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Abstract
4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a

single locus of interest (or “bait”) that can be important for gene regulation. However, analy-

sis of 4C-Seq data is complicated by the many biases inherent to the technique. An impor-

tant consideration when dealing with 4C-Seq data is the differences in resolution of signal

across the genome that result from differences in 3D distance separation from the bait. This

leads to the highest signal in the region immediately surrounding the bait and increasingly

lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the

resolution, which is greatly influenced by the choice of restriction enzyme and the frequency

at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexi-

ble enough to analyze data generated using different enzymes and to identify interactions

across the entire genome. Current methods for 4C-Seq analysis only identify interactions in

regions near the bait or in regions located in far-cis and trans, but no method comprehen-

sively analyzes 4C signals of different length scales. In addition, some methods also fail in

experiments where chromatin fragments are generated using frequent cutter restriction

enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies

regions throughout the genome that interact with the 4C bait locus. In addition, we incorpo-

rate methods for the identification of differential interactions in multiple 4C-seq datasets col-

lected from different genotypes or experimental conditions. Adaptive window sizes are used

to correct for differences in signal coverage in near-bait regions, far-cis and trans chromo-

somes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-

Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges

with different resolution enzymes.
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Author Summary

Circularized chromosome conformation capture, or 4C-Seq is a technique developed to
identify regions of the genome that are in close spatial proximity to a single locus of inter-
est (‘bait’). This technique is used to detect regulatory interactions between promoters and
enhancers and to characterize the nuclear environment of different regions within and
across different cell types. So far, existing methods for 4C-Seq data analysis do not com-
prehensively identify interactions across the entire genome due to biases in the technique
that are related to the decrease in 4C signal that results from increased 3D distance from
the bait. To compensate for these weaknesses in existing methods we developed 4C-ker, a
method that explicitly models these biases to improve the analysis of 4C-Seq to better
understand the genome wide interaction profile of an individual locus.

Introduction
Understanding the 3D organization of the genome and the intricacies of chromatin dynamics
has been the focus of studies aimed at characterizing gene regulation in physiological processes
and disease states [1, 2]. Microscopy based studies provided the first snapshots of nuclear orga-
nization, revealing that individual chromosomes occupy distinct territories with little intermin-
gling between them [3, 4]. The development of chromosome conformation capture (3C)
transformed the field of nuclear organization enabling identification of chromatin interactions
at the molecular level and at the same time opening the door to high-throughput, genome-
wide techniques [5]. Hi-C, for example, captures all pairwise interactions in the nucleus and
has revealed that chromosomes segregate into two distinct spatial compartments (A and B)
depending on their transcriptional and epigenetic status [6]. These compartments are further
subdivided into Topological Associated Domains (TADs), which are highly self-interacting
megabase scale structures [7–9]. To probe interactions between regulatory elements using Hi-
C requires a depth of sequencing that for many labs is cost-prohibitive [10]. 5C can circumvent
these issues, but the interaction analysis is limited to the portion of the genome for which prim-
ers are designed [11]. Circular chromosome conformation capture combined with massive par-
allel sequencing (4C-Seq) is currently the best option for obtaining the highest resolution
interaction signal for a particular region of interest.

In 4C-Seq, an inverse PCR step allows for the identification of all possible genome wide
interactions from a single viewpoint (the “bait”) and an assessment of the frequencies at which
these occur. The sequencing coverage obtained by 4C near the bait region is extremely high
and therefore enables precise characterization and quantification of regulatory interactions
[12, 13]. By focusing on one locus at a time and thus only the interactions that this locus is
engaged in, 4C can reproducibly identify long-range interactions on cis and trans chromo-
somes [14]. For example, 4C was used to demonstrate that genes controlled by common tran-
scription factors tend to occupy the same nuclear space even when located on different
chromosomes [15, 16].

There are many inherent biases specific to the 4C technique that have made detecting mean-
ingful and reproducible interactions challenging. First, in accordance with the chromosome
territory model, the majority of 4C signal is located on the bait chromosome. Secondly, cover-
age and signal strength are highest in the region around the bait and this decreases along the
chromosome as a function of linear distance from the bait. Third, the restriction enzyme used
for the first digest in the experiment is an important determinant of the resolution at which

4C-ker: A Method to Analyze 4C-Seq Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004780 March 3, 2016 2 / 23

design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



interactions can be detected. Finally, as with most PCR-based techniques, 4C data includes
PCR artifacts that manifest as a large accumulation of reads in particular locations.

Current methods of analysis have addressed some of these issues, however there are still
many hurdles to overcome. Specifically, existing methods do not properly account for the dif-
ferences in 4C signal coverage across the genome and therefore they are only able to either
identify interactions in (i) regions where the signal is highest, i.e., near the bait or (ii) regions of
low 4C signal (far-cis and trans). Thus there is no method that comprehensively identifies
interactions across the genome. In addition, most methods were developed and tested using
datasets generated with 6bp cutters and we show that they do not perform well with 4bp cutter
generated libraries.

The goal of 4C-ker is to address these weaknesses by: 1) identifying domains that interact
most frequently with the bait across the genome in a given population of cells, and 2) detecting
quantitative differences in 4C-Seq signal between conditions. Here we use a Hidden Markov
Model to account for the polymer nature of chromatin, in which adjacent regions share a simi-
lar probability of interacting with the bait. In addition, to account for the variation in signal
captured at different 3D distances we use a window-based approach. To determine the window
size of analysis, we adapted a k-th nearest neighbor approach to account for the decrease in
4C-Seq coverage along cis and trans chromosomes. We used 4C-ker to analyze several publi-
cally available 4C-Seq datasets as well as data generated in our own lab and compared this with
other published methods. Our results demonstrate that 4C-ker can correct for multiple 4C-Seq
biases and reproducibly detect genome wide interactions from the bait viewpoint. Importantly,
4C-ker is the only tool that can identify interactions with regions in near and far-cis as well as
trans.

