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Urban scaling laws relate socio-economic, behavioural and physical variables
to the population size of cities. They allow for a newparadigmof city planning
and foranunderstandingof urban resilience and economics. The emergence of
these power-law relations is still unclear. Improving our understanding of
their origin will help us to better apply them in practical applications and
further research their properties. In this work, we derive the basic exponents
for spatially distributed variables from fundamental fractal geometric
relations in cities. Sub-linear scaling arises as the ratio of the fractal dimension
of the road network and of the distribution of the population embedded in
three dimensions. Super-linear scaling emerges from human interactions
that are constrained by the geometry of a city. We demonstrate the validity
of the frameworkwith data from 4750 European cities. Wemake several testa-
ble predictions, including the relation of average height of cities and
population size, and the existence of a critical density above which growth
changes from horizontal densification to three-dimensional growth.
1. Introduction
One of the surprising findings in urban science is that many of the hundreds of
quantities and variables that characterize the dynamics, functioning, and per-
formance of a city exhibit power law relations. These are called scaling laws,
meaning that a quantity X depends on a variable p (such as population) in a
power-law fashion. In particular, this means that X is related to the population
of the city as

X/ pg, (1:1)

where γ is the scaling exponent and p represents population size. Several
quantities scale linearly (γ = 1) with population, such as water consumption,
housing, or the number of employments [1]. However, non-trivial urban scaling
laws abound and appear in a vast number of different contexts. For example, scal-
ing laws with respect to population sizewere found for GDP [2,3], the number of
patents [4], walking speed [5] or crime rates [2]. The associated scaling exponent
for these relations appears to be in a range of γ ∼ 1.1–1.2 and are said to scale
super-linearly with the population. The fact that different variables share the
same exponent (belong to the same class) points to a potential shared underlying
cause for the emergence of those values. For other quantities, the total length of
the road network [6], the length of electrical cables [1], the number of facility
locations [7] or of petrol stations [8], the associated scaling exponent is often
found in a range of γ∼ 0.8–0.9.1 This is referred to as sub-linear scaling.

Note that technically it is all but trivial to quantify urban scaling exponents
reliably and consistently and some works question the measurement techniques
used in a large fraction of the literature [9,10]. A major difficulty is a proper
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definition of city boundaries, which is at the heart of some of
the discrepancies in several works [11–13]. Depending on the
notion of city boundaries, it has been shown that exponents
for a system can vary substantially, sometimes even from a
sub-linear to a super-linear behaviour. To avoid these
issues, we propose an approach to obtain city boundaries
directly from population data; for details, see electronic sup-
plementary material, section S2.

Urban scaling is of immediate relevance for a number
of reasons. First, they allowus to compute the detailed econom-
ies of scale for a single city. They relate the size of cities to
efficiency gains or losses for a wide range of quantities that
determine life in cities. For example, if a quantity like the
total length of the road network scales sub-linearly with popu-
lation size, this means that the cost per person decreases with
city size; the larger a city becomes the more efficient it will be
with respect to this variable. If the population of city A is x
times larger than B, sub-linear scaling means that the per
capita effort in city A is a factor xγ−1 < 1 less than in
B. Second, they allow us to rescale variables establishing a cor-
rect comparison between different cities. If one would directly
compare, for example, the per capitaGDP of a large and a small
city, due to the presence of super-linear scaling, the large city
will have a bias toward larger GDP values that is only due to
scaling, and not to, for example, better management. Third,
since urban scaling laws appear to be largely similar across
countries and cultures, they can be used for urban planning,
in particular for anticipating consequences of rapid growth. If
a city is expected to double in size within the next decades,
depending on the scaling exponents, dozens of performance
indicators, growth rates, infrastructure costs, etc. can be
inferred and used proactively in city planning. Given a level
of growth, scaling laws pose clear constraints to urban per-
formance indicators and possibilities for change. It is
therefore of fundamental importance to understand the
nature of these scaling laws and to give a clear and concise
reasoning for the emergence of the specific values of their
exponents.

Until today, a general understanding of urban scaling
laws is still under debate. In particular, the origin of
the values of the exponents, why they cluster in specific
ranges, and why the super-linear and the sub-linear expo-
nent tend to add up to two [14] call for a coherent and
comprehensive explanation.

