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Simple Summary: Recently, a significant relationship between stress and reproductive failure in
women was reported; being one of the possible causes of infertility. The World Health Organization
recognizes infertility as a global public health issue; therefore, the interest in understanding the main
causes of this issue has increased over the last few decades. Thus, many studies have reported that
stress can adversely alter the functionality of the hypothalamic-pituitary-gonadal axis; as well as
being one of the reasons of subfertility in patients undergoing in vitro fertilization. Therefore, it can
be assumed that stress is closely related to poor in vitro fertilization outcomes. In chronically stressed
female rats, irregular estrous cyclicity, increased corticosterone levels, decreased oocyte viability,
and increased percentage of abnormal oocytes were obtained in all estrous cycle phases, resulting
in reduced oocyte maturation during proestrus. Oocyte maturation disturbed by chronic stress is
a crucial factor by which chronic stress disrupts female reproduction.

Abstract: Background: Stress has been considered as one of the causes of decreased reproductive
function in women. However, direct evidence of the effect of chronic stress on oocytes depending
on estrous cycle phases is limited. Objective: The present study aimed to evaluate the impact of
chronic stress on the viability, integrity, and maturation of rat oocytes depending on estrous cycle
phases, specifically proestrus, estrus, and diestrus. Methods: For this purpose, adult female rats
were stressed daily by cold water immersion (15 ◦C) for 30 consecutive days. Results: In chronically
stressed female rats, irregular estrous cyclicity, increased corticosterone levels, decreased oocyte
viability, and an increased percentage of abnormal oocytes were obtained in all the estrous cycle
phases, resulting in reduced oocyte maturation during proestrus. Conclusion: Oocyte maturation
disturbed by chronic stress is a crucial factor by which chronic stress disrupts female reproduction

Keywords: cold stress; female cycles; homeostasis; oogenesis; ovum

1. Introduction

Stress is defined as a disruption in an organism’s homeostasis, and the stress response
depends on the intensity and duration of the stimuli (stressor). Stress, both acute or chronic
forms, can result in physical or physiological disorders. Recently, a significant relationship
between stress and reproductive failure in women was reported [1–3]; being one of the
possible causes of infertility. The World Health Organization recognizes infertility as
a global public health issue; therefore, the interest in understanding the main causes of this
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issue has increased over the last few decades. Thus, many studies have reported that stress
can adversely alter the functionality of the hypothalamic-pituitary-gonadal (HPG) axis, as
well as being one of the reasons of subfertility in patients undergoing in vitro fertilization
(IVF) [4,5]. Therefore, it can be assumed that stress is closely related to poor IVF outcomes.

Stressors cause the over-activation of the hypothalamic-pituitary-adrenal (HPA) axis
and, subsequently, increase cortisol (in humans) or corticosterone (in rodents) secretion.
The activation of this axis, both acutely or chronically, has been shown to impair female
reproduction, directly via hypothalamic, pituitary, ovarian, and uterine levels, or indi-
rectly through neuroendocrine related routes [3]. In female rats, chronic unpredictable
mild stress lengthens the estrous cycle to 6–7 days, mainly due to prolonged diestrus [6].
Furthermore, in female rodents, stress disrupts ovarian follicular development [7], ovu-
lation [8], and diminishes oocyte quality and embryo development [9]. Activation of the
HPA axis increases cortisol levels and the consequent oxidative stress, affecting granulosa
cell functions leading to apoptosis and reducing their ability to synthesize estradiol (E2),
which, subsequently, impairs the normal development of human oocytes [5]. Furthermore,
glucocorticoids administered to female mice induce apoptosis in mural granulosa cells and
increase Fas ligands in cumulus cells and oocytes, impairing oocyte competence by trig-
gering apoptosis [10]. Chronic restraint stress can also cause the immoderate activation of
ovarian primordial follicles [11] and repeated restraint stress impairs oocyte development,
through cumulative effects on growing ovarian follicles, with antral follicles being more
sensitive to stress [12].

