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CONSPECTUS: Quantum mechanics (QM) has revolutionized our understanding of the
structure and reactivity of small molecular systems. Given the tremendous impact of QM in
this research area, it is attractive to believe that this could also be brought into the biological
realm where systems of a few thousand atoms and beyond are routine. Applying QM
methods to biological problems brings an improved representation to these systems by the
direct inclusion of inherently QM effects such as polarization and charge transfer. Because
of the improved representation, novel insights can be gleaned from the application of QM
tools to biomacromolecules in aqueous solution.
To achieve this goal, the computational bottlenecks of QM methods had to be addressed.
In semiempirical theory, matrix diagonalization is rate limiting, while in density functional
theory or Hartree−Fock theory electron repulsion integral computation is rate-limiting. In
this Account, we primarily focus on semiempirical models where the divide and conquer
(D&C) approach linearizes the matrix diagonalization step with respect to the system size. Through the D&C approach, a
number of applications to biological problems became tractable. Herein, we provide examples of QM studies on biological
systems that focus on protein solvation as viewed by QM, QM enabled structure-based drug design, and NMR and X-ray
biological structure refinement using QM derived restraints.
Through the examples chosen, we show the power of QM to provide novel insights into biological systems, while also impacting
practical applications such as structure refinement. While these methods can be more expensive than classical approaches, they
make up for this deficiency by the more realistic modeling of the electronic nature of biological systems and in their ability to be
broadly applied. Of the tools and applications discussed in this Account, X-ray structure refinement using QM models is now
generally available to the community in the refinement package Phenix.
While the power of this approach is manifest, challenges still remain. In particular, QM models are generally applied to static
structures, so ways in which to include sampling is an ongoing challenge. Car−Parrinello or Born−Oppenheimer molecular
dynamics approaches address the short time scale sampling issue, but how to effectively use QM to study phenomenon covering
longer time scales will be the focus of future research. Finally, how to accurately and efficiently include electron correlation effects
to facilitate the modeling of, for example, dispersive interactions, is also a major hurdle that a broad range of groups are
addressing
The use of QM models in biology is in its infancy, leading to the expectation that the most significant use of these tools to
address biological problems will be seen in the coming years. It is hoped that while this Account summarizes where we have been,
it will also help set the stage for future research directions at the interface of quantum mechanics and biology.

■ INTRODUCTION

Quantum mechanics (QM) has revolutionized our under-
standing of the structure and reactivity of small molecular
systems. For example, QM based methods provide structural
information in excellent agreement with experiment, match
experimental barrier heights for chemical reactions, and provide
chemically accurate interaction energies for hydrogen-bonded
or dispersive systems.1,2 Given the tremendous impact QM has
had for systems of <100 atoms, it is attractive to believe that
this impact could also be brought into the biological realm
where systems of a few thousand atoms and beyond are
standard. To achieve this goal, the bottlenecks of QM methods
have to be addressed. Depending on the method employed,
various steps in a QM calculation can be rate determining. In
semiempirical methods, matrix diagonalization is rate limiting,
while in density functional theory (DFT) or Hartree−Fock
(HF) theory electron repulsion integral computation is rate-

limiting.3 These theories neglect the correlation energy, which
is important to account for to obtain highly accurate results
including barrier heights and interaction energies (especially
dispersion dominated ones). In this case, the correlation
treatment of choice is rate-limiting be it Møller−Plesset (MP)
theory or coupled-cluster (CC) methods.3

State-of-the-art linear-scaling algorithms, which linearize the
computational cost with the system size, have attracted much
attention.4−6 Significant effort has been devoted to the
development of linear-scaling methods to compute the total
energy of large molecular systems at the HF or DFT level.7−14

One of the challenges is to speed up the calculation of long-
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range Coulomb interactions when assembling the Fock matrix
elements. Fast multipole based approaches have successfully
reduced the scaling in system size to linear11,12,15−17 and made
HF and DFT calculations affordable for larger systems when
small to moderate sized basis sets are utilized. There are also
fragment-based methods for QM calculation of protein systems
including the divide and conquer (D&C) method of Yang,8