Scaling laws are present in almost any field of science. They
appear in second-order phase transitions, where at the critical
point, universality classes have been defined for different sys-
tems that share the same set of critical exponents [15–17].
Scaling laws are embedded in Newtonian physics, where the
inverse quadratic law arises from the dimension of the spheri-
cal area around the mass. Allometric relations are found across
all biological species (Kleiber’s Law [18]) as a result of fractal
geometry [19]. Earthquake magnitudes follow power-law dis-
tributions [20]. Power laws appear in preferential attachment
processes, in the distribution of the degrees of networks [21]
and a countless number of other examples [22].

In the context of urban environments, various expla-
nations have been given for the emergence of scaling laws.
Some use underlying network structures of the social
tissue. In [23] the authors focus on the social network struc-
ture of cities understood as a hierarchical tree. This allows
them to define a distance in the tree that is used to calculate
the probability of people interacting. This is then used to
calculate the overall productivity of the city as proportional
to the number of interactions. They are able to reproduce the
super-linear exponent of interactions; however, the approach
uses several assumptions that cannot be tested, such as the
tree-like structure of the social ties or the decay of interactions
with the distance in that topological structure. In [24] the
authors propose a geographical network embedded in a
fractal Euclidean space, to explain the sub- and super-linear
exponents. However, they need to create two parameters that
are difficult to measure, complicating the model. Another
approach is based on a path-dependent evolution of inno-
vations [25], where cumulative cycles of innovation give rise
to the growth of cities, that further lead to the next round of
innovations. The authors present a longitudinal explanation
of scaling exponents that depend on the cycle of innovation
of each sector, relegating more mature technologies to smaller
cities, while new products are introduced in the largest cities.
This explanation of economic innovation cycles does not
explain, however, other scaling exponents that relate to phys-
ical quantities, such as the scaling of infrastructure, or the
number of gas stations.

Two recent works propose to explain the observed expo-
nents partly on the basis of the underlying geometrical
structure of cities. In [26] the authors consider growth models
for cities in which an equilibrium between costs and benefits
produces the scaling exponents. They assume that cities are
space-filling fractals. Most cities have a fractal dimension of
less than 2 since in every settlement there exist empty spaces
and voids of different sizes, such as parks and open public
spaces, which lead to fractal dimensions that fall consistently
in a range between 1.2 and 1.93, depending on the city
[27–31]. Themodel of [14] builds on the notion that interactions
between people decay with distance in a specific way, and
assumes that the fractal dimension of the population, dp, is
equal to that of the infrastructure. In particular, they expect it
to be around dp∼ 1.7. However, given that the population
lives in three-dimensional buildings, its fractal dimension
should be expected to be definitively larger than that of the
road network, i.e. larger than 2. Both models use geometric
arguments, but do not attempt to directly relate the observed
scaling exponents to the geometry of a city.

This is exactly what we propose in this work. Scaling laws
can often be explained directly from the geometry of the
underlying structures of a system. Classic examples include
Galileo’s understanding of the relation between the shape
of animals and their body mass [32], the understanding of
the allometric scaling laws in biology on the basis of the frac-
tal geometry of the branching of vascular systems [19,33,34],
or the scaling laws of river basins given by their fractal geo-
metry [35]. In the same spirit, we provide a simple and a
direct geometrical explanation of urban scaling exponents,
derived from the fractal geometry of cities. Cities across
countries, latitudes and cultures are different—and so is
their geometry. How should cities that are significantly differ-
ent in their geometry lead to similar scaling exponents? To
answer this question we focus on the ratio of two geometric
aspects of a city, the fractal dimension of its infrastructure
(street networks) [28,36–38], and the fractal dimension of
the population, meaning the dimension of the object that rep-
resents the spatial distribution of the population in a city. The
fractal of the population can be imagined as the cloud of
people that is obtained by identifying the position of every
person in three dimensions.
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Figure 1. (a) Street network in a section of the city of size L. The length of the street network with fractal dimension di expands with the linear scale L as ‘/ Ldi .
(b) Buildings are located along the street network and are attached to it. Since people live and work mostly in buildings, the fractal dimension of the ‘projected population’
(the actual population fractal projected onto the two-dimensional surface, where streets are embedded) should have a similar fractal dimension d p p¼ di . This is shown in
(c), where both dimensions show a strong linear correlation for every city in the UK, with a slope of 1. (d ) If all buildings were to have the same height, the fractal
dimension of the population, dp, should be the projected population dimension plus 1, d p ¼ d p p þ 1. (e) More realistically, since not all buildings have the same height,
the fractal dimension of the populations is d p ¼ d p p þ h, where η captures the fractal dimension along the third dimension.
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The present study aims to show how the values of the
exponents of a subset of scaling variables arise from the frac-
tal geometry of a city, and therefore directly explain the
particular scaling. The approach presented in this paper is
applicable to the study the scaling of spatially distributed
variables with respect to population size. The sub-linear
exponent of planar infrastructure (roads, pipes, gas stations,
etc.) is exemplified by the total length of roads throughout
the text. The super-linear exponent arises from the number
of social interactions in a population and all variables that are
proportional to it (criminality, GDP, etc.).