A study of the effects produced by stress on female reproduction is difficult to achieve
because the precise determination of the estrous cycle phases is required; also, the fluc-
tuating sex hormones per phase increases the number of animals used [13]. Hormonal
variations, depending on the estrous cycle phase, make experimental work more com-
plex. In one study evaluating the effects of stress on rodent oocytes, cells were collected
regardless of the estrous cycle phase, then matured in vitro, showing impaired oocyte
development potential due to chronic stress [14]. Other studies stimulate mice via hormone
with pregnant mare serum gonadotropin (PMSG) [15] or equine chorionic gonadotropin
(eCG) [12] to collect matured oocytes. As far as we know, to date, there are no studies
evaluating the effects of chronic stress on oocytes collected in the different phases of the
estrous cycle, without any exogenous hormonal stimulation, which can give more accurate
information about how stress affects their development. Therefore, the present study
aimed to evaluate the effect of chronic stress on the viability, integrity, and in vivo matura-
tion of rat oocytes depending on three estrous cycle phases, including proestrus, estrus,
and diestrus.

2. Materials and Methods
2.1. Ethics

The present study was approved by the Health and Biological Sciences Division
Ethics Committee at Autonomous Metropolitan University-Iztapalapa Campus. Animal
management and experiments were performed under the official Mexican regulations
(NOM-062-ZOO-1999) and the domestic and laboratory animal regulations published in
the Ethical Conduct Guidelines for Research, Teaching, and Outreach of the Health and
Biological Sciences Division.

2.2. Animals

Nighty healthy mature Female Wistar rats (2.5 months old, 200 g live bodyweight)
were obtained from the Autonomous Metropolitan University vivarium. Females were
assigned to control (n = 45) or stress (n = 45) groups. Animals were maintained in acrylic
cages (10 per cage), with an inverted light/dark cycle (12/12; lights off at 09:00 am), and
food and water were ad libitum. To ensure proper cycling in all females, daily vaginal
smears were obtained and assessed for two weeks before experiment [6].
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2.3. Experimental Design

To evaluate the effects of chronic stress by cold water immersion on oocyte viability,
integrity, and maturation, female rats were stressed for 30 consecutive days, and vaginal
cytology was evaluated before being sacrificed. Oocyte viability, integrity, and matura-
tion, as well as estrous cyclicity and serum corticosterone, were assessed at the end of
stress exposure.

2.4. Stress Procedure

Control females were left undisturbed in their cages. The females from the stress
group were transferred to another room, then placed individually in a covered tank with
cold water (temperature = 15 ◦C; depth = 15.5 cm) for 15 min. Rats remained in an upright
position, keeping their head above water level [16]. At the end of the 15 min, rats were
picked up from the tank and towel dried. The stressor was applied once a day, when lights
were off, at 09:00 am, for 30 consecutive days.

2.5. Vaginal Cytology and Estrous Cyclicity

Estrous cycles were evaluated using vaginal smears in all females from the control
and stress groups for 30 days (Figure 1). The smears were obtained one hour before
the dark period’s onset, (08:00 am), using a stainless-steel loop (2 mm id) with saline,
then mounted on a glass slide and stained with hematoxylin-eosin and evaluated under
a light microscope (Olympus, model CX41RF, Shinjuku-Ku, Tokyo, Japan) at 200× and
400× magnifications. Estrous cycle phases were identified according to vaginal cytology:
proestrus, nucleated cells; estrus, cornified cells; diestrus 1, cornified cells, and leucocytes;
diestrus 2, leucocytes [6].
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Figure 1. Representative estrous cycles of 4 control and 4 stressed females for 30 days. Chronic stress
caused irregular and prolonged estrous cycles, increasing the number of consecutive days (3) in
proestrus, estrus, and diestrus compared to control females. E= estrus, P = proestrus, D1= diestrus 1,
D2 = diestrus 2.
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2.6. Biological Samples