Yang and Lee,9 Dixon and Merz,18,19 Gogonea et al.,20 Shaw
and St-Amant,21 and Nakai and co-workers,22−25 the adjustable
density matrix assembler (ADMA) approach method of Exner
and Mezey,13,26−28 the fragment molecular orbital (FMO)
method of Kitaura and co-workers,29−31 the X-pol model of
Gao and Xie,32 and the molecular fractionation with conjugate
caps (MFCC) approach developed by Zhang and co-work-
ers.33,34 Most applications of these methods to protein systems
have been largely limited to semiempirical, HF, and DFT
calculations. Among these approaches, FMO has been applied
to higher level ab initio calculations such as second-order
Møller−Plesset perturbation theory (MP2)35 and coupled
cluster theory (CC).36 Nakai and co-workers have described
D&C-MP222,25,37 and D&C-CCSD38 approaches and applied
them to linear or near-linear systems.
QM excels at the static modeling of a molecular system.

However, in chemistry and biology, fluctuations are important
to describe a broad range of effects. Thus, the ensemble picture
of a molecular system is more appropriate, and while molecular
dynamics (MD) methods are beginning to address dynamical
issues using classical potentials, how to address this “sampling”
issue when using more expensive QM based approaches will
need to be addressed.
Herein we briefly review work carried out in my laboratory

over the past decade in exploiting fully QM methods in the
study of biological systems (see Scheme 1). In particular, we

will discuss the use of D&C techniques to address the matrix
diagonalization step in semiempirical methods and in HF and
DT approaches. After summarizing the technical aspects of how
to compute the QM energy of many thousands of atoms, we
will review several fully QM application studies carried out for
the first time in my laboratory on biological systems. Finally, I
will discuss the future outlook of using QM to solve biological
problems and the ongoing challenges of using a fully QM
model on large systems.

■ DIVIDE-AND-CONQUER APPROACH FOR
HARTREE−FOCK BASED CALCULATIONS

In biological systems, the D&C approach8 takes advantage of
chemical locality. Details of the implementations of this
approach at the semiempirical,9,18,19 HF and post-HF21−25,39

levels of theory are given in the literature, so below we only give
a brief overview. In this approximation, it is assumed that the
atoms that are far away from the region of interest only weakly
influence local regions of a protein. Hence, the entire system is
divided into fragments called core regions (Coreα) with an
associated buffer region (Bufferα) assigned to each core region
to account for the local environmental effects. The combination
of every core region and its buffer region constitutes a

subsystem (Rα) (see Scheme 2). Local MOs of each subsystem
are solved by the Roothaan−Hall equation

=α α α α αF C S C E (1)

where Fα and Sα are local Fock overlap matrices, respectively.
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After the local MO coefficient matrices Cα are obtained, the
total density matrix system is given by
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Scheme 1. Application of QM Methods to Biological
Problems

Scheme 2. D&C Subsetting (Fragmentation) Scheme
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εF is determined through the normalization of the total number
of electrons in the entire system.
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After the density matrix is converged, the total HF energy is
given as
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where Hμν
α is the local one-electron core Hamiltonian matrix

defined similarly to the local Fock matrix (see eq 2).
For HF calculations, the construction of the Coulomb matrix

and exchange matrix along with the diagonalization of the Fock
matrix are the three most time-consuming steps, while the
diagonalization of the Hamiltonian matrix scales as O(N3). In
the D&C scheme, the diagonalization calculation is performed
for each subsystem, linearizing the diagonalization step as a
function of the number of subsystems. However, it is important
to realize that the D&C algorithm does not help to reduce the
scale of computation of the Coulomb matrix and exchange
matrix. Other approaches18 provide ways to linearize these
steps. However, for semiempirical methods where matrix
diagonalization is rate-limiting, the D&C approach greatly
enhances the capabilities of these methods.9,18,19

■ APPLICATIONS OF FRAGMENT QM TO
BIOLOGICAL PROBLEMS

We have used our fragment QM methods (largely at the
semiempirical level) to study biological problems with a focus
on protein structure and solvation,40−44 structure-based drug
design45,46 and biological structure refinement by NMR and X-
ray spectroscopy.47−64 Below we will briefly highlight work
done in our laboratory using these methods to address specific
biological problems.