Results

Workflow of 4C-ker
We developed 4C-ker to identify genome-wide interactions generated by 4C-Seq data and to
quantitatively examine differences in interaction frequencies between conditions. The main
components of the 4C-ker method are outlined in Fig 1. First, 4C-Seq reads are mapped to a
reduced genome consisting of unique sequences adjacent to all primary restriction enzyme
sites in the genome. Mapping to a reduced genome helps to remove spurious ligation events
that do not result from crosslinking. The analysis of 4C-Seq is typically performed separately
for cis and trans chromosomes because of the large differences in signal in these distinct loca-
tions. Additionally, we present the option for focusing the analysis on the region surrounding
the bait, where 4C-Seq signal and resolution are highest. A window-based approach is applied
in order to take into account of differences in signal strength at different 3D distances and the
dynamic nature and variability of chromosome interactions in a population of cells.

One of the most challenging aspects of 4C-Seq is determining the window size at which the
data should be analyzed. Adaptive window sizes that depend on the distance to the bait can
adjust for differences in coverage of 4C-Seq signal in regions near the bait, far-cis and trans.
4C signal is generally higher around the bait region and decreases in far-cis and trans. We
developed a kth nearest neighbor method to build overlapping windows of adaptive sizes based
on the 4C-Seq signal coverage of a given dataset at each location in the genome. The aim of
using this approach is to obtain a similar number of observed fragments for each window.
Therefore the size of each window is determined by the amount of signal detected in the region.
This will result in small windows near the bait and other regions where there is high coverage,
versus larger windows further away from the bait where there is low coverage. An example of
this is shown in S1A Fig.
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Fig 1. Workflow of 4C-ker. The key features of the method are outlined in the figure. A more detailed explanation of each section can be found in the
materials and methods section.

doi:10.1371/journal.pcbi.1004780.g001
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To correct for PCR amplification bias, the counts at observed fragments within each win-
dow that exceed the 75th quantile for that window are limited to this value. The window counts
across all samples are subsequently normalized using DESeq2 [17] to correct for sequencing
depth. For the cis chromosome, the linear distance from the bait to the mid-point of each win-
dow is used to correct for the inverse relationship between counts and linear separation from
the bait. The counts and distances are log transformed and are used as inputs (observed states)
for the Hidden Markov Model (HMM). A separate model is used for cis and trans chromo-
somes (in the latter there is no effect of linear distance from the bait). A three-state HMM is
used to partition the genome into windows that interact with the bait at (1) high frequency, (2)
low frequency and (3) those that do not interact. Use of overlapping windows, allows us to
more precisely define the regions of high interaction (for more detailed explanation of the
workflow, refer to the methods section). The resulting parameters for the model show higher
probabilities for transitioning to the same state, correctly accounting for the polymeric nature
of DNA on chromosomal interactions (Fig 1, 3-state HMM).

Since we use overlapping windows, consecutive windows that are detected as highly inter-
acting can be stitched to form a ‘domain’ of high interaction with the bait. Domains that are
found as interacting at a high frequency in at least one sample can be used for downstream
quantitative analysis. Furthermore DESeq2 designed for differential analysis of counts-based
sequencing data can be used to quantitatively compare interactions across conditions. The
4C-ker pipeline is available as an R package along with the domains of interactions identified
for all the datasets analyzed in this study (github.com/rr1859/R.4Cker).

4C-ker identifies close range interactions
4C-Seq is commonly used to identify regulatory interactions that occur in close linear proxim-
ity to the bait. Therefore, we provide an option to focus the analysis only in this region, where
the highest resolution interactions are identified. An important aspect of 4C-Seq library prepa-
ration is the choice of restriction enzyme used to digest cross-linked chromatin as the genome-
wide frequency of enzyme recognition sites determines the resolution of the experiment.
Therefore, 4bp cutters such as DpnII or NlaIII, which cut the genome more frequently, provide
a higher resolution profile of 4C interactions compared to 6bp cutters like HindIII (S1B Fig)
[18]. To ensure that our method works with both types of restriction enzymes, we tested it
using several datasets generated from our lab as well as all publically available datasets for
which replicates are available that passed our stringent quality controls. See methods section
and S1 Table for details).

The near-bait analysis was restricted to 10MB around the bait for 6bp cutters and 2MB for
4bp cutters as these are the regions that contain the highest 4C signal in each case. As can be
seen in Fig 2A and 2B, raw 4C-Seq signal is highest near the bait and decreases with increasing
linear distance. As 4C-ker corrects for this decrease in signal it is able to detect interactions
across the entire region analyzed. In addition, due to the adaptive windows, the size of interac-
tions detected are smallest near the bait where coverage is highest and larger in regions further
away from the bait where coverage is lower (Fig 2C and 2D). The resolution of domains identi-
fied by 4C-ker can be conveniently adjusted by using different values for the number of
observed fragments used to generate the adaptive windows (S2A Fig). Here we used values
ranging from 3–10 in the 2MB region around the bait. As the value of ‘k’ increases, we observe
a consistent increase in the size of the domains as well as increased similarity between replicates
(see methods section for details). The parameter k can be adjusted by the user depending on
the biological question that is being addressed. For example, if the aim of the study is to identify
interactions between enhancers and promoters, we suggest k = 3–5. In order to identify larger
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domains that coincide with broad regions encompassing chromatin with similar histone modi-
fications, setting k = 10 is a suitable choice.

To assess the performance of 4C-ker we used existing methods to analyze the same datasets.
There are currently four publicly available methods to detect significant interactions using

Fig 2. 4C-ker outperforms other methods in the region near the bait when the similarity of interacting regions between replicates is examined for
four methods. (A-B) Example datasets for 6bp and 4bp cutter experiments. Raw 4C-Seq reads are shown for a 10MB region around the bait in (A) and 2 MB
in (B). Experiment in A was performed using activated B cells digested with HindIII and a bait near the Cd83 locus. Experiment in B was performed in double
negative T cells digested with NlaIII and a bait near the Eβ enhancer of Tcrb. Significant interactions determined by each method for 2 replicates are shown
below the raw 4C-Seq profile. Domainograms generated using 4cseqpipe are displayed for the same region. (C-D) Each dot represents the distance of the
midpoint of each interacting domain to the bait plotted against its size. Plots only contain domains that overlap by 50% between replicates.