After 30 days of stress, vaginal smears were obtained to identify the estrous cycle
phases. Then, females were rapidly euthanized, and ovaries were obtained from females in
proestrus (control n = 15; stress n = 15), estrus (control n = 15; stress n = 15), and diestrus
(control n = 15; stress n = 15). In the rat, the metestrus phase is also known as diestrus 1,
in which hormone levels are similar to those of the diestrus. The transition from diestrus
1 to diestrus 2 is very fast, which makes it difficult to find enough females in this phase.
For this reason, we do not include the metestrus in further evaluations. The total number
of evaluated oocytes was proestrus (control n = 185; stress n = 191), estrus (control n = 48;
stress n = 46), and diestrus (control n = 147; stress n = 144). Trunk blood was also collected
(2–3 mL) from each rat for corticosterone assay.

2.7. Hormonal Analysis

Corticosterone was extracted from serum and quantified using high performance liq-
uid chromatography (HPLC) [17]. Briefly, 100 µL of 19-nortestosterone solution
(5 mg/mL in methanol/water, 60:40, v/v), as an internal standard, were added to serum
(1 mL) and mixed. Corticosterone was extracted into 5 mL of diethyl ether:dichloromethane
(60:40, v/v) by vortex mixing and immediately centrifuged (1050 g, 4 ◦C, 5 min). The or-
ganic phase was obtained, vortex mixed with 1 mL of HPLC-grade water, and centrifuged.
Afterward, the organic phase was obtained (3 mL); after evaporation at room temperature,
the residue was re-dissolved in 100 mL of methanol:water (60:40, v/v). Chromatographic
system [17]. The guard column (Symmetry C18, particle size 3.5 mm, 2.1 mm × 10 mm;
Waters Corp., Milford, MA, USA) and the column were equilibrated using HPLC-grade
water: acetonitrile (65:35, v/v) at a flow rate of 0.4 mL/min. Separations were made at
40 ◦C in a Waters Symmetry C18 column (2.0 mm × 150 mm; particle size 5 mm; Waters
Corp., Milford, MA, USA). A Waters 600-MS system controller was used for flushing the
mobile phase, and the steroids were assessed using a 486 Water UV absorbance detector
(fitted at 250 nm). Finally, the obtained results were analyzed using the Millennium 32 soft-
ware (Waters Corp., Milford, MA, USA). The detection limit of the assay for corticosterone
was 5 ng/mL.

2.8. Ovarian Oocyte Recovery

Unless otherwise stated, all chemicals were purchased from Sigma Chemical Co.
(St. Louis, MO, USA). For cumulus-oocyte complexes’ (COCs) collection, ovaries from
control and stressed rats in proestrus, estrus, and diestrus were collected in a Petri dish
containing Tyrode modified medium supplemented with 10 mM sodium lactate, 10 mM
HEPES, and 1 mg/mL polyvinyl alcohol (PVA) (TL-HEPES-PVA) at pH 7.3–7.4 tempered
to 37 ◦C. COCs were collected in the different phases of the estrous cycle; at the time of
collection, the stage of maturation of the oocytes was evaluated to ensure that induction of
maturation was not performed in vitro nor by hormonal stimulation. To obtain the COCs,
all the ovarian follicles were torn using two insulin needles (8 mm). All observed COCs
were collected. For evaluation, approximately 30–40 COCs per group and estrous cycle
phase were placed in each well of a four-well dish (Thermo-Scientific Nunc, Rochester NY,
USA) containing 100 µL of tissue culture media (TCM-199) and 0.1% hyaluronidase for less
than 5 min for denudation. Then, oocytes were transferred to a TCM-199 hyaluronidase-free
media for evaluation.