The basic idea of this work is very general and simple:
any scaling exponent for a spatially distributed variable can
be understood as the ratio of the fractal dimension of a
measured object (such as the total length of road networks)
and the fractal dimension of the population.

Most infrastructure exists along road networks, gas/
water/electricity lines follow the pattern of streets, so as to
remain accessible. Also, gas stations are located along streets.
These infrastructure networks will therefore expose the same
(or a very similar) fractal dimension. This means that they
share the same scaling exponent, which allows us to talk
more generally about the sub-linear scaling class (γsub). Other
variables that do not have a spatial component fall outside
the logic of this work. Variables with a spatial component
with a different fractal dimension can still be explained with
the logic presented in this paper, but will lead to different
values of scaling exponents. An example of these is how the
area of a city scales with its population, which will be its fractal
dimension, 2, divided by the fractal dimension of the popu-
lation, dp.

Within this geometric framework, we are not only able to
understand the origin of specific super- and sub-linear scal-
ing exponents in a new light and why they add up to 2, we
can also predict a number of geometric scaling laws, such
as the average height of a city, the length of the road network,
the area that contains a city, and the number of interactions.
All these predictions are confirmed empirically to a large
level of precision.

In the remainder of the paper, we will use the notation
∝,∼ , = to mean proportionality, similarity and strict equality,
respectively (see electronic supplementary material, section S8).
2. Methods
The physical aspect of a city is largely determined by its buildings
and its street network. Street networks can be characterizedwith a
fractal dimension 1 < di < 2, as measured in the literature [27–31].
Given this exponent, the average length of roads that is contained
in a square of ϵ × ϵ is h‘ie ¼ h‘ie0 (e=e0)di , where ϵ0 is the minimum
length scale that represents the lowest resolution limit for the
measurement of the fractal dimension, h‘ie0 is a city specific con-
stant that is equal to the average length of roads in a square of
side ϵ0, and the total length of the street network, ‘, can be
approximated when ϵ approaches L, the linear extension (scale)
of the city, as schematically shown in figure 1a. Therefore, ‘ can
be expressed as

‘ � h‘ie0
L
e0

� �di

, (2:1)

where (L=e0)
di is the number of boxes of size ϵ0 within a square of

side L. Note that this is formula states that the total length of roads
is the average length of roads inside a square, multiplied by the
number of non-empty squares. This is true regardless of whether
the road network is a fractal (1 < di < 2), or whether the city would
occupy the entire surface, di = 2. Since L/ϵ0 is dimensionless, ‘ is
given in the units in which we measured h‘ie0 , in our case metres.

The population is distributed along buildings, which are
located on the fractal generated by the streets. Since houses
extend into the third dimension, the population is distributed as
a fractal in space, with dimension dp, where di≤ dp≤ di + 1. Given
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a three-dimensional grid of cubes of linear size ϵ, the average
number of people living in an ϵ-box is hpie ¼ hpie0 (e=e0)dp ,
where hpie0 is a city-specific constant, the number of people
living in a box of size ϵ0. It is related to the number of people
per square metre that can live in a flat. If we now choose a box
size that contains the entire city (ϵ∼ L), the population can be
expressed as

p � hpie0
L
e0

� �dp

, (2:2)

where L is the side of the box that contains the city, (L=e0)
dp is the

number of non-empty boxes contained in a square of side L and
hpie0 is the average number of people inside a box of side ϵ0. To
verify how well equations (2.1) and (2.2) are realized empirically,
consult electronic supplementary material, figure S5. Note that
we view the population distributed in space as a cloud of points,
where every person is represented as a point, and its location is
given by the three-dimensional coordinates of the apartment
where the person lives.