■ A NEW VIEW OF THE PROTEIN−WATER
INTERFACE

The interface between a biological molecule and water affects
its stability and function.65 The classical picture of this interface
does not allow for the commingling of the electron density (the
so-called charge transfer (CT) effect) between the protein and
the surrounding aqueous environment. We examined the QM
nature of a small protein (E. coli cold-shock protein A; CspA)
in aqueous solution through the use of semiempirical D&C
calculations over 100 snapshots. The surprising result was the
observation that two units of charge were transferred from the
protein surface to that of the water molecules. Thus, water
molecules, at the protein interface, are perturbed not only by
the rugged protein interface but also electronically. Via
integration over the entire protein surface, the net results of
numerous small net transfer of charge yield the observed value
of 2 units of charge. Not surprisingly, the main participants in
this charge transfer effect are charged amino acids at the
protein−water interface (see Figure 1). The magnitude of the
CT transfer effect on the energetics of hydrogen bond
interactions has been debated,44,66−68 but we reported44 a
value of ∼30% for a series of dimers using a Kitaura-Morokuma
analysis69 (this latter paper also reports a similar CT effect for
the water dimer), a value later supported by more sophisticated
calculations.67 We carried out extensive validation studies of the
nature of CT44 because our pioneering studies employed

semiempirical models. Through these studies, we concluded
that in terms of the magnitude of the CT effect the
semiempirical models employed were reliable. Subsequent
work using ab initio FMO70 and ab initio MD calculations71

reconfirmed our initial predictions.
In related work, charge transfer in receptor ligand

interactions in the context of SBDD has been examined by
my laboratory.45 In a study of 165 noncovalent protein−ligand
complexes, we found that 11% of the complexes had more than
0.1e of charge transferred from the protein to ligand. Not
surprisingly, in 49 metalloenzyme complexes, on average, there
is 0.6e transferred between the protein and the ligand. The
direction of the CT effect depended on the nature of the
protein−ligand complex. For example, in matrix metal-
loproteases (MMP), charge was transferred from the protein
to the ligand, while for human carbonic anhydrase (HCA) and
carboxypeptidases (CPA) charge was transferred n the opposite
direction.
The view that the interface between a protein, water, or a

ligand is electronically altered via polarization and CT effects is
now generally accepted. Indeed, the observation of CT at the
protein−water interface highlights the need to include this
effect in modern force field methods, and work is being pursued
along these lines.72,73 However, without the aid of QM based
methods, this effect would not have been discovered and its
importance might have gone unappreciated for some time.

■ QM IN STRUCTURE-BASED DRUG DESIGN (SBDD)

The docking and subsequent scoring of small molecules bound
to receptors has been a mainstay of modern SBDD tools.74,75

However, the reliability of these approaches has been
debated.75−77 Most tools in this class utilize approximate
potentials to study the interaction between the protein and its
ligand. We reasoned that the use of more advanced QM based
methods might improve the outcome.45,46

We reported the first application of linear-scaling methods to
SBDD where we calculated the binding affinity of ligands
bound to the HCA and CPA with reasonable accuracy.46 The
free energy of binding in solution was calculated using the
following set of equations:

Figure 1. E. coli cold-shock protein A (CspA) surrounded by a water
layer. The green water molecules are near Lys residues and experience
a slight loss of electron density (∼0.06e in aggregate), while the orange
water molecules are near Glu/Asp residues gain electron density
(∼0.2e in aggregate). The magenta water molecules are not within 5 Å
of the charged residues.
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where the free energy of binding in solution was calculated as
the sum of the gas-phase interaction energy (ΔGb

g) and a
solvation correction (ΔGsolv terms). The gas-phase interaction
energy consisted of enthalpic (semiempirical computed ΔHf’s)
and entropic components. The electrostatic part of the
enthalpic component was calculated using the DivCon
program, employing semiempirical Hamiltonians.46 A dis-
persion correction was lso utilized (the (1/R6)LJ term). The
solvation correction was calculated as a difference of the
solvation free energies of the protein−ligand complex (PL), the
protein (P), and the ligand (L). The solvation free energy was
calculated using a Poisson−Boltzmann (PB) based self-
consistent reaction field (PB/SCRF) method.78 A major
advantage of PB is the internal dielectric of the protein need
not be preset as in classical treatments.78 Finally, an empirical
entropy term depending on the change in solvent accessible
area (ΔSA) and a ligand rotatable bond count.
In further studies, we carried out a larger scale validation of

