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There are many large protein complexes involved in tran-
scription in a chromatin context. However, recent studies
on the SAGA coactivator complex are generating new par-
adigms for how the components of these complexes func-
tion, both independently and in concert. This review
highlights the initial discovery of the canonical SAGA
complex 23 years ago, our evolving understanding of its
modular structure and the relevance of its modular nature
for its coactivator function in gene regulation.

Chromatin-modifyingand remodeling complexes are im-
portant for epigenetic regulationof geneexpression. Studies
into their exactmolecularmode of action have inspired dif-
ferent research areas. Chromatin and structural biology
work has helped us understand how these complexes inter-
act with chromatin and their enzymatic substrates. Trans-
lational research has profiled epigenetic landscapes in
homeostatic, differentiation, and pathological conditions
to better understandhowchromatinmodifications regulate
gene expression. However, a detailed understanding of the
molecular basis of the gene regulatory actions of chromatin
modifiers ultimately starts with a profound understanding
of subunit functions,modeof assembly, and complex struc-
ture, which together dictate their capacity to alter chroma-
tin structure. This review focuses on one of the first
identified chromatin-modifying complexes, the Spt/Ada/
Gcn5 acetyltransferase (SAGA) complex.We review its ini-
tial discovery, studies that have shaped our view on the in-
ternal organization of its subunits into modules, and the
latest structural work that visualizes the modules and pro-
vides insights into their function. Finally, we discuss how
modules also function as noncanonical complexes.

Discovery of the yeast SAGA complex

Studies designed to investigate the molecular mecha-
nisms of eukaryotic gene regulation in yeast led to the dis-

covery of the first chromatin-modifying and remodeling
complexes. One set of genetic experiments took advan-
tage of the Ty transposable elements. Ty element inser-
tion mutations interfere with transcription because of
Ty-encoded transcription signals. Suppressor of Ty (Spt)
mutations restore transcription as they disrupt the genes
encoding factors that recognize the Ty transcription sig-
nals (Winston et al. 1987; Fassler and Winston 1988). As
such, Spt mutations uncovered proteins that promote eu-
karyotic gene expression and identified the TATA-bind-
ing protein (TBP)-related set of Spt proteins that includes
Spt3 (Eisenmann et al. 1992; Laprade et al. 2007), Spt7
(Gansheroff et al. 1995), Spt8 (Eisenmann et al. 1994),
and Spt20 (Marcus et al. 1996; Roberts and Winston
1996), also (for review, see Winston and Carlson 1992).
Another set of genetic experiments identified proteins

that interactedwith transcription activator proteins. Acti-
vators bind a specific promoter DNA sequence, recruit
components of the transcriptionmachinery and stimulate
transcription (Hall and Struhl 2002; Carpenter et al. 2005;
Ferreira et al. 2005). Natural activators in yeast are Gal4
and Gcn4. An unusually potent artificial hybrid Gal4-
VP16 activator is formed by the DNA-binding portion of
Gal4 fused to a highly acidic portion of the herpes simplex
virus protein VP16 that interacts with DNA-binding pro-
teins (Sadowski et al. 1988). Gal4-VP16 overexpression is
lethal and may be due to sequestration of general tran-
scription factors away from productive transcription com-
plexes, perhaps via concentration-dependent liquid phase
separation of abundant Gal4-VP16 and its interactors
(Guarente 1995; Bolognesi et al. 2016; Boija et al. 2018).
Like the Spt mutations, mutations that suppress Gal4-
VP16 toxicity identified proteins that promote gene ex-
pression. These proteins were termed transcriptional
adaptor (Ada) proteins, because they are thought to form
a physical bridge between the upstream DNA-bound acti-
vators and the transcriptional machinery at a promoter
(Guarente 1995). Ada1–5 interact with Gcn4 and Gal4-
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VP16 in yeast (Marcus et al. 1994). Ada5 is identical to
Spt20 (Marcus et al. 1996; Roberts and Winston 1996).
Ada4 is currently better known asGcn5, a nuclear histone
acetyltransferase (HAT) enzyme (Brownell et al. 1996;
Wang et al. 1997). Ada2, Ada3, and Gcn5 not only interact
with activators, but also with each other, and Ada2 also
interacts indirectly with TBP (Georgakopoulos and Thir-
eos 1992; Marcus et al. 1994; Silverman et al. 1994; Hori-
uchi et al. 1995; Candau and Berger 1996; Saleh et al.
1997). These data suggested that Ada proteins are part of
activator complexes that mediate interactions between
acidic activators and TBP.