doi:10.1371/journal.pcbi.1004780.g002
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4C-Seq datasets (fourSig, Splinter et al, r3CSeq and FourCSeq). Details of how we implemented
these algorithms for comparison with the 4C-ker pipeline can be found in the methods section.
Although the method developed by van der Werken et al (4cseqpipe) [13] does not identify sig-
nificant interactions, it provides a good visualization tool for 4C-Seq signal near the bait (Fig
2A and 2B). The fourSig approach generates windows based on restriction enzyme fragments
and compares the counts within each window against a random background distribution [19].
As fourSig does not take account of the impact of distance on 4C-Seq signal, it identifies most
of this region as large interacting domains and this results in a high similarity index between
replicates (S2B and S2C Fig). However, in contradiction to decreasing resolution of 4C-Seq
signal with increased separation from the bait, the size of the domains identified by fourSig are
largest near the bait and these decrease with increasing separation from the bait (Fig 2C and
2D). The method described by Splinter et al [20], referred to here as the ‘de Laat method’
excludes the 2MB region around the bait and only calls interactions in the rest of the genome
based on enrichment of binary coverage in a given window, compared to a local background.
As such, the de Laat method does not identify any interactions with 4bp cutters (Fig 2B and
2D). Moreover, using the 6bp cutter datasets it only identifies interactions in 2 out of 7 datasets
in the 10MB region (S2B Fig). Together these findings reflect the limitations of this method in
detecting 4C-Seq interactions in the region with highest coverage, where the majority of impor-
tant regulatory interactions occur. The r3CSeq method uses reverse cumulative fitted values of
the power law normalization and a background scaling method to correct for interactions near
the bait [21]. This approach also provides the option to detect interactions at the fragment level
or at the window level. In most datasets r3CSeq only identifies significant interaction near the
bait as shown in Fig 2A and 2C and 2D and therefore have a high similarity index between rep-
licates (S2B and S2C Fig). Although interactions further from the bait are identified (Fig 2B),
they are not reproducible as measured by the similarity index (S2C Fig). The FourCSeq pipe-
line only has the option to analyze interactions at the fragment level. It is based on the DESeq2
method with an additional function that corrects for the effect of linear distance from the bait
[22]. This method failed to identify any significant interactions for any of the datasets analyzed.
If interactions between regulatory elements are being analyzed, the majority will be identified
in the region near the bait. Therefore, it is important that a 4C-Seq analysis can properly iden-
tify these interactions. Here we show that 4C-ker outperforms other methods and identifies
interactions that correctly reflects the nature of high-resolution 4C-Seq signal in this region.

4C-ker identifies long-range interactions
We next used 4C-ker for analysis of the entire bait chromosome using the same fourteen data-
sets described above. Due to lower 4C-Seq signal in regions distant from the bait (far-cis) the
correlation between replicates decreases compared to near-bait regions (S3A Fig). This differ-
ence is more pronounced with 4bp cutter generated datasets. A potential explanation for this
difference is that when 4bp cutters are used 4C-Seq coverage in windows distant from the bait
decreases at a much faster rate than when using 6bp cutters (S3B Fig). Based on these results, it
is clear that when designing a 4C-Seq experiment, the biological question should determine the
choice of primary restriction enzyme. For example, to detect long-range interactions in cis and
trans it seems preferential to use a 6bp cutter to achieve a more reproducible 4C profile. On the
other hand, for characterization of short-range regulatory interactions, 4bp cutters provide a
high-resolution map of near-bait interactions, as previously shown [18, 23, 24].

With adaptive window sizes and consideration of distance separation from the bait, 4C-ker
is able to reproducibly identify domains of interaction across the whole cis chromosome. As
expected, interacting domains proximal to the bait are smaller in line with the fact that
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increased 4C-Seq signal allows for generation of smaller windows of analysis. In contrast, in
regions located distal to the bait where the 4C-Seq signal is reduced, the window sizes for analy-
sis are increased and 4C-ker identifies larger interacting domains (Fig 3A). In comparison to
other methods, 4C-ker identifies the most reproducible interactions for all 4 bp cutter datasets
and for 5 out of 7 6bp cutter datasets (Fig 3B). For 6bp cutter datasets, the domains identified
by 4C-ker are comparable in size to the de Laat method (Fig 3C). For the 4bp cutter datasets
the other methods identify smaller domains compared to 4C-ker, however they do not achieve
high similarity indices between replicates. Although the de Laat method and fourSig perform
comparably to 4C-ker when analyzing 6bp-generated data they fail to do so with 4bp datasets.

To validate interactions identified by 4C-ker we used the Igh Cγ1 HindIII dataset and per-
formed 3D-FISH to analyze interactions with Igh. We selected three bacterial artificial chromo-
some (BAC) probes that hybridize to high, low and non-interacting regions in close proximity
to each other (4–7Mb), but separated from Igh by ~70Mb (S4A Fig). Of note, the selected non
interacting region is in closer linear distance to Igh, and the highest interacting region is fur-
thest away. Using differentially labeled BAC probes for these regions in conjunction with an
Igh specific probe we found that in accordance with the 4C-ker output, the BAC in the high
interacting domain is in closer spatial proximity to Igh than the BACs in the low and non-
interacting domains (S4A Fig and Fig 3C). It is of note that all other methods failed to identify
the region that we validated by FISH as a significant interaction.

According to the chromosome territory model most interactions occur between loci on the
same chromosome. As such, inter-chromosomal interactions occur at low frequency. However,
unlike other 3C-based techniques, 4C-Seq can still detect these interactions. Nonetheless, since
at least 40% of the signal is on the cis chromosome, the rest is spread over all trans chromo-
somes and is thus significantly reduced. As a result the 4C signal is less reproducible compared
to interactions on the bait chromosome (S3A Fig). 4C-ker and the de Laat method outperform
fourSig and r3CSeq in identifying trans interactions. Both 4C-ker and the de Laat method iden-
tify equivalently sized interaction domains across all fourteen (6bp and 4bp cutter) datasets
(Fig 3D and 3E). In most cases 4C-ker outperforms the de Laat method in identifying repro-
ducible interactions from 4bp cutter experiments, while the reverse is true for most 6bp cutter
experiments.