this QM based scoring function for predicting binding affinity.
We calculated interaction energies for a diverse range of
protein−ligand complexes comprising of 165 noncovalent
complexes and 49 metalloenzyme complexes.45 For the 165
noncovalent complexes, the interaction energies, without any
fitting, agreed with experimental binding affinity within 2.5
kcal/mol. When different parts of the scoring function were fit
to experimental free energy of binding using regression
methods, the agreement was within 2.0 kcal/mol. For
metalloenzymes, the agreement with experiments without
fitting was within 1.7 kcal/mol, and with fitting was within
1.4 kcal/mol. Overall, the correlation with experiment was
satisfactory with R2 values of 0.6946 and 0.55,45 respectively.
However, while the method performed reasonably it was not a
“quantum” improvement over traditional methods
Much further work has been done to explore the use of QM

and QM/MM approaches to predict protein−ligand binding
affinities79,80 with the general conclusion that,while QM does
help, it is not a panacea, at least in the current incarnation.
Beyond simply having a better level of theory, many issues
remain to be resolved to produce robust computed binding
affinities including the inclusion of explicit water molecules81

and incorporation of receptor flexibility. These effects plague
both simpler and more sophisticated model Hamiltonians and
is the subject of much on ongoing research.82

■ QM BASED STRUCTURE REFINEMENT

QM NMR Refinement of Protein/Ligand Complexes

NMR spectroscopy has proven itself to be a powerful and
versatile tool for the study of protein−ligand interactions. The
three-dimensional structures of protein−ligand complexes are
determined by combining interproton distance restraints
derived from nuclear Overhauser effect (NOE) with other
restraints from J coupling constants, hydrogen bonds, and/or
residual dipolar couplings. Since Fesik and co-workers

introduced SAR (structure−activity relationship) by NMR,83

many NMR-based screening methods have been developed to
identify potential drug molecules in pharmaceutical re-
search.84−88 All these techniques take advantage of the fact
that, upon ligand binding, significant perturbations can be
observed in NMR parameters of either the receptor or the
ligand. These perturbations can be utilized qualitatively to
detect complex formation or quantitatively to measure the
binding affinity.
Among these NMR parameters, chemical shifts are

exquisitely sensitive on the chemical environments of
compounds. Therefore, theoretical calculation of chemical
shift perturbations (CSP) upon ligand binding provides insights
into protein−ligand interactions at the molecular level.
There are two categories of computational approaches to

calculate NMR chemical shifts: classical/empirical models and
QM. The classical/empirical models89−95 are parametrized to
experimental data or DFT results. These approaches are fast so
that they can be easily applied to proteins, but are less general
being largely focused on protein chemical shifts. In this case,
the generality of a QM based approach offers a significant
advantage.
We developed a fast and accurate approach96 to calculate

NMR chemical shifts using the D&C method at the
semiempirical level of theory. Along with this approach, we
have reported the automatic fragmentation QM/MM (AF-
QM/MM) method that computes chemical shifts for large
systems using ab initio methods.54 This approach was first
applied to the FKBP-GPI complex (see Figures 2 and 3).48 By

Figure 2. Structure of GPI.

Figure 3. By comparing CSP RMSDs the preferred pose for the
FKBP-GPI complex can be determined. Left hand panel (a) shows 10
possible poses, while after analysis by CSP RMSDs between
experimental and computed chemical shifts, one pose gives the best
agreement between theory and experiment.
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comparing calculated proton chemical shifts of the ligand to
experimental data, it was possible to determine the best binding
site pose. To further validate this approach, we generated
several hundred poses of GPI using different docking programs
and then scored them by calculating CSPs and then comparing
them to experiment.97 We have found that the deviation of the
computed CSPs from experiment better differentiate decoy
poses from native poses than scoring functions used in docking
studies. This demonstrates that CSP based approaches can
provide an accurate way in which to predict protein/ligand
complex structure using in silico NMR approaches.
QM X-ray Refinement