2.9. Evaluation of Oocyte Viability

Viability was measured immediately after oocyte denudation (T0). Oocytes were
added to a 100-microliter drop of 0.5 mg/mL methyl-thiazolyl-tetrazolium (MTT) diluted
in phosphate-buffered saline solution (PBS) and incubated at 37 ◦C with 5% CO2 in air and
humidity at saturation [18]. After 30 min, oocytes were analyzed under a light microscope
(Zeiss Axiostar, Germany) and classified as non-viable (colorless) (Figure 2(Aa)) or viable
cells (with purple coloration) (Figure 2(Ab)). The MTT stain evaluates the metabolic activity
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of cells. NADPH-dependent cellular oxidoreductase enzymes can reduce the tetrazolium
dye MTT to formazan (reflecting purple coloration) as an indicator of viable cells.
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Figure 2. Oocyte viability depending on the estrous cycle phases in control and stressed adult female
rats. (A) Representative images from oocyte viability evaluation by the MTT-stain: (a) colorless dead
oocyte and (b) purple-stained alive oocyte. Scale bar = 30 µm. (B) Percentage of oocyte viability
depending on the estrous cycle phases in control and stressed female rats. The percentage of live
oocytes decreased in stressed females in all estrous cycle phases. Data are shown as Mean ± SEM.
* Significant difference vs. control when p < 0.05. The total number of evaluated oocytes was proestrus
(control n = 185; stress n = 191), estrus (control n = 48; stress n = 46), and diestrus (control n = 147;
stress n = 144).

2.10. Evaluation of Oocyte Maturation

After the removal of cumulus cells, under an inverted microscope using the bright
field, the oocyte maturation stages were evaluated (Figure 3(Aa–c)). Maturation was
also evaluated using the Hoechst stain. Oocytes were exposed to 10 µg/mL of Hoechst
33342 for 40 min. Oocyte evaluation was performed using a confocal scanning laser mi-
croscope (Zeiss, LSM T-PTM, Germany) (Figure 3(Aa’–c’)). Oocytes in germinal vesicle
(GV; Figure 3(Aa,a’)) and metaphase-I (MI; Figure 3(Ab,b’)) were considered as imma-
ture, and those in metaphase-II (MII) with the presence of the first polar body as mature
(Figure 3(Ac,c’)).
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Figure 3. Oocyte maturation stages depending on the estrous cycle phases in control and stressed
adult female rats. (A) Representative images of oocyte maturation stages with bright field
(a–c) and Hoechst stain (a’–c’) evaluation: (a,a’) germinal vesicle (GV), the arrows indicate nucleolus,
(b,b’) metaphase I (MI), the arrows indicate the metaphase and (c,c’) metaphase II (MII), the arrows
indicate first polar body. Scale bar = 30 µm. (B) Percentage of oocyte maturation depending on the
estrous cycle phases in control and stressed female rats. The percentage of GV oocytes increased
in stressed females in the proestrus and diestrus phases. MI oocytes decreased in stress females in
estrus and diestrus. Oocyte maturation (MII-stage) decreased in stressed females in proestrus. Data
are shown as Mean ± SEM. * Significant difference vs. control when p < 0.05. The total number of
evaluated oocytes was proestrus (control n = 185; stress n = 191), estrus (control n = 48; stress n = 46),
and diestrus (control n = 147; stress n = 144).

2.11. Statistical Analysis

The number of estrous cycles and estrous phases was analyzed using Student’s t-
test. Corticosterone serum level concentrations were analyzed using two-way ANOVA
(condition and stages as factors), followed by the Newman–Keuls post hoc test. Percentage
of oocyte viability, in vivo maturation, and abnormal oocytes from control and stressed
females were analyzed using the chi-square test followed by post hoc Fisher’s exact test.
Differences were considered significant when p < 0.05, and data are expressed as Mean ± SEM.
Data analyses were performed using Prism 8 for macOS, version 8.2.1 software.
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3. Results
3.1. Estrous Cyclicity

The vaginal smears from the control and stress females showed differences in their
estrous cycle. All the control females presented normal estrous cycles with a duration of
4–5 days and a normal progression of all the phases. The average number of estrous cycles
in 30 days was 7.1 ± 0.17 in the control group. Stressed females showed irregular and
prolonged estrous cycles, increasing the number of consecutive days (3 days) in proestrus,
estrus, and diestrus (Figure 1). The average number of estrous cycles in 30 days was
3.1 ± 0.34 (t = 10.21, p < 0.0001).