The roles for the Spt and Ada proteins in transcription
regulation converged with the discovery of the Spt/Ada/
Gcn5 acetyltransferase (SAGA) complex. A collaboration
of biochemists and geneticists discovered that the adaptor
Gcn5 functions as a catalytic subunit in a high-molecular-
mass native HAT complex that acetylated nucleosomal
histones at H3 and H2B (Grant et al. 1997). This complex
contained Ada2, Ada3, Ada5/Spt20, as well as Spt3, Spt7,
and Spt8. The function of Gcn5 as a histone acetyltrans-
ferase within the SAGA adaptor complex indicated the
importance of histone acetylation during steps in tran-
scription activation, mediated by interactions with tran-
scription activators and general transcription factors.
Concomitantly with its discovery, Roberts and Winston
(1997) demonstrated that SAGA genetically interacted

with the Switch/ Sucrose nonfermentable (Swi/Snf) chro-
matin remodeling and Mediator complexes. This formed
the first indication that SAGAwas important for addition-
al aspects of chromatin remodeling and transcription
regulation.

A comprehensive overview of SAGA subunits identified
in yeast and higher eukaryotes

Muchof the earlywork described abovewas performed us-
ing yeast as a model organism, but the SAGA complex is
also conserved in higher eukaryotes. To date, 18 conserved
subunits have been identified, aswell as some species-spe-
cific associated factors (Table 1). Concomitantly, addition-
al coactivator functions of the SAGA complex emerged.
This section summarizes the discovery of these additional
subunits and the implications for gene regulation.

Gcn5-associated adaptor proteins

The adaptor proteins are conserved in higher eukaryotes.
In Drosophila and humans, two Ada2 paralogs exist:
Ada2a and Ada2b (Barlev et al. 2003; Kusch et al. 2003;
Guelman et al. 2006a). Ada2a incorporates into theDroso-
philaAda2a-containing ATAC complex, also a Gcn5-type
HAT complex (Guelman et al. 2006a; Suganuma et al.

Table 1. Overview of orthologous subunits of the SAGA complex

Orthologous SAGA complexes

S. cerevisiae S. pombe Drosophila melanogaster Homo sapiens

HAT module Gcn5 Gcn5 KAT2 (GCN5) KAT2A/KAT2B (GCN5-L/PCAF)
Ada2 Ada2 Ada2b TADA2b
Ngg1 (Ada3) Ngg1 (Ada3) Ada3 TADA3
Sgf29 Sgf29 Sgf29 SGF29

DUB module Ubp8 Ubp8 dNonstop USP22 (UBP22)
Sgf11 Sgf11 dSgf11 ATXN7L3
Sgf73 Sgf73 dATXN7 ATXN7/ATXN7L1/L2 (SCA7)
Sus1 Sus1 dE(y)2 ENY2

Core modulea Taf5 Taf5 WDA/TAF5L TAF5L
Taf6 Taf6 SAF6/TAF6L TAF6L
Taf9 Taf9 TAF9 TAF9/TAF9b
Taf10 Taf10 TAF10b TAF10
Taf12 Taf12 TAF12 TAF12
Spt7 Spt7 Spt7 SUPT7L (STAF65G)
Hfi1 (Ada1) Hfi1 (Ada1) Ada1 TADA1
Spt20 Spt20 Spt20 SUPT20H
Spt3 Spt3 Spt3 SUPT3H
Spt8 Spt8 — —

TF-binding module Tra1 Tra1 Nipped-A (Tra1) TRRAP
Species-specific subunits Ppr5 — SF3B3 SF3B (SAP130)

— — SF3B5 —

Chd1 — — —

Shown are the names of each subunit from orthologous SAGA complexes in S. cerevisiae, S. pombe, Drosophila melanogaster, and
Homo sapiens according to the official nomenclature. Names in brackets are alternative, commonly used names. Paralogous subunits
are separated with a slash and are indicated if they have been described as part of SAGA. In most cases, paralogous subunits are mutu-
ally exclusive within SAGA complexes. Adapted from Helmlinger and Tora (2017) with permission from Elsevier.
aThe core module is composed of Spt and TAF subunits, as well as ADA1. Formerly, the TAFs have been singled out and described as
the TAF module, and the remaining subunits as the Spt modules (see Fig. 2, below).
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2008). Ada2b is part of Drosophila and human SAGA
(Martinez et al. 1998; Muratoglu et al. 2003; Qi et al.
2004; Gamper et al. 2009). In fact, twoAda2b isoforms ex-
ist in Drosophila; SAGA contains the long isoform of
Ada2b (Kusch et al. 2003), and so does another Gcn5-
type HAT complex named ADA (Soffers et al. 2019).
The Drosophila Chiffon Gcn5-type HAT incorporates
the shorter Ada2b isoform (Torres-Zelada et al. 2019).
The Gcn5 family member proteins are PCAF (p300/

CBP-associated factor, also known as KAT2B) and two iso-
forms of GCN5 (Gcn5-L and Gcn5-S). The PCAF protein
shares extensive similarity with yeast Gcn5, but it has
anN-terminal extension that interacts with the transcrip-
tional coactivator p300/CBP (Yang et al. 1996; Smith et al.
1998). The less abundant Gcn5-S protein is similar in
length to yeast, mouse, and Drosophila Gcn5p (Candau
and Berger 1996; Yang et al. 1996; Smith et al. 1998; Xu
et al. 1998), whereas the predominantly expressed Gcn5-
L protein contains an extended N-terminal domain akin
to PCAF (Smith et al. 1998). The human Ada2 and Gcn5-
S proteins correspond to functional homologs of the yeast
adaptors (Candau and Berger 1996). Gcn5-L was identified
as part of the human SAGA complex (Smith et al. 1998).
SAGA factor 29 (Sgf29) is a conserved SAGA subunit

(Sanders et al. 2002; Vermeulen et al. 2010; Lee et al.
2011). It is a bone fide Ada factor that rescues Gal4-
VP16-mediated toxicity, just like the other Ada proteins
that had been identified previously (Lee et al. 2011).
This subunit contains a tandem tudor domain that recog-
nizes H3K4me3 (Li et al. 2010; Bian et al. 2011).

