick with
what they know’. This leads to a bias among scientists to treat every problem as a nail that has to be hit
with the same hammer. This could be partly caused by the user-unfriendliness of many multi-omics
programs. Some are difficult to install, others have limited operating system compatibilities, while
others have enormously steep learning curves. Increasing researcher awareness and accessibility to
tools (e.g., through central repositories and making tools available over the web or converting them to
web-servers) will improve their use and uptake.

Lack of interoperability is another frequently cited problem with bioinformatics tools, not just
multi-omics tools. Different bioinformatics and cheminformatics databases have different formats,
many of which are non-standard. Similarly, different programs may also require their input data to be
in non-standard formats and will output data in a format that is incompatible with other programs.
This can make it difficult to create a multi-program or a multi-database workflow and may require
users to spend their time writing scripts to convert and reconvert data so that it can be read by other
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programs. The movement to FAIR (findable, accessible, interoperable, and re-usable) data standards in
bioinformatics software and databases could potentially alleviate these challenges [149].

4.3. Inadequate Pathway and Data Visualization Tools

While there are many excellent tools for multi-omics integration and visualization (see Table 2),
there is clearly still room for improvement. One area where significant work is needed lies in the scope
and availability of pathway databases. Pathway databases provide biological context while at the
same time providing clear links between genes, proteins, and metabolites. KEGG [109], MetaCyc [111]
and Reactome [110] are freely available and widely used pathway databases, however, they limited in
portraying what is known about biological pathways or molecular processes. While all three databases
emphasize metabolic pathways, they were all developed before the advent of metabolomics (or even
proteomics) and thus lack some of the new insights that these technologies bring. It is important
to remember that many other kinds of pathways are also important in biology, including: protein
signaling, metabolite signaling, gene activation, protein and metabolite transport, disease, drug action
and drug or xenobiotic metabolism pathways, as well as many more. Although some of these pathways
are captured in commercial resources, such as the Ingenuity Pathway Analysis (IPA) system produced
by Qiagen, the high cost, closed nature of the database, and the lack of compatibility with many other
bioinformatics software tools makes such commercial tools difficult to integrate into multi-omics
pipelines. Certainly, the creation of far more extensive, open access pathway databases with suitable
rendering functions and machine-readable features, would make multi-omics integration much easier
and far more user-friendly. As in the case of open platforms of open-source R-packages, R-based
multi-omics packages can be encouraged through collaborations internationally.

Construction and visualization of network models is another challenging aspect of multi-omics
integration. The use of metabolic network models, generated via metabolomics, has greatly facilitated
the integration of multi-omics data [150]. These metabolic network models have been extended
to genetic regulatory networks, protein-protein interaction network models and metabolic-reaction
network models [12,151]. However, these models remain ‘insular’ in that they only allow the modeling
a single omics network. Clearly, if network models could be extended to more clearly illustrate or
connect multi-omics data, this would greatly enhance visualization and interpretation of multi-omics
data. Recently, multi-layer networks—which can be defined as networks formed by multiple omics
layers—have been created that allow the rendering of specific interactions between different omics
layers [152,153].

4.4. Failing to Demonstrate Utility

Multi-omics studies potentially represent the pinnacle of achievement in molecular characterization.
However, there are questions around their real value and utility. For example, is a multi-omics signature
for diabetes or obesity really useful if the same diagnosis can be made by a simple blood glucose test or
having someone step on a weight scale? Likewise, if a single, carefully interpreted, metabolomics study
provides just as much information as a comprehensive multi-omics study, is anything useful gained?
Currently, many published multi-omics studies appear to simply demonstrate that they are feasible
and modestly informative. Some have demonstrated a post-hoc rationale for what was long known or
commonly observed while others have provided some new useful mechanistic insights but have not
led to new drugs, new therapies, new diagnostics or new biotechnologies. As yet no truly significant
or ‘groundbreaking’ results have emerged from multi-omics studies. That is not to say that these types
of studies will not have an impact, but for multi-omics research to gain traction with the public and
with funding agencies, it will need to demonstrate clear utility and highlight novel insights. Currently,
the most tangible and useful applications for multi-omics studies are in the areas of precision medicine,
personalized health, or precision nutrition [154–156]. These appear modestly useful, and certainly, if
larger population studies could be performed, their utility could grow significantly. Useful/practical
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applications are also appearing in environmental protection and environmental adaptation/resilience,
especially after significant and ongoing contamination events or natural disasters [39,50,51,157].