3.2. Oocyte Viability

When the effect of chronic stress on oocyte viability was evaluated, we found that it
was significantly reduced in all the estrous cycle phases (44.6 ± 8.81% proestrus;
28.6 ± 14.89% estrus; 28.6 ± 10.47% diestrus) compared to the control (85.6 ± 3.48%
proestrus; 73 ± 4.50% estrus; 78.3 ± 5.48% diestrus) (Figure 2B; p < 0.0001).

3.3. In Vivo Oocyte Maturation

Regarding oocyte in vivo maturation, the percentage of oocytes that reached the MII
stage decreased up to 7.3 ± 3.48% in the stressed females during proestrus, compared
to 52 ± 9.83% in the control (Figure 3B; p < 0.0001); however, no significant differences
were observed during estrus and diestrus at the MII stage. Accordingly, the percentage of
oocytes at the germinal vesicle (GV) stage increased in stressed females during proestrus
46.3 ± 11.26% and diestrus 64.3 ± 9.81% compared to those in the control groups
(17.2 ± 1.85% and 51.8 ±1%, respectively). However, no significant differences were
observed during estrus at the GV stage. The percentage of oocytes that reached the
MI stage decreased significantly during estrus 29.3 ± 8.43% and diestrus 23 ± 12.41%
compared to the control females (39.4 ± 5.03 and 37± 11.26%, respectively) (Figure 3B;
p < 0.05).

3.4. Abnormal Oocytes after Chronic Stress

The percentage of abnormal oocytes was higher in the stressed females in proestrus
5.3 ± 0.33%, estrus 18 ± 2%, and diestrus 12 ± 6.65% than in the control rats
(0.6 ± 0.33% proestrus; 2.3 ± 0.33 diestrus) (Figure 4B; p < 0.05). Some of the abnormali-
ties observed in the oocytes are shown in Figure 4A, such as zona pellucida deformation
and rupture, compact cytoplasm (Figure 4(Aa)), abnormal MII-oocyte zona pellucida and
plasma membrane, as well as vacuolated-granular cytoplasm (Figure 4(Ab)). Additionally,
30% of the oocytes in GV showed an eccentric GV in the stressed females. The normal GV
position is marked with an arrow (Figure 4(Ac)).

3.5. Corticosterone Serum Levels and Oocyte Viability after Chronic Stress

In the control females, the corticosterone serum levels remained in a range of
250–300 ng/mL during the estrous cycle phases. In the stressed females, corticosterone
increased to 600–620 ng/mL in all the estrous cycle phases compared to the control
(p < 0.0001; Figure 5).
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4. Discussion

Different types of chronic stress have been widely associated with alterations in female
reproductive function; however, the specific intraorganellar mechanisms in vivo, by which
it may interfere with reduced fertility in terms of oocyte viability, integrity, and maturation
are limited. An evaluation of the mechanisms of damage produced by chronic stress in
oocytes depending on the estrous cycle phases allows for a better understanding of its
possible relationship with infertility.
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4.1. Estrous Cyclicity

The results showed considerable alterations in the estrous cycle of the stressed rats;
the females remained in the diestrus and estrus phases for up to three consecutive days,
lengthening their estrous cycle duration. This effect has been previously reported in
other studies using different stress paradigms [6,19,20]. This effect could be explained
because chronic stress can produce alterations in the levels of E2 during proestrus and
diestrus and luteinizing hormone (LH) during proestrus, affecting the ovulation rate and
fertility [20]. In the present study, the results of the measurement of steroid hormone levels
were not included because they were already published in a previous study by the research
group [20]. We found that in the stressed rats, E2 levels decreased significantly during
proestrus and diestrus (40 pg/mL and 25 pg/mL, respectively) compared to the control
(83 pg/mL and 50 pg/mL, respectively). In addition, we found that the progesterone
levels in the stressed rats decreased significantly during diestrus (12 ng/mL) compared to
the control (22 ng/mL). Therefore, with these results, we set out to evaluate the effect of
chronic stress in oocytes since, if during the proestrus phase there is a decrease in E2, this
may have an impact at the follicular level, affecting oocyte maturation.