Differential analysis of interaction profiles across multiple 4C
experiments
One useful application of 4C-Seq is a quantitative comparison of interactions from a particular
viewpoint across conditions or cell types. The highly interacting domains identified by 4C-ker
for several conditions can be merged to generate a list of “Dataset-specific Interacting
Domains” (DIDs). These domains represent regions that are interacting with the bait in at least
one of the conditions. In general, 4C-Seq counts follow a negative binomial distribution, which
is suitable for differential DESeq2 analysis. We use raw counts for the adaptive windows that
fall within DIDs and normalize these using DESeq2 to correct for sequencing depth. To iden-
tify differential interactions between conditions we use an FDR adjusted p-value of< 0.05.

To test this approach, we compared two datasets generated with NlaIII digested 4C template
that have a bait on the Eβ enhancer of Tcrb in double negative (DN) and immature B (ImmB)
cells. DIDs were generated for the bait chromosome (chromosome 6) for these two cell types.
In Fig 4A, the normalized values for windows within DIDs are plotted across the entire bait
chromosome. Windows that are significantly different in the two cell-types are represented as
larger filled circles. It is clear from Fig 4A that the majority of differentially interacting regions
are concentrated near the bait. This can be seen in detail for the interaction of the Eβ enhancer
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Fig 3. 4C-ker identifies the most reproducible interactions across the cis chromosome and exhibits stable performance for 4bp and 6bp cutters.
(A) Example datasets of 6bp and 4bp cutter experiments. Raw 4C-Seq reads are shown for the entire bait chromosome. Experiment shown in the top panel
inA was performed in activated B cells digested with HindIII using a bait near theCd83 gene. Experiment shown in the bottom panel inA was performed in
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with the 5’ end of the Tcrb gene (Fig 4B). In DN cells this locus is in a contracted conformation
which brings distal Vβ genes into contact with the proximal DJCβ region for V(D)J recombina-
tion [25]. In contrast, the locus does not recombine in B cells and is not in a contracted form

immature B cells digested with NlaIII using a bait near the MiEκ enhancer of Igk. Significant interactions determined by each method for 2 replicates are
shown below the raw 4C-Seq profiles. (B) Similarity index between replicates in far-cis. Example datasets shown inA are denoted with an asterisk (*) (C)
Boxplot of the size of domains identified in far-cis by each method using all fourteen datasets. (D) Similarity index between replicates for domains identified
across all trans chromosomes. (E) Boxplot of the size of all domains in trans identified by the four methods.

doi:10.1371/journal.pcbi.1004780.g003

Fig 4. Identification of differentially interacting regions. (A-C) Windows located within Dataset-specific Interacting Domains (DIDs) are represented as
small circles with the normalized read count for each condition. Large filled circles represent windows with an FDR adjust p-value smaller than 0.05 for the
difference between the two cell-types. The red arrow above the plots represents the bait region. Lines represent the average of the replicates for each
window across the displayed region. Large filled circles represent windows with an FDR adjusted p-value smaller than 0.05 for the difference between the
two cell-types. (A) Whole chromosome, (B) Near the bait, (C) Far cis (region aroundCd69).

doi:10.1371/journal.pcbi.1004780.g004
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and the Vβ genes are found in less frequent contact with the bait. Interestingly, we found a dif-
ferentially interacting DID in far-cis containing the Cd69 gene (Fig 4C), which is a known T
cell marker and interacts more frequently with Eβ in DN cells compared to Immature B cells.
This is expected since both Cd69 and Tcrb are active in T cells and it has been shown that tran-
scriptionally active regions come into frequent contact [15, 16]. Thus, the DIDs determined by
4C-ker can be used to detect quantitative interactions that correlate with functional processes.

Long-range interacting regions have similar accessibility and
transcriptional profiles to the bait
The ability to detect reproducible long-range interactions with 4C-ker enables us to assess the
properties of these regions. Based on nuclear organization principles described by 3C-based
studies [6, 15, 16] we validated 4C-ker domains by assessing if they preferentially contact
regions with the same transcriptional and epigenetic status as the bait. For this, we used 4C
data generated with the Eβ enhancer bait in DN T cells and immature B cells. Using ATAC-Seq
[38], a technique that identifies accessible regions of chromatin, we find that as expected, the
enhancer is active in T cells and inactive in B cells (Fig 5A). Conversely, a bait on the MiEκ
enhancer of Igk is active in B cells and inactive in T cells (Fig 5A). Using 4C-ker we identified
the highly interacting domains with each bait across the two cell types. Since we used NlaIII to
generate the template we restricted the analysis to the bait chromosome. We then asked if the
4C interacting domains are enriched for ATAC-Seq peaks. Here, we define enrichment as the
ratio of the sum of the size of ATAC-Seq peaks within interacting regions to those within a
background generated by randomly repositioning these domains along the chromosome. In T
cells, where the Eβ enhancer is active, we found a higher enrichment of ATAC-Seq peaks in 4C
interacting domains compared to B cells (Fig 5B). The opposite is observed with the MiEκ 4C
bait in B cells, where the enhancer is active and enrichment of ATAC-Seq peaks in 4C interact-
ing domains is higher compared to T cells (Fig 5B). Thus, in line with previous studies using
both HiC and 4C-Seq [15, 16], active regions of the genome preferentially contact other active
regions while inactive regions contact other inactive regions, and this pattern is consistent
across lineages.

To determine the relationship between transcriptional status and accessibility, we next inte-
grated RNA-Seq data with the output from 4C-ker. We first confirmed the transcriptional
activity of both enhancers across lineages, as demonstrated by the transcriptional activity of the
Tcrb and Igk loci that are controlled by their respective enhancers (Fig 5C). The active Eβ
enhancer selectively directs transcription of Tcrb in T cells, while MiEκ contributes to the high
levels of Igk transcription that is found only in the B cell lineage. Next we compared the expres-
sion values of genes within the interacting domains across the different cell types. The genes
within the Eβ-interacting domains in T cells show a higher transcriptional activity compared
to genes within Eβ-interacting domains in B cells (Fig 5D). The same is observed in genes
within MiEκ-interacting domains in B versus T cells (Fig 5D). Again, these results are in agree-
ment with Hi-C studies, which show that regions with similar transcriptional activity occupy
the same space in the nucleus [6, 15, 16].