Unfortunately, three-dimensional data of the population
do not exist. What we can obtain is a planar, projected version
onto the surface of the city that can be expressed as a fractal.
The average number of people that are projected into an ϵ × ϵ
square is hppie ¼ hppie0 (e=e0)dp p , where hppie0 is the average
number of projected population into a square of size ϵ0. Note
that hppie0 is not independent of the size of the city, since it
will absorb the dimensionality reduction that occurred when
we projected the population from three-dimensional to its two-
dimensional representation. Writing the whole population as a
function of its two-dimensional projected version for ϵ∼ L,
we get

p � hppie0
L
e0

� �dp p

: (2:3)

Both planar fractal dimensions di and dpp can be directly
measured from their respective datasets [39,40] using box-count-
ing (see electronic supplementary material, section S3, for a
detailed explanation), and, as shown in figure 1c, di and dpp

show very closely related values. This happens because people
live in buildings, and buildings are aligned along streets, there-
fore, we expect dpp to be close to di.

The estimation of the dimension of the three-dimensional
population fractal, dp, is harder to obtain due to limitations in
the data. The three-dimensional information of the population
distribution is not directly available. To compute it nevertheless,
we propose to decompose dp ¼ dpp þ h into its planar (or pro-
jected) part, dpp , and a component that captures the ‘fractality’
of the vertical component, η, which can be approximated from
data on the height of buildings [39] (figure 1e).

Open Street Maps [39] is digitalizing three-dimensional infor-
mation of cities. It is a work in progress and some countries (such
as the UK) are more complete than others. For each city, we
obtain the average number of levels in a building, 〈h〉, and the
maximum number of levels, hm, as well as how many buildings
were digitized in that city. Given these data, we obtain the
average population per level in an ϵ × ϵ square, hphie ¼ hppie=hhi.

To compute dp with box-counting, we need the average
number of people in three-dimensional boxes of different sizes ϵ.
Technically, box-counting needs at least two different box sizes,
which is, of course, an extremely poor approximation. However,
from the data we only know the average population per box at
two specific ϵ values in a reliable way. Assuming that the typical
floor is 3m high, then for ϵ = 3m, one box fits into every level
and the population in each box will be the population per level
in a square of the same size, hpi3 ¼ hphi3 ¼ hppie0=hhi(3=e0)dp p .
The second box size is the maximum height of the city, ϵ = 3hm.
The population in each box will be equal to its projected version,
hpi3hm ¼ hppi3hm ¼ hppie0 (3hm=e0)dp p . With these two values, we
can approximate

dp �
loghpi3hm � loghpi3
log 3hm � log 3

¼ dpp þ
loghhi
log hm

(2:4)

The fractal dimension of the population is the fractal dimension of
the planar projection, plus the fractal dimension of the vertical
component and η = log〈h〉/log hm.

To obtain the sub-linear exponent we combine equations (2.1)
and (2.2), to express ‘ in terms of the population allowing us
to derive the sub-linear exponent, ‘/ pdi=dp . We denote the
sub-linear scaling exponent by γsub = di/dp. Note that we would
not be able to use equations (2.1) and (2.3) to obtain the same
derivation, since as will be shown in the following, hppie0
depends on the size of the city.

The number of social interactions (approximated by the
number of cellphone calls) as a function of city size follows a
scaling law with a super-linear scaling exponent that is close to
1.12 [41]. We can calculate how this exponent emerges in our fra-
mework as a consequence of the geometry of the street network
and how people are distributed in three dimensions.