4.5. Limited Research Funding

Multi-omics research can be expensive, and access to multiple analytical instrumentations and
multidisciplinary specialists requires a considerable level of research funding. Indeed, a robust
multi-omics study on a human research population can easily cost in excess of US$500,000. Therefore,
the availability of sufficient funding is often the central limiting factor for any multi-omics study.
Traditionally, most research funding has been allocated to genomic, metagenomics and transcriptomics
studies while proteomics, in most jurisdictions around the world, is only funded at about 10% of
the level of genomics and, in most countries, metabolomics funding is usually at about 2% of the
funding level of genomics. As a result, most multi-omics studies in humans involve combined
genomics and transcriptomics studies or combined genomics and metagenomics/microbiome studies.
Multi-omics studies involving metabolomics are relatively rare, yet they are consistently among the
most informative or most highly cited [75–77]. Clearly, if true multi-omics research is going to be
conducted, a re-balancing of research funding is needed. As emphasized throughout this document,
we believe that the metabolomics field has a great deal to offer to multi-omics researchers and that
metabolomics methods should lie at the core of any truly multi-omics research study.

5. Recommendations

Based on the challenges identified above along with some of the potential solutions (achieved by us
and others) we have produced a list of recommendations to consider when designing or contemplating
a multi-omics study. These are:

• Adopt the sample collection, preparation and measurement standards used in metabolomics
studies. This would ensure high-quality data collection in most multi-omics studies;

• Measure multi-omics data in a robust, quantitative manner to ensure reproducibility, enforce
comparability and permit facile integration;

• Use reference standards, quality control (QC) samples, and universal standardized operating
protocols (SOPs) to enable consistent multi-omics measurements across laboratories;

• Perform power analyses, where possible, prior to conducting large scale multi-omics studies; and,
• Collect and record comprehensive meta-data to guide and inform well-designed multi-omics

studies (please see [106,158–160]).

We have also identified the following as key requirements to support the multi-omics community
in its efforts to carry out truly integrated, systems biology research:

• Create centralized data repositories, curated or reviewed software lists and improved
software/database interoperability (adherence to FAIR data standards) to improve
multi-omics integration;

• Improve or develop more comprehensive open source pathway databases and network
visualization tools;

• Increase levels of funding and increase awareness of the need for metabolomics in
multi-omics studies;

• Demonstrate clear utility of multi-omics studies to both the public and funding agencies; and,
• Undertake more community-driven activities to lead to the creation of multi-omics tools and

resources better suited to the community’s needs.

In addition to these above recommendations, we also encourage software developers to take more
initiative to develop more user-friendly omics integration of web tools and software. Advancements in
machine learning approaches would also be highly beneficial for the integration and interpretation of
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multi-omics data. Moreover, successful researchers should ensure to pass on their successes or share
their stories of multi-omics integration to a much broader audience. Communicating successes or
discoveries to the popular press raises awareness and shows both the public and scientific funding
agencies that multi-omics research can have a real social impact. The use of social media is changing
how we conduct social communication, it could and should change how we conduct our scientific
communication too.

6. Conclusions

Most of the data generated over the past 25 years by various omics platforms have been qualitative
or semi-quantitative in nature. While qualitative data can be used to compare similar variables across
samples within a single lab (using a single measurement platform), they do not support comparisons
across labs or across platforms. Likewise, qualitative measurements do not allow for consistent and
accurate integration of multi-omics data where measurements typically have to be done on multiple
platforms, across multiple laboratories, over extended time periods. Careful quantitation of omics
data allows much more accurate comparison to reference values, more consistent inter-laboratory
comparisons, greater reproducibility, improved interpretability, and far simpler data integration.
Indeed, because of the widespread lack of quantification, only one single proteomic assay and only
five transcriptomics assays have ever been translated into the clinic [161,162]. On the other hand,
quantitative metabolite measurements have enabled the translation of more than 300 chemical tests to
the clinic [163], while the use of quantitative genotyping has led to the development of about 75,000
genetic tests [164].

In addition to the importance of generating quantitative omics data, it is also important to make
use of publicly available data sets, where omics-specific reporting and higher quality data standards
have been followed. Such an approach will benefit the scientific community and reduce the amount
of repeated work amongst different groups. The description of a given domain can be represented
in any format, but the use of common ontologies makes it easier to compare, integrate and interpret
data from similar domains, multiple omics platforms as it facilitates the integration, computational
processing and comprehensive interpretation of that data [165].

Lastly, there is a greater need for cross-talk among the different omics communities. This is
especially true given the insular or “silo-ed” approach that most omics researchers have traditionally
adopted in publishing or presenting their work. There is a tremendous amount that can be learned from
shared interactions, particularly from those omics areas that are developing comparatively faster than
others. Webinars could be one approach that could inexpensively facilitate such conversations. Likewise,
the formation of professional societies whose central aim is integrating multi-omics data could also help
break down some of the existing barriers and improve collaboration between the existing professional
omics societies and systems biology societies. It could be achieved by, for example, establishing
mutual education programs, creating common data standards, forming common task groups and
developing cross-omics engagement guidelines that address authorship policies and promote the
advancement of early to mid-career researchers. Furthermore, greater connectivity and collaboration
between the respective scientific conferences could be encouraged through shared/mutually supported
conference sessions.
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