Discussion
Here we describe 4C-ker, a 4C-Seq analysis framework, that is unique in its ability to reproduc-
ibly detect short and long range-interactions on the same and across different chromosomes
from a single viewpoint. Unlike other 4C-Seq pipelines, 4C-ker takes into account difference in
coverage in regions proximal to the bait, far-cis and trans. As summarized in Table 1, 4C-ker
outperforms all other methods in regions near the bait and in far-cis and performs comparably
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to the de Laat method for analysis of trans interactions. Moreover, all other tested methods fail
to detect a region we defined as highly interacting using 4C-ker that we subsequently validated
by FISH. Finally, 4C-ker also has the option to perform differential analysis of cis interactions.

Fig 5. Regions with similar epigenetic and transcriptional status occupy the same nuclear space. (A) Normalized ATAC-Seq signal across the Eβand
MiEκ enhancer in T and B cells. (B) Enrichment of ATAC-Seq peaks in 4C interacting domains (C) Normalized RNA-Seq data for the Tcrb gene and the 3’
end of the Igk gene. (D). DESeq2 normalized expression values (log10) of genes that overlap with 4C-ker identified domains of interaction for each cell type.

doi:10.1371/journal.pcbi.1004780.g005
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4C-Seq can be used as an unbiased approach to identify short-range regulatory interactions
that occur with the bait as well as long-range interactions that can provide insights into the
global organization of chromatin in the nucleus. With 4C-ker, we validated long-range interac-
tions from enhancer viewpoints and analyzed the epigenetic and transcriptional properties of
interacting domains (where the validation includes reproducibility of results and experimental
validation with FISH). This enabled us to demonstrate that the domains that 4C-ker calls have
biological significance: active regions preferentially associate with active regions and inactive
regions preferentially associate with inactive regions, as previously shown in Hi-C [6, 15, 16].
While Hi-C is limited in its ability to detect short-range interactions at low resolution, 4C-ker
can identify both short and long-range interactions with higher resolution at lower sequencing
depth.

One important consideration in 4C-Seq is to unravel how the profile of interactions gener-
ated in a population of cells relates to the physical constraints of chromosomes within the
nucleus. For example, we need to better understand the implications of the differences in
4C-Seq profiles when an active or an inactive bait is used. Reduced interactions from an inac-
tive bait likely reflect a less mobile compacted chromatin structure that could be embedded
within the chromosome territory. To explore these relationships we need improved pipelines
for integrating other genome wide techniques such as RNA-Seq, ATAC-Seq, and ChIP-Seq
with 3C-based data sets. Only then can we learn whether inactive regions of the genome inter-
act with regions that share epigenetic modifications and are bound by common regulatory fac-
tors as has been shown for active regions that are co-regulated [26, 27].

Although 4C-Seq only provides information on interactions from a single viewpoint, it can
help to identify intricate loop structures at a finer resolution than Hi-C, and this in turn will
provide a basis for understanding regulatory interactions. Furthermore, it can identify long-
range interactions in cis and in trans that likely reflect inter-TAD interactions on the same or
different chromosomes. These interactions need to be validated by FISH analysis, which in
contrast to chromosome conformation capture, faithfully reflects the appropriate chromatin
compaction state and recapitulates the findings from individual live cells (as opposed to averag-
ing over populations) [28]. Furthermore, FISH analysis can provide information about whether
a particular region is embedded within a chromosome territory or looped away, which can be
reflective of gene activity or association with repressive pericentromeric heterochromatin [29].

The 4C-ker pipeline can be adapted for analysis of data from new 3C-based techniques such
as Capture-C [30], T2C [31] and CHi-C [32], that use oligonucleotides to enrich interacting
fragments from multiple baits in a single experiment. Furthermore, the high resolution of
4C-Seq data can be used for determining the finer structure of domains identified with Hi-C.
Finally, it should be pointed out that there is a great deal of variability between 4C-Seq experi-
ments generated by different labs, and it is clear that the field would benefit from standardized
protocols and quality control of datasets that lend themselves to comparisons between

Table 1. Summary of method comparison.

Near-bait Far-cis Trans Differential analysis

4C-ker Good Good Fair Yes

fourSig Majority of region called Fair Poor No

de Laat Method NA Fair Fair No

r3CSeq Restricted to the bait Poor Poor Yes

FourCSeq NA NA NA Yes

4cseqpipe Visualization NA NA No

doi:10.1371/journal.pcbi.1004780.t001
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experiments from different sources. Going forward 4C-ker will provide a much-needed tool for
comprehensive analysis of 4C datasets derived from different experimental approaches.

Materials and Methods

Ethics statement
Animal care was approved by Institutional Animal Care and Use Committee. Protocols num-
ber is 150606–01 (NYU School of Medicine).

Mapping 4C-Seq reads to a reduced genome
The sequence reads generated from a 4C-Seq experiment typically contain the primer sequence
ending in the primary restriction enzyme followed by the interacting fragment captured by the
bait. The portion of the read following the restriction enzyme sequence is mapped to a reduced
genome—a set of unique sequences (with the same length as the interacting fragment
sequenced) that are directly adjacent to all sites in the genome of the primary restriction
enzyme used. We define these unique sequences as ‘potential fragments.’We used oligoMatch
(from UCSC command line tools) to find all the primary restriction enzyme recognition
sequences in the genome and a custom shell script (provided) was used to create the reduced
genome. Reads were mapped to the reduced genome using Bowtie2 [32] (command-line
options: -N = 0, in addition -5 was used to trim the barcode and primer sequence).

We define the fragments in the reduced genome that have at least 1 read mapped to it as an
‘observed fragment’. The read count at each observed fragment is extracted from the Bowtie
output (SAM file) and transformed to a bedGraph file (4 columns with chr,start,end,count at
each observed fragment) that can be uploaded to IGV for visualization. A custom shell script is
provided to generate these bedGraph files. For paired-end sequencing experiments the read
containing the bait and the primary restriction enzyme was mapped as single-end data.