4.2. Oocyte Viability and Maturation after Chronic Stress

In the present study, we observed that in female rats chronically stressed by cold
water immersion (15 ◦C), corticosterone levels increased significantly in all the phases
of the estrous cycle compared with that in the control group. Additionally, in stressed
females, oocyte viability significantly decreased in all the estrous cycle phases compared
with the control rats. In this regard, we previously reported a decrement in the hypotha-
lamic content of Kisspeptin and gonadotropin-releasing hormone (GnRH), reduced LH
levels, and consequently, a reduction in the serum concentrations of E2 and progesterone
in chronically stressed female rats [20]. The reproductive function is regulated by the
HPG axis via their crucial hormones. These hormones are responsible for regulating re-
productive function through positive or negative feedback. The hypothalamic release
of GnRH promotes the secretion of LH and follicle-stimulating hormone (FSH) by the
pituitary. These gonadotropins act in the ovary, promoting steroidogenesis by the theca
and mural granulosa cells for oocyte growth and maturation. Several studies have reported
that neuropeptides, such as Kisspeptin and RFamide-related peptide-3 (RFRP-3), regulate
the release of GnRH in mammals [21]. Kisspeptin neurons express both E2 and androgen
receptors, stimulating GnRH release [22]. Quite the opposite, RFRP-3 inhibits Kisspeptin,
GnRH, and LH secretion [23] in rats [24], adversely affecting the reproductive axis func-
tionality in females [21]. During stress, the HPA axis is activated, and glucocorticoids
are synthesized. Corticotropin-releasing hormone (CRH) stimulates adrenocorticotropic
hormone (ACTH) release from the pituitary, which stimulates glucocorticoid synthesis.
These steroid hormones reach the ovary through the bloodstream, exerting adverse effects
on ovarian cells [25]. Additionally, glucocorticoids can also stimulate RFRP-3 expression in
the hypothalamus [26], thus contributing to the inhibitory effects of the HPA axis on the
HPG axis.

As mentioned above, Kisspeptin is involved in the onset of puberty, as well as in the
regulation of LH and FSH secretion during the estrous cycle. However, in stressed female
rats, Kisspeptin decreases in the anteroventral periventricular nucleus (AVPV) during
proestrus and diestrus, decreasing the GnRH content in female rats [20]. It was reported
that the administration of Kisspeptin (10 µg/mL) during sheep oocyte in vitro maturation
has been shown to increase maturation rates [27]. Additionally, the effect of Kisspeptin on
bovine granulosa cell viability was evaluated using the MTT assay. It was reported that
Kisspeptin at a concentration of 100 nM decreases granulosa cell viability [28]. In addi-
tion, RFRP-3 has been reported to decrease the number of estrous cycles in cold-stressed
rats [29], and to decrease follicular viability in cats [30]. Follicles’ exposure to 1 µM of
RFRP-3 increased the proportion of follicles with cell death. One of the mechanisms pro-
posed by the authors is that RFRP-3 can promote follicular degradation through paracrine
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signaling [30]. Additionally, RFRP-3 has been reported to decrease porcine granulosa cell
viability at different concentrations [31]. Granulosa cells are critical for the maintenance
of oocyte viability and functionality given the communication they establish throughout
their development. If granulosa cells die, the developmental potential of oocytes could be
compromised. However, little is known about the direct effect of RFRP-3 on gametes. With
the results obtained in the present study, we can speculate that decreased Kisspeptin and
GnRH levels, and RFRP-3 secretion during stress can adversely affect all the components
of the follicle, including granulosa cells and oocytes through paracrine signaling, affecting
their metabolic activity, leading to cell death.