We have also explored the use of QM based methods in X-ray
refinement. We utilized D&C QM calculations to refine an
entire protein,98 and we have carried out several studies looking
at the QM/MM refinement of small molecules.59−62 One of the
strengths of QM is the ability of these methods to provide high
quality structural models of both the protein and the small
molecule. Modern X-ray refinement of protein structures
typically uses a pseudoenergy formalism where a chemical
model (EChem) is combined with the X-ray signal (EX‑ray) for
which the gradients are obtained and the energy minimized.99

In this formulation, the quality of the results depends on both
the chemical model term and the quality of the experimental
data. For proteins, highly parametrized expressions are available
for the EChem term, but the quality of this term for small
molecules is variable. However, QM models can treat both the
protein and ligand equally well with no parametrization.
As an example of how a QM (in this case a QM/MM

refinement) can improve structure quality, I briefly describe our
work on benzamidine ligands bound to a number of
receptors.55 In the case of benzamidines, the amidine group
(see Figure 4) prefers to be out of the plane of the benzene ring

by ∼±40°; however, many of the reported protein X-ray
structures model this group as planar. Using QM/MM X-ray
refinement approaches, we demonstrated that this moiety was
indeed nonplanar and that the models employed in the earlier
refinements did not accurately represent this functional group.
Figure 5 shows an example of this for PDBID 1Y3X, where we
show the result before and after QM/MM X-ray refinement.
Moreover, the standard R, Rfree, and real-space R standard
structure quality metrics all improved in the QM/MM X-ray
refined structures.55

The Future of QM in Biology

QM has already had a major impact on the study of biological
systems primarily through its use to build sophisticated classical
force field representations of biological macromolecules. Via
QM/MM methods,100 enzymatic catalysis can be routinely
studied and this development was awarded the Nobel Prize in
Chemistry in 2013. However, it is important to keep in mind
that the computational study of biological systems at the

molecular-level faces two daunting challenges: We must both
accurately101−106 calculate the energies and forces involved, but
we must also sample all relevant states of a system. QM largely
addresses the former, but how to extensively sample biological
systems at the QM level of theory remains a challenging issue.
Beyond the creation of faster and more accurate QM models,
strategies to address the sampling issue will also have to be
devised. This will likely be addressed via a combination of
classical and QM models82 and remains an active area of
research.
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(42) Suaŕez, D.; Gogonea, V.; van der Vaart, A.; Merz, K. M., Jr. New
Developments in Applying Quantum Mechanics to Proteins. Curr.
Opin. Struct. Biol. 2001, 11, 217−223.
(43) van der Vaart, A.; Bursulaya, B. D.; Brooks, C. L., III; Merz, K.
M., Jr. Are Many-Body Effects Important in Protein Folding? J. Phys.
Chem. B 2000, 104, 9554−9563.
(44) Vaart, A. v. d.; Merz, J. K. M. Charge transfer in biologically
important molecules: comparison of high-level ab initio and
semiempirical methods. Int. J. Quantum Chem. 2000, 77, 27−43.
(45) Raha, K.; Merz, K. M., Jr. Large-Scale Validation of a Quantum
Mechanics Based Scoring Function: Predicting the Binding Affinity
and the Binding Mode of a Diverse Set of Protein-Ligand Complexes.
J. Med. Chem. 2005, 48, 4558−4575.
(46) Raha, K.; Merz, K. M., Jr. A Quantum Mechanics Based Scoring
Function: Study of Zinc-ion Mediated Ligand Binding. J. Am. Chem.
Soc. 2004, 126, 1020−1021.
(47) Wang, B.; Brothers, E. N.; van der Vaart, A.; Merz, K. M., Jr.
Fast semiempirical calculations for nuclear magnetic resonance
chemical shifts: a divide-and-conquer approach. J. Chem. Phys. 2004,
120, 11392−11400.
(48) Wang, B.; Raha, K.; Merz, K. M., Jr. Pose Scoring by NMR. J.
Am. Chem. Soc. 2004, 126, 11430−11431.
(49) Wang, B.; Merz, K. M., Jr. Validation of the binding site
structure of the cellular retinol-binding protein (CRBP) by ligand
NMR chemical shift perturbations. J. Am. Chem. Soc. 2005, 127, 5310−
5311.