Dynamic window sizes to correct for coverage
Adaptive window sizes were determined using the k-th nearest neighbor approach to account
for the change in 4C-Seq coverage in different regions. The value of k determines the number
of observed fragments to be analyzed within each window. The window size is determined for
each observed fragment as the linear distance to the k-th nearest observed fragment, which will
result in a larger window size in regions where few fragments are observed and vice versa. On
the bait chromosome, the adaptive windows are determined left and the right of the bait start-
ing from the bait coordinate. For example, the first window on the left of the bait will be based
on the k observed fragments on the left of the bait and the first window on the right will be
based on the k observed fragments on the right of the bait. In this manner, the windows are
built until the end of the chromosome. For trans interactions, this process is performed inde-
pendently for each chromosome starting with the first fragment identified at the beginning of
the chromosome. Window sizes are determined for each sample in a given dataset. Then a
smooth spline (smooth.spline function in R with a smoothing parameter of 0.75) is fitted to the
window sizes separately for each chromosome in order to get a window size at each position
along the chromosome that can be used for the entire dataset (S1A Fig).

To build the final windows we use overlapping windows to more accurately identify the bor-
ders of interacting domains. Cis: Using the bait coordinate, the size of the first window is pre-
dicted from the fitted spline and this is used to build a window to the left and right of the bait.
Adjacent windows start at the mid-point of the bait window and the size is again determined
by the fitted spline. In this manner, overlapping windows are generated for the region near the
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bait or the entire chromosome and will be used to analyze interactions for all samples in the
given experiment. For the analysis near the bait we used k = 5 and, when analyzing the entire
bait chromosome, k = 10. Trans: Starting from the beginning of each trans chromosome, we
predict the window size from the fitted spline. The next window starts from the mid-point of
the first window and this process continues to the end of the chromosome. We used k = 15 for
all trans analysis using 6bp cutters and k = 100 for 4bp cutters.

Log10 transformation of normalized counts within windows and distance
from the bait
To reduce the effect of PCR artifacts, fragments with counts greater than the 75th quantile
within a given window are trimmed to this value. In this manner, we reduce the value of single
fragments that have an extremely high count that are not supported by neighboring fragments
with a similar signal.

The counts at observed fragments within each window are normalized across all samples in
the dataset using the method described in the DESeq2 [17] R package where each window is
considered as a feature (or gene). For windows in cis, the distance from the bait to the mid-
point of each window (in bp) is also calculated. A pseudo-count of 1 is added to the normalized
window counts and the distance value followed by a log10 transformation of the values. The
log-transformation of the data results in an approximately linear function that describes the
decrease in counts as the distance from the bait increases.

Hidden Markov Model
In order for 4C-ker to take into account conditional dependencies among neighboring genomic
elements we propose to use a three-state Hidden Markov Model (HMM) where the hidden
states represent genomic regions that show high frequency of interactions in the population
(high interaction region-HI), low frequency (low interaction region-LI), and no significant fre-
quency of interactions (no interaction-NI) with the bait. A separate model was learned for cis
and trans chromosomes. We used the depmixS4 R package [33] to specify and train the
described HMM.

Near-bait and cis. Parameters. For cis interactions we propose a covariate-adjusted
HMM. We denote the number of windows on the cis chromosome as T. The input data con-
sists of the observed log-normalized countsO1:T = {O1,. . .,Ot,. . .,OT} where
Ot ¼ ðo1t ; . . . ; omt ; . . . ; oMt Þ, denotes the counts for window t fromM biological replicates. The
hidden states are denoted by S1:T = {s1, s2, . . ., st, . . ., sT}. We use the log10-transformed dis-
tances from the mid-point of each window to the bait D1:T = {d1, d2, . . ., dt, . . ., dT} as covari-
ates. For the cis interaction three-state HMM the joint likelihood of observations and hidden
states, given model parameters θ and covariates D, is

PcisðO1:T ; S1:T jθ; d1:TÞ ¼ p bs1
ðO1Þ

YT�1

t¼1

aij bstþ1
ðOtþ1j dtþ1Þ

with the following components:

1. Hidden states st 2 {1,2,3} (1 = no interaction, 2 = low interaction, 3 = high interaction).

2. The initial state distribution π with elements πi = P[s1 = i], 1� i� 3.

3. The state transition matrix A = {aij} with unknown entries aij = P[st+1 = j| st = i], 1� i, j� 3.
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4. Emission probabilities (observation densities) are represented as vector bst with elements
bmi ðdtÞ ¼ P½omt jst ¼ i; dt�; 1 � i � 3 that model the conditional density of observations omt
in window t in the mth replicate.

We use the following linear model with a Gaussian response function to link count data and
distance covariates D1:T

ot;i ¼ b0;i þ b1;idt þ ϵi; 1 � i � 3:

After log transformation, we assume that counts ot,i in state i are normally distributed with
unknown mean μi and variance σi

2:

ot;i � N ðmi; si
2Þ

The expected value of counts μi is thus a linear function of the distances, controlled by the
parameters βi = (β0,i, β1,i).

The resulting cismodel comprises a total of 21 parameters θ = {π, A, β1, β2, β3, σ1, σ2, σ3}.
Synthetic training data and parameter estimation. Training data. 4C-Seq signal can vary

based on the activity of the bait, location on the chromosome, and possibly the species in
which the experiment is being done. Therefore a different set of parameters is learned for each
dataset. To simulate the unknown underlying population of 4C-Seq data we create input data
~O1:T for the cismodel by generating bootstrap samples from the biological replicates. For each
non-overlapping window along the cis chromosome we randomly draw a 4C-Seq signal from
the m replicates. The synthetic samples then undergo the same normalization procedure as the
original replicates to get the counts per window and the linear distance to the bait. This method
of generating synthetic samples allows us to generate training data that have transitions differ-
ent from the observed data (biological replicates).