In the present study, when evaluating oocyte maturation rates, we found that during
proestrus, chronic stress significantly decreased the meiotic progression of oocytes to the
MII stage, and most of them remained arrested at the GV stage. In the control animals,
during proestrus, a higher percentage of oocytes were obtained in MII, which would be
ovulated during estrus [32]. As mentioned earlier, the oocyte maturation process involves
the activation of the HPG axis for the synthesis of GnRH, LH, FSH, and E2. During follicular
development and oogenesis, gonadotropins have receptors on theca and mural granulosa
cells to synthesize steroid hormones. The cumulus granulosa cells surrounding the oocyte
in response to gonadotropins, mainly by the action of LH, promote meiotic resumption [33].
The preovulatory LH surge, in response to GnRH during proestrus, triggers the meiotic
resumption of the prophase of meiosis I, known as GV breakdown, completing meiosis I.
Then, the oocytes in antral follicles enter meiosis II and arrest at MII until fertilization [34].
Considering that chronic stress can disrupt GnRH and LH [20], crucial signaling hormones
for oocyte meiotic resumption, it was essential to evaluate the effect of stress on oocytes
during the estrous cycle to provide a better understanding of the damage produced by
chronic stress in female reproduction. The decrease in oocyte viability and maturation
caused by chronic stress could also explain the low fertility rates reported in stressed
females [20,35]. The reduction in the percentage of MII oocytes observed in the present
study could be due to a disruption in hormone production due to corticosterone, acting at
hypothalamic, pituitary, and ovarian levels, causing low viability and oocyte maturation.
Corticosterone could directly affect oocyte development potential, as shown in some studies
in which cortisol administration in female mice caused a decrease in oocyte development
potential and oocyte quality, increasing apoptosis in oocytes and mural granulosa cells via
the Fas system, together with low levels of LH and E2 [10].

On the other hand, the percentage of oocytes in MI was lower in chronically stressed
rats during estrus and diestrus than in the controls. However, in proestrus and diestrus,
a higher percentage of oocytes in GV was observed as compared with that in the control
group. It was recently reported that chronic stress by maternal separation increased the
reactive oxygen species (ROS) levels in oocytes, affecting the development of subsequent
in vitro embryos [9]. In this regard, it has been reported that increased cortisol and ROS
levels result in oxidative stress-inducing granulosa cell apoptosis, decreasing E2 biosyn-
thesis, and finally inducing oocyte apoptosis [5]. To our knowledge, an evaluation of
oocyte viability and maturation in chronically stressed female rats by cold water immer-
sion depending on the estrous cycle phases has not been reported. However, to support
our findings, a study reported that the in vitro exposure of mouse oocytes to increased
concentrations of corticosterone (0.25–250 µM) decreased the percentage of MII oocytes
(45.3%) compared with the control group (86.3%). They also reported that the fertilization
and embryo development rates were significantly decreased [36]. Recently, Dehdehi and
colleagues (2020) [9] have reported that maternal separation-induced early life chronic
stress in mice decreased the oocyte quality and embryo development in vitro. They have
also shown that chronic stress reduces oocyte in vivo maturation (induced by PMSG and
hCG stimulation) down to 49.58% (MII). In the present study, we found that chronic stress
by cold water immersion exerted a more significant negative effect than other types of
stressors since in vivo maturation, without any hormonal stimulation, was reduced by up
to 7% during proestrus.
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It is also well-known that temperature alterations, either hot [37] or cold [11], cause
adverse effects on the reproductive system. It has recently been reported that cold stress
(0–1 ◦C) lengthened the estrous cycle in rats and reduced testosterone, E2, and progesterone
levels, leading to reproductive organ dysfunction [38]. Additionally, restraint stress caused
apoptosis in cumulus cells, reducing the oocyte developmental potential to the blastocyst
stage [39]. Another study reported that in female Sprague Dawley rats, exposure to cold
(−10 ◦C) reduced weight gain, lengthened the estrus and diestrus phases of the estrous
cycle, decreased progesterone levels, and increased LH levels [11]. Furthermore, this
study also reported a decrease in the cell layer diameter of theca and granulosa cells in
cold-exposed rats. However, they did not evaluate the oocyte integrity in post-cold stress;
hence, further studies are needed to assay this hypothesis.