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar5001023 | Acc. Chem. Res. 2014, 47, 2804−28112809



(50) Yu, N.; Hayik, S. A.; Wang, B.; Liao, N.; Reynolds, C. H.; Merz,
K. M. Assigning the protonation states of the key aspartates in beta-
Secretase using QM/MM X-ray structure refinement. J. Chem. Theory
Comput. 2006, 2, 1057−1069.
(51) Raha, K.; Peters, M. B.; Wang, B.; Yu, N.; Wollacott, A. M.;
Westerhoff, L. M.; Merz, K. M., Jr. The role of quantum mechanics in
structure-based drug design. Drug Discovery Today 2007, 12, 725−731.
(52) Wang, B.; Westerhoff, L. M.; Merz, K. M., Jr. A critical
assessment of the performance of protein-ligand scoring functions
based on NMR chemical shift perturbations. J. Med. Chem. 2007, 50,
5128−5134.
(53) Williams, D. E.; Peters, M. B.; Wang, B.; Merz, K. M., Jr.
MNDO parameters for the prediction of 19F NMR chemical shifts in
biologically relevant compounds. J. Phys. Chem. A 2008, 112, 8829−
8838.
(54) He, X.; Wang, B.; Merz, K. M. Protein NMR Chemical Shift
Calculations Based on the Automated Fragmentation QM/MM
Approach. J. Phys. Chem. B 2009, 113, 10380−10388.
(55) Li, X.; He, X.; Wang, B.; Merz, K., Jr. Conformational variability
of benzamidinium-based inhibitors. J. Am. Chem. Soc. 2009, 131,
7742−7754.
(56) Wang, B.; Dossey, A. T.; Walse, S. S.; Edison, A. S.; Merz, K. M.,
Jr. Relative configuration of natural products using NMR chemical
shifts. J. Nat. Prod. 2009, 72, 709−713.
(57) Williams, D. E.; Peters, M. B.; Wang, B.; Roitberg, A. E.; Merz,
K. M. AM1 Parameters for the Prediction of H-1 and C-13 NMR
Chemical Shifts in Proteins. J. Phys. Chem. A 2009, 113, 11550−11559.
(58) Cui, G.; Li, X.; Merz, K. M., Jr. Understanding the substrate
selectivity and the product regioselectivity of Orf2-catalyzed aromatic
prenylations. Biochemistry 2007, 46, 1303−1311.
(59) Fu, Z.; Li, X.; Merz, K. M., Jr. Accurate assessment of the strain
energy in a protein-bound drug using QM/MM X-ray refinement and
converged quantum chemistry. J. Comput. Chem. 2011, 32, 2587−
2597.
(60) Fu, Z.; Li, X.; Merz, K. M., Jr. Conformational Analysis of Free
and Bound Retinoic Acid. J. Chem. Theory Comput. 2012, 8, 1436−
1448.
(61) Fu, Z.; Li, X.; Miao, Y.; Merz, K. M., Jr. Conformational analysis
and parallel QM/MM X-ray refinement of protein bound anti-
Alzheimer drug donepezil. J. Chem. Theory Comput. 2013, 9, 1686−
1693.
(62) Li, X.; Fu, Z.; Merz, K. M., Jr. QM/MM refinement and analysis
of protein bound retinoic acid. J. Comput. Chem. 2012, 33, 301−310.
(63) Li, X.; Hayik, S. A.; Merz, K. M., Jr. QM/MM X-ray refinement
of zinc metalloenzymes. J. Inorg. Biochem. 2010, 104, 512−522.
(64) Yu, N.; Li, X.; Cui, G.; Hayik, S. A.; Merz, K. M., 2nd Critical
assessment of quantum mechanics based energy restraints in protein
crystal structure refinement. Protein Sci. 2006, 15, 2773−2784.
(65) Pal, S. K.; Peon, J.; Zewail, A. H. Biological water at the protein
surface: Dynamical solvation probed directly with femtosecond
resolution. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1763−1768.
(66) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular
interactions from a natural bond orbital, donor-acceptor viewpoint.
Chem. Rev. 1988, 88, 899−926.
(67) Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. Analysis of
charge transfer effects in molecular complexes based on absolutely
localized molecular orbitals. J. Chem. Phys. 2008, 128, 184112.
(68) Mo, Y.; Gao, J. Polarization and Charge-Transfer Effects in
Lewis Acid−Base Complexes. J. Phys. Chem. A 2001, 105, 6530−6536.
(69) Kitaura, K.; Morokuma, K. A new energy decomposition scheme
for molecular interactions within the Hartree-Fock approximation. Int.
J. Quantum Chem. 1976, 10, 325−340.
(70) Komeiji, Y.; Ishida, T.; Fedorov, D. G.; Kitaura, K. Change in a
protein’s electronic structure induced by an explicit solvent: An ab
initio fragment molecular orbital study of ubiquitin. J. Comput. Chem.
2007, 28, 1750−1762.
(71) Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. Charge Transfer and
Polarization in Solvated Proteins from Ab Initio Molecular Dynamics.
J. Phys. Chem. Lett. 2011, 2, 1789−1793.