Consistency constraints. The overwhelming signal in the bait region can sometimes lead to
unsuitable model parameter estimates that do not describe the three states correctly. To achieve
state-consistent estimates of decrease in signal with increasing distance from the bait, we
imposed the following set of linear constraints on the emission parameters:

ðb0;1 < b0;2 < b0;3Þ:

ϵb � b0;2 � b0;1 < 1

ϵb � b0;3 � b0;2 < 1

�1 � b1;1 < 0

�1 � b1;2 < 0

�1 � b1;3 < 0

These constraints ensure that (i) expected emission probabilities strictly decrease with dis-
tance from the bait and (ii) the non-interaction, low-interaction, and high-interaction states
obey the correct ordering. We set the value of the slack variable ϵβ = 0.1.

Initial parameter values θ0. In order to find reasonable starting values for the parameters θ,
we performed a parameter sensitivity analysis by fitting the HMM to the CD83HindIII dataset
using 1000 random starting parameter values and determining the parameter region that
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resulted in reproducible results (S5 Fig). This analysis resulted in using π0 ¼ ð1
3
; 1
3
; 1
3
Þ and initial

transition probabilities aii = 0.5, aij = 0.25, i 6¼ j (Fig 1). For the emission probabilities, we
divide the chromosome into 30-window segments and separate the counts in each segment by
those lower than the 60th quantile (no interaction), those between the 60th and 90th quantile
(low-interaction) and those greater than the 90th quantile (high-interaction). These counts are
then used to estimate the starting values for the emission probabilities. In order to ensure that
the parameters are not close to the boundaries of the constraints, we set β0,2 = 0.8 � β0,3 and
β0,1 = 0.5 � β0,3. The predicted counts from the estimated linear model for each state along the
cis chromosome are plotted in S6A Fig.

Maximum-likelihood estimation. A general nonlinear augmented Lagrange multiplier
method solver (solnp function in R package Rsolnp) was used to find the maximum likelihood
estimates of the parameters with the imposed linear constraints. The average estimated initial
state and transition probabilities are shown in the HMMmodel in Fig 1.

Defining domains that are in close proximity to the 4C-Seq viewpoint. After model
inference we use the Viterbi algorithm to assign the interaction states to each of the windows
on the biological replicates. If adjacent overlapping windows are assigned to different states, we
trim the window called as high-interaction region in order to retain the part of the window not
in a conflicting region (S6B Fig). Overlapping windows called as highly interacting are merged
to define large domains of interaction with the bait. The final set of highly interacting domains
for a given 4C-Seq data set is the intersection of the trimmed windows across all replicates.

Trans. We learned one model for all trans chromosomes where the input to the HMM is

the normalized counts for each window. LetO1:TN
¼ fO1

1:T ; . . . ;O
n
1:T ; . . . ;O

N
1:Tg represent the

counts across all windows and replicates in all N trans chromosomes. For the transmodel we
used a three-state HMM without covariate adjustment. The joint likelihood of observations
and hidden states, given model parameters θ thus reads

PtransðO1:TN
; S1:TN jθÞ ¼ p bs1

ðO1Þ
YTN�1

t¼1

aij bstþ1
ðOtþ1Þ

We again assume the normalized counts to be multivariate normal. The resulting transmodel
without covariate adjustment thus comprises18 parameters θ = {π, A, μ1, μ2, μ3, σ1, σ2, σ3}.

Synthetic training data and parameter estimation. A synthetic sample was built such
that each chromosome was randomly selected from the pool of replicates. The following con-
straints were added to ensure that the parameter values are suitable to distinguish between the
states.

ϵm � m2 � m1 < 1

ϵm � m3 � m2 < 1

ϵm � m2 � m3 < 1

We set the value of the slack variable ϵμ = 0.05 and used the depmixS4 R package to specify
and train the described HMMwhere again the general nonlinear augmented Lagrange multi-
plier method solver solnp was used to find the maximum likelihood estimates of the parame-
ters with the imposed linear constraints.
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Quantitative analysis using DESeq2
For multiple conditions with the same bait, a merged set of domains is generated that contains
those called as highly interacting in at least one of the conditions—Dataset-specific interacting
domains (DIDs). We can then obtain the raw window counts with each domain and use
DESeq2 to perform a quantitative differential analysis. DESeq2 has been developed primarily
to analyze RNA-Seq data but can also be applied to any count dataset that follows a negative
binomial distribution. Therefore, we decided to use the method to look for quantitative differ-
ences between conditions in 4C-Seq.

Similarity index
Similarity index was calculated based on a previously described method for dealing with more
than 2 replicates [34].

C m
S ¼ m

m� 1

P
i<jaij �

P
i<j<ka ijk þ P

i<j<k<laijkl . . . :P
iai

� �
;

wherem is the number of replicates in the dataset and aij is the sum of the size of overlapping
HI domains between replicate i and j and ∑iai is the sum of the size of the merges HI domains
from all replicates. Domains from both replicates were retained when 50% of the domains
overlapped with the other replicates. When comparing with different number of replicates, we
divide by m to get a score between 0–1.

Comparison to other methods
The interactions defined for each replicate by the four methods were used to calculate the simi-
larity index.

fourSig. 4C-Seq data was mapped to mm9 genome. A window size of 5 was used for the
analysis near the bait, and a window size of 31 was used for far-cis and trans analysis with 1000
iterations and an FDR cut-off of 0.05 (liftOver was used to convert the results to the mm10
genome).

The de Laat method. The input for this method was generated using our alignment pipe-
line. Domains were called based on the significant contacts.r file.

r3CSeq. The program currently does not allow for analysis with the mm10 genome, there-
fore we mapped the 4C-Seq data to the mm9 genome. Since the workflow for “working with
replicates” requires a control and condition experiment, each replicate was run through the
“work without replicates” pipeline. The data was analyzed at the level of restriction fragments,
20Kb windows and 100kb windows. Only the results from the fragments analysis are shown as
this was deemed to be the most optimal for high resolution and had more interactions called in
far-cis and trans (liftOver was used to convert the results to the mm10 genome).

FourCSeq. 4C-Seq data was mapped to the mm10 genome. No significant interactions
were observed with an FDR cut off of 0.1. Although we were not able to identify any interac-
tions with the datasets used in this study, we were able to reproduce their results with the exam-
ple dataset provided.