Using equations (2.2) and (2.3), we can write

hppie0 � hpie0
L
e0

� �dp�dp p

: (2:5)

Interactions occur when people leave their apartments
and wander into the streets, go to a bar, or to the local super-
market. Therefore, the number of interactions is controlled in a
rough approximation by the projected version of the population
onto the streets. If we have hppie0 people in a square of size ϵ0,
the maximal number of their interactions is
hppie0 (hppie0 � 1) � hppi2e0 . The instantaneous number of inter-
actions, N, in a city is proportional to that value (times the
probability that a potential link becomes an actual interaction),
multiplied by the number of locations in which that can happen,
which is (L=e0)

dpp . Therefore, using equations (2.5) and (2.2) we get

N / hppi2e0
L
e0

� �dp p

/ L
e0

� �2dp�dp p

� p2�
d p p
d p � p2�gsub : (2:6)

Here we used the empirical finding that the fractal dimension of
the projected population follows the dimension of the street net-
work, dpp � di (figure 1c). We identify the scaling exponent
obtained from the interaction densities as the super-linear expo-
nent, γsup = 2− γsub. The addition rule that states that the two
exponents add up to 2 follows from this derivation.

We can further derive the exponent for the projected average
population,whichcomessimply fromwritingequation (2.5) asafunc-
tion of the population, hppie0 / (L=e0)

dp�dp p � p1�dp p =dp � p1�gsub

(using equation (2.2)). Since hppie ¼ hppie0 (e=e0)dp p and (e=e0)
dp p

is approximately independent of the population, we have
that also hppie / p1�gsub . Moreover, since by definition,
hphie ¼ hppie=hhi, we naturally have that hhihphie / p1�gsub . The
full picture presents itself when we understand that growing ver-
tically requires more effort than increasing density, and
consequently, as long as one can increase hphie, then 〈h〉 will
remain constant and hphie / p1�gsub . At some point, the density
of people per level in a square will saturate and will become a con-
stant, forcing 〈h〉 to absorb all the growth and thus hhi/ p1�gsub .
3. Results
We show in figure 2a the measured dimensions di and dp for
1000 UK cities as a function of their population. Results for
other major European countries (DE, FR, ES, IT) can be
found in electronic supplementary material, figure S5(a).
Both dimensions exhibit a clear dependence on population
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size, p, therefore their ratio shows a small dependence on
city size which saturates as cities grow larger, as explained
in depth in the electronic supplementary material, section
S1. This means that the scaling exponent cannot be charac-
terized by a single value which needs to be considered
in order to avoid contradictions. Figure 2b portrays the
sub-linear scaling exponent, γsub, which as shown, allows
us to almost perfectly reproduce the empirical length of
street networks ‘.

It has been argued [26] that the observed super-linear scal-
ing exponents of several variables (GDP, criminality) can be
explained as a consequence of the super-linear scaling expo-
nent of social interactions in cities. This assumption means
that we can use ameasurable indicator such as the GDP to vali-
date the result obtained from our framework (number of
interactions). We show the GDP [42] for UK cities in compari-
son to our theoretical prediction of the number of interactions
in figure 2c. It behaves as p2�gsub , as predicted.

In figure 3, we show the growth of the average number of
levels 〈h〉, density of people in a square hppie, and people per
level hphie, and compare them to our theoretical predictions.
In a low-density population regime, the growth of projected
population hppie is absorbed by an increase in the density
of people per level hphie, and as density reaches saturation
and becomes constant, the number of levels of the city 〈h〉
starts to increase to allow for further growth. We can see in
figure 3e that hppie maintains a power-law relation with
respect to population growth to absorb the dimensionality
reduction from representing the three-dimensional popu-
lation with a two-dimensional dataset, which makes it scale
with an exponent 1 − γsub. We observe that for population
sizes below 105 people practically no growth in the average
number of levels is observed; the city grows horizontally, by
a densification process in the two-dimensional plane with
an exponent of 1 − γsub (figure 3f ). Above 105 people, the
saturation of density of people per level is reached and
cities begin to grow into the third dimension, with a scaling
exponent of 1 − γsub, as predicted (figure 3g). A different
approach to study scaling of heights was presented in [43].