(72) Soniat, M.; Rick, S. W. The effects of charge transfer on the
aqueous solvation of ions. J. Chem. Phys. 2012, 137, 044511.
(73) Wick, C. D.; Lee, A. J.; Rick, S. W. How intermolecular charge
transfer influences the air-water interface. J. Chem. Phys. 2012, 137,
154701.
(74) Kuntz, I. D. Structure-Based Strategies for Drug Design and
Discovery. Science 1992, 257, 1078−1082.
(75) Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. Prediction of
protein-ligand interactions. Docking and scoring: Successes and gaps.
J. Med. Chem. 2006, 49, 5851−5855.
(76) Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.;
LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.;
Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.;
Head, M. S. A critical assessment of docking programs and scoring
functions. J. Med. Chem. 2006, 49, 5912−5931.
(77) Merz, K. M., Jr. Limits of Free Energy Computation for Protein-
Ligand Interactions. J. Chem. Theory Comput. 2010, 6, 1018−1027.
(78) Gogonea, V.; Merz, K. M., Jr. Fully Quantum Mechanical
Description of Proteins in Solution. Combining Linear Scaling
Quantum Mechanical Methodologies with the Poisson-Boltzmann
Equation. J. Phys. Chem. A 1999, 103, 5171−5178.
(79) Lodola, A.; De Vivo, M. The increasing role of QM/MM in
drug discovery. Adv. Protein Chem. Struct. Biol. 2012, 87, 337−362.
(80) Peters, M. B.; Raha, K.; Merz, K. M., Jr. Quantum mechanics in
structure-based drug design. Curr. Opin. Drug Discovery Dev. 2006, 9,
370−379.
(81) Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Motifs
for molecular recognition exploiting hydrophobic enclosure in
protein−ligand binding. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,
808−813.
(82) Ucisik, M. N.; Zheng, Z.; Faver, J. C.; Merz, K. M. Bringing
Clarity to the Prediction of Protein−Ligand Binding Free Energies via
“Blurring. J. Chem. Theory Comput. 2014, 10, 1314−1325.
(83) Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W.
Discovering high-affinity ligands for proteins: SAR by NMR. Science
1996, 274, 1531−1534.
(84) Homans, S. W. NMR spectroscopy tools for structure-aided
drug design. Angew. Chem., Int. Ed. Engl. 2004, 43, 290−300.
(85) Lepre, C. A.; Moore, J. M.; Peng, J. W. Theory and applications
of NMR-based screening in pharmaceutical research. Chem. Rev. 2004,
104, 3641−3676.
(86) Meyer, B.; Peters, T. NMR spectroscopy techniques for
screening and identifying ligand binding to protein receptors. Angew.
Chem., Int. Ed. Engl. 2003, 42, 864−890.
(87) Hajduk, P. J.; Huth, J. R.; Fesik, S. W. Druggability indices for
protein targets derived from NMR-based screening data. J. Med. Chem.
2005, 48, 2518−2525.
(88) Hajduk, P. J.; Huth, J. R.; Tse, C. Predicting protein
druggability. Drug Discovery Today 2005, 10, 1675−1682.
(89) Sitkoff, D.; Case, D. A. Density functional calculations of proton
chemical shifts in model peptides. J. Am. Chem. Soc. 1997, 119,
12262−12273.
(90) Wishart, D. S.; Watson, M. S.; Boyko, R. F.; Sykes, B. D.
Automated 1H and 13C chemical shift prediction using the
BioMagResBank. J. Biomol. NMR 1997, 10, 329−336.
(91) Iwadate, M.; Asakura, T.; Williamson, M. P. C-alpha and C-beta
carbon-13 chemical shifts in proteins from an empirical database. J.
Biomol. NMR 1999, 13, 199−211.
(92) Xu, X. P.; Case, D. A. Automated prediction of 15N, 13Calpha,
13Cbeta and 13C′ chemical shifts in proteins using a density
functional database. J. Biomol. NMR 2001, 21, 321−333.
(93) McCoy, M. A.; Wyss, D. F. Spatial localization of ligand binding
sites from electron current density surfaces calculated from NMR
chemical shift perturbations. J. Am. Chem. Soc. 2002, 124, 11758−
11763.
(94) Kohlhoff, K. J.; Robustelli, P.; Cavalli, A.; Salvatella, X.;
Vendruscolo, M. Fast and Accurate Predictions of Protein NMR
Chemical Shifts from Interatomic Distances. J. Am. Chem. Soc. 2009,
131, 13894−13895.