4C-Seq experiments
Details of publically available datasets downloaded for this study can be found in S1 Table. We
used datasets that had more than one replicate available in GEO and processed the FASTQ
files using our pipeline. Datasets were further excluded if less than one million reads were avail-
able after removal of undigested and self-ligated 4C fragments. Samples were also required to

4C-ker: A Method to Analyze 4C-Seq Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004780 March 3, 2016 18 / 23



have at least 40% of the reads on the cis chromosome and 40% coverage in the 2Mb region
around the bait for 6bp cutters and 200kb for 4bp cutters as this is considered a standard qual-
ity control for a good 4C experiment [35]. Basic statistics for the datasets used can be found in
S1 Table.

The following datasets were generated from mouse cells for this study. Cd83, Igh-Cγ1 baits
on activated mature B cells, IgκMiEκ, Tcrb Eβ bait in double negative (DN) T cells and imma-
ture B cells. See S1 Table for details of primers and enzymes used for these experiments. All
datasets generated for this study can be found GEO (GSE77645).

The 4C-Seq protocol was performed as described previously [14] and libraries were
sequenced using the HiSeq2500 Illumina platform. Splenic mature B cells were isolated and
induced to undergo class switch recombination as previously described [14]. Cells were col-
lected on day 2 of activation. DN T cells, and immature B cells were isolated as described before
[29, 36] and pooled to obtain 10 million cells for each replicate at each developmental stage.

FISH validation
Activated mature B cells for FISH analysis were isolated as described above. 3D-FISH was per-
formed as described previously [37]. Interphase cells were analyzed by confocal microscopy on
a Leica SP5 AOBS system (Acousto-Optical Beam Splitter). Optical sections separated by
0.3μmwere collected using Leica software and only cells with signals from both alleles (>95%
of cells) were analyzed. Separation of alleles was measured in 3D from the center of mass of
each signal using Image J software.

ATAC-Seq
DN T cells as well as immature B cell were isolated as described above. ATAC-Seq was per-
formed in duplicate as described previously [38] with the following modifications: libraries
were amplified with KAPA HiFi polymerase. Libraries were sequenced with HiSeq using 50
cycles paired-end mode. 50bp-paired-end reads were mapped to mm9 using Bowtie2 with the
following parameters:—maxins 2000,—very-sensitive Reads with MAPQ score< 30 were fil-
tered out with Samtools, and duplicate reads were discarded using Picard tools. For each sam-
ple condition, biological replicates were merged with Samtools, and peaks were called using
Peakdeck [39] with the following parameters: -bin 75, -STEP 25, -back 10000, -npBack 100000.
Peaks were further filtered to a raw p-value cutoff of 1E-4 (liftOver was used to convert the
results to the mm10 genome). A custom script was used to determine peak maxima, and max-
ima were extended by 50bp on either side to yield peaks of ~100bp.

RNA-Seq
DN and immature B cell were isolated as described above. RNA-seq libraries were prepared as
previously described using the Ribo-Zero kit for depletion of ribosomal RNA [40]. Reads were
mapped using Tophat version 2.0.6 [41]with the following parameters:—no-coverage-search
-p 12—no-discordant—no-mixed -N 1—b2-very-sensitive. Number of reads per gene (RefSeq
annotation) was calculated using HTSeq-count [42]. Normalization of counts per gene was
done using DESeq2.

Supporting Information
S1 Fig. (A) Adaptive window analysis for the cis chromosome using k = 10. A spline is fitted
to the two replicates (Cd83 dataset) to generate a smooth curve which is then used to create the
overlapping windows. (B)Histogram of the distance between adjacent restriction enzyme sites
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in the mouse mm10 genome. NlaIII has the highest number of sites in the genome resulting in
shorter distances between adjacent sites.
(TIFF)

S2 Fig. (A) Near bait analysis using different values of k for the 2MB region around the Eβ
bait in DN cells. Domains called for the two replicates are shown and the similarity index
below each value of k. (B-C) Similarity index between replicates for interacting domains identi-
fied in the region around the bait for 6bp and 4bp cutter datasets respectively. The numbers in
the x-axis refer to each dataset. � Represents datasets shown in Fig 2A.
(TIFF)

S3 Fig. (A) Raw counts for different window sizes were used to calculate Spearman correlation
across several datasets (listed in S1 Table). The mean of pairwise correlations were plotted for
datasets with greater than 2 replicates. (B) Ratio of observed fragments in 1 MB windows (up
to 50MB away from the bait) against the observed fragments in the 1MB window encompass-
ing the bait. Each row represents a 4C-Seq experiment (replicates are separated).
(TIFF)

S4 Fig. (A) Browser view of a far-cis region on chromosome 12 showing domains identified as
High, Low and Non interacting states and the location of BACs chosen to label these regions as
well as the distances separating them from each other and from Igh. These BACs, together with
probes labeling the constant region of Igh were used for 3D-FISH on activated B cells. (B) The
distance from each BACs to Igh was measured and plotted as a cumulative frequency curve. A
shift to the left represents closer proximity to Igh. The BAC representing the High interacting
state is more frequently found closer to Igh than the BACs representing the Low and Non inter-
acting states. This difference is statistically significant using a Fisher’s exact test at 1μm dis-
tance. The FISH example shows one Z plane where one chromosome 12 is visible.
(TIFF)

S5 Fig. Results of parameter estimates using 1000 different starting values. Estimation was
performed using the EM algorithmwith no constraints. The set of parameters that resulted in
Viterbi calls with a reproducibility of 60% or greater across replicates are colored in red. The prob-
ability of transitioning to the same state is always higher than transitioning to a different state. As
expected, the distance covariate term (names here as dis) is always negative for the reproducible
set of parameters, confirming the decrease in signal with increase linear distance from the bait.
(TIFF)

S6 Fig. Results of the HMM. (A) Using the distance from the bait, the window counts were
predicted from the estimated linear model for each of the HMM states. (B) Region of the bait
chromosome showing the hidden states inferred by the Viterbi algorithm and the trimmed
4C-ker domains.
(TIFF)

S1 Table. Description of datasets used for this study.
(TIF)
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