4.3. Abnormal Oocytes after Chronic Stress

The present study showed that in the stressed females, a higher percentage of abnor-
mal oocytes is observed compared to the control rats. The percentage of abnormal oocytes
in proestrus, estrus, and diestrus was 6, 18, and 12%, respectively. To our knowledge,
this is the first study evaluating the effect of chronic stress by cold water immersion on
the morphology and in vivo maturation of rat oocytes recovered in the different estrous
cycle phases. More studies have also reported that stress can cause a lengthening of the
estrous cycle, increasing the number of days in estrus and diestrus [11,20]. In the present
study, a higher percentage of abnormal oocytes was observed in these phases. This fact
suggests that oocytes could suffer morphological damage because they remain longer
in an inadequate follicular hormonal environment. Accordingly, we found that in the
stressed females during estrus and diestrus, a reduced percentage of MI oocytes and a high
percentage of GV oocytes during diestrus are observed. Moreover, oocyte viability was
compromised in both phases, and oocytes with z deformed or broken zona pellucida, an
abnormal plasma membrane, and a retracted, granular, and vacuolated cytoplasm, without
a regular spherical shape, were observed. Additionally, the GV position was eccentric in
30% of the oocytes evaluated in the stressed females. It has been shown that central GV
oocytes develop to blastocyst with a higher frequency than eccentric GV oocytes [40]. In
support of our findings, it was reported that chronic stress increases ROS levels and induces
meiotic spindle abnormalities, chromatin misalignment, and mitochondrial dysfunction in
mice oocytes [15]. However, melatonin optimized culture systems are able to mitigate these
adverse effects in vitro [15]. Another study reported that chronic restraint stress causes
oxidative stress and apoptosis in antral follicles and reduces blastocyst embryos and live
pups obtained from transferred embryos [12].

In oocytes, ROS formation is notably increased in response to various conditions,
including stress [15]. Although during follicular development, cumulus cells protect
the oocytes against ROS-induced damage, it is known that chronic stress is capable of
inducing apoptosis in these cells. In-depth reports have shown that ROS can diffuse and
pass through the cell membrane, producing damage to nucleic acids, proteins, and lipids,
leading to the production of abnormal oocytes with low developmental potential [41].
Normal cytoskeleton and mitochondria distribution, chromatin organization, and central
GV [40] are essential markers to predict oocyte developmental competence. In the present
study, cytoskeleton and chromatin organization were not assessed; therefore, studies on
these parameters in oocytes from stressed females are necessary to elucidate its competence.
The low competence of oocytes due to stress has been studied. It has been shown that stress
for 24 h increased the CRH levels in the serum, ovaries, and oocytes, inducing apoptosis
in the mural granulosa cells, reducing oocyte ability to develop as an embryo [37]. The
findings reported in the present study are essential for understanding the intraorganellar
mechanisms by which chronic stress alters female reproduction. In future studies, we
propose to evaluate the fertilizing capacity of oocytes from chronic stressed females.
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5. Conclusions

Stress has been linked to fertility impairment. This study showed that chronic stress
affects oocyte developmental potential in the estrous cycle phases. Additionally, chronic
stress disrupted estrous cyclicity, decreased oocyte viability, and increased abnormal oocyte
production in all the estrous cycle phases, which resulted in a reduced oocyte maturation
during proestrus. These results highlight some of the alterations produced in oocytes by
which stress alters female reproduction.
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