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar5001023 | Acc. Chem. Res. 2014, 47, 2804−28112810



(95) Shen, Y.; Lange, O.; Delaglio, F.; Rossi, P.; Aramini, J. M.; Liu,
G.; Eletsky, A.; Wu, Y.; Singarapu, K. K.; Lemak, A.; Ignatchenko, A.;
Arrowsmith, C. H.; Szyperski, T.; Montelione, G. T.; Baker, D.; Bax, A.
Consistent blind protein structure generation from NMR chemical
shift data. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 4685−4690.
(96) Wang, B.; Brothers, E. N.; Van Der Vaart, A.; Merz, K. M. Fast
semiempirical calculations for nuclear magnetic resonance chemical
shifts: A divide-and-conquer approach. J. Chem. Phys. 2004, 120,
11392−11400.
(97) Wang, B.; Westerhoff, L. M.; Merz, K. M., Jr. A Critical
Assessment of the Performance of Protein−Ligand Scoring Functions
Based on NMR Chemical Shift Perturbations. J. Med. Chem. 2007, 50,
5128−5134.
(98) Yu, N.; Yennawar, H. P.; Merz, K. M., Jr. Refinement of protein
crystal structures using energy restraints derived from linear-scaling
quantum mechanics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2005,
61, 322−332.
(99) Jack, A.; Levitt, M. Refinement of large structures by
simultaneous minimization of energy and R factor. Acta Crystallogr.
A 1978, 34, 931−935.
(100) Warshel, A.; Levitt, M. Theoretical Studies of Enzymic
Reactions: Dielectric, Electrostatic and Steric Stabilization of the
Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103,
227−249.
(101) Faver, J. C.; Benson, M. L.; He, X.; Roberts, B. P.; Wang, B.;
Marshall, M. S.; Sherrill, C. D.; Merz, K. M. The Energy Computation
Paradox and ab initio Protein Folding. PLoS One 2011, 6, e18868.
(102) Faver, J. C.; Benson, M. L.; He, X. A.; Roberts, B. P.; Wang, B.;
Marshall, M. S.; Kennedy, M. R.; Sherrill, C. D.; Merz, K. M. Formal
Estimation of Errors in Computed Absolute Interaction Energies of
Protein-Ligand Complexes. J. Chem. Theory Comput. 2011, 7, 790−
797.
(103) Faver, J. C.; Merz, K. M., Jr. Fragment-based error estimation
in biomolecular modeling. Drug Discovery Today 2014, 19, 45−50.
(104) Faver, J. C.; Ucisik, M. N.; Yang, W.; Merz, K. M., Jr.
Computer-aided Drug Design: Using Numbers to your Advantage.
ACS Med. Chem. Lett. 2013, 4, 812−814.
(105) Faver, J. C.; Yang, W.; Merz, K. M., Jr. The Effects of
Computational Modeling Errors on the Estimation of Statistical
Mechanical Variables. J. Chem. Theory Comput. 2012, 8, 3769−3776.
(106) Ucisik, M. N.; Dashti, D. S.; Faver, J. C.; Merz, K. M. Pairwise
additivity of energy components in protein-ligand binding: The HIV II
protease-Indinavir case. J. Chem. Phys. 2011, 135, 085101.

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar5001023 | Acc. Chem. Res. 2014, 47, 2804−28112811