We summarize the urban scaling exponents that are
explainable within the proposed geometric framework in
table 1. Since the exponent varies with city size, we used
the results for the largest cities. For the UK, we have the
values γsub∼ 0.86 and dp∼ 2.14.
4. Discussion
Urban scaling laws are deeply related with the ways humans
move, live, act and interact within a city. The way these actions
happen is strongly governed and constrained by its specific geo-
metry. A geometrical measure that is able to capture these
constraints is the ratio between the fractal dimension of the infra-
structure (street) network and the fractal that represents how the
population is distributed in three-dimensional space. We claim
that some urban scaling laws emerge as a result of the interplay
between the structures where people are located and the struc-
tures they can move on. This is the reason why the scaling
exponents can be expressed in terms of this ratio. We explicitly
showed that this geometric framework leads to predictions
that are in excellent agreement with actual data for the scaling
laws of the length of street networks and heights of buildings.
For the latter, the value of the exponent is determined by how
the heights of buildings change, once cities start to expand into
the third dimension, which happens at a critical city density
when the population approaches approximately 100 000
people. This change of regime is probably related to the critical
population that determines the transition from a mono-centric
to a poly-centric city [45,46]. The existence of two different scal-
ing regimes has been shown previously in [47]. Further, the
geometric ratio explains a number of very different aspects of
scaling in a perfectly coherent way.

In summary, a fractal geometry perspective on cities
allows us to accomplish the comprehensive understanding
of the origin of the sub-linear exponent associated to infra-
structure networks and the super-linear scaling exponent
of social interactions on the basis of geometry alone, the
relationship between both, and finally, to systematically
relate the fractal dimensions of geometric objects to the expo-
nents of the observed scaling laws. With the latter we predict
several scaling relations and verified their existence with data.
The geometrical perspective has also allowed us to calculate
for the first time individual exponents for each city which
shows that the exponent depends on city size.
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and can no longer grow. Up to this point, the city densifies to absorb the increase of the population. (g) The scaling behaviour of the average building height of UK
cities, 〈h〉, is clearly scaling, and follows the theoretical prediction for the exponent 1− γsub. Scaling only appears for populations larger than 100 000, above the
saturation level of 〈ph〉. The red line indicates the scaling region with a slope of 0.10. Below the critical population the growth is marginal. In (e), ( f ) and (g) each
point is the average for similar sized cities using log-bins. In the case of ( f ) and (g), this is a weighted average, using as weights the number of buildings digitized
in each city.

Table 1. Urban scaling exponents explainable with our geometric
framework. The measured values are obtained from the UK. The maximum
values of γsub obtained for the different countries are gUKsub ¼ 0:86,
gFRsub ¼ 0:79, gDEsub ¼ 0:81, gESsub ¼ 0:82, gITsub ¼ 0:81.

quantity theory measured reference

street length, ‘ γsub 0.86 here

average height, 〈h〉 1− γsub 0.10 here, figure 3e

interactions, N 2− γsub 1.12 [41]

city GDP 2− γsub 1.12 [44]

proj. pop., 〈pp〉 1− γsub 0.09 here, figure 3f

city area 2
d p

0.91 here, electronic

supplementary

material,

figure S10
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Cities exhibit surprisingly stable geometrical ratios across
countries and cultures, showing even a similar dependence to
population size, and have been called universal [48]. The
extent of this universality is currently under debate. Other
studies have shown that exponents depend on the way
cities are defined [12] and that measures of the same variable
differ, depending on the number of samples used [11], as we
explain in the electronic supplementary material, section S1.
The nature of this behaviour is still unknown and we will
explore it deeper in a future global scale study. We believe
that one of the main drivers behind the universal exponents
might be that cities occupy space in similar ways, producing
objects of similar ratios of fractal dimensions which drive the
related scaling exponents to a very specific range.

Data accessibility. All data sources used in this paper belong to the
category of third-party open data and can be freely accessed
under the umbrella of the corresponding institutions as referenced
in the text. These datasets are: Global human settlement layer
(GHS) created by the European Commission and accessible at
http://ghsl.jrc.ec.europa.eu/ghs_pop.php; OpenStreetMaps data
accessible at https://planet.osm.org and Data on the GDP of cities
from Eurostat accessible at https://ec.europa.eu/eurostat/web/
rural-development/data.
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Endnote
1In [7] the authors find an exponent of 0.66, however, with respect
to another variable. This variable (density) approximately scales
with 0.15 with respect to population, so that effectively they have
an exponent of 0.15 + 0.66 = 0.81.
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