The SAGA complex contains TBP-associated factors

Transcription initiation requires the assembly of the pre-
initiation complex (PIC), formed by polymerase II (Pol II)
along with the general transcription factors, which in-
clude TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. PIC
formation typically starts with the recognition of the
core promoter by TFIID, which consists of TBP and up
to 14 other proteins called TBP-associated factors (TAFs)
(Thomas and Chiang 2006). In agreement with its wide-
spread role in transcription initiation, the SAGA complex
also contains TAF subunits. In fact, human SAGAwas ini-
tially named STAGAbecause it contained TAF9 (TAFII31)
(Ogryzko et al. 1998; Martinez et al. 2001).
SAGA-related complexes also contain TAFs. One such

complex is the TBP-free TAF-containing complex
(TFTC) (Wieczorek et al. 1998). TFTC acetylates similar
lysine residues toSAGA,and is in factvery similar in struc-
ture and subunit composition to mammalian SAGA
(Brand et al. 1999a,b; Cavusoglu et al. 2003). Furthermore,
PCAF also associates with multiple TAFs (Kotani et al.
1998).
The TAFs that form an integral part of yeast SAGA are

Taf4, Taf6, Taf9, Taf10, and Taf12 (Grant et al. 1998a). Al-
though both yeast and metazoan incorporate TAFs, meta-
zoans have evolved several paralogs not found in yeast.
Whereas the TAFs that are part of yeast SAGA are all
shared with TFIID, in Drosophila SAF6 is the SAGA-spe-
cific paralog of TAF6, TAF10b is the paralog of TAF10

(Georgieva et al. 2000; Weake et al. 2009), and WDA is
the paralog of TAF5 (Guelman et al. 2006b). Similarly, hu-
man SAGA incorporates TAF5L, TAF6L, and TAF9B,
whereas TAF5, TAF6, and TAF9 are found in TFIID
(Helmlinger and Tora 2017).

The SAGA complex contains the activator-interacting
protein Tra1

Yeast Tra1 is related to the ataxia telangiectasia mutated
(ATM) family of phosphatidylinositol 3 (PI 3) kinases
(PIKKs) and is a conserved SAGA subunit (Grant et al.
1998b; McMahon et al. 1998; Saleh et al. 1998; Kusch
et al. 2003). PIKKs contain numerous conserved domains,
including HEAT (huntingtin, elongation factor 3, protein
phosphatase 2A, and lipid kinase TOR) and FAT (focal ad-
hesion translocase) domains (Knutson and Hahn 2011;
Cheung and Díaz-Santín 2019). The Tra1 pseudokinase
domain is required for nuclear localization and incorpora-
tion into SAGA and other coactivator complexes (Berg
et al. 2018; Elías-Villalobos et al. 2019). The best charac-
terized function of Tra1 in SAGA is its ability to associate
with activators. VP16 interacts with the C-terminal half
of Tra1 (Brown et al. 2001), whereas the N-terminal
HEAT domain binds yeast Gal4 (Lin et al. 2012), Gcn4
and Rap1 (Han et al. 2014), human p53 (Li et al. 2004),
and c-Myc (Park et al. 2001). The multiple activator inter-
action domains may provide a simple mechanism to inte-
grate signaling from multiple activators; for example, by
different activators binding Tra1 simultaneously and/or
competitively (Cheung and Díaz-Santín 2019). In addi-
tion, the presence of multiple activator binding sites
may serve to increase avidity by binding single activator
withmultiple contact points as described between activa-
tor Gcn4 andMediator subunit Med15 (Tuttle et al. 2018;
Cheung and Díaz-Santín 2019).
Tra1 is not the only subunit of SAGA that interacts

with activators. Gcn5 interacts with Myc (Liu et al.
2003; Zhang et al. 2014) and Ada1, Taf6, Taf9, and Taf12
interact with Gcn4 and/or VP16 (Goodrich et al. 1993;
Uesugi et al. 1997; Natarajan et al. 1998; Klein et al.
2003; Fishburn et al. 2005; Reeves and Hahn 2005). These
multiple interactions facilitate the recruitment of SAGA
coactivation activities to an activator-bound promoter.

The SAGA complex not only contains histone
acetylation, but also ubiquitin protease activity

The next major discovery was that yeast SAGA contains
not only HAT activity, but also histone deubiquitinase
(DUB) activity. H2B lysine 123 undergoes ubiquitination,
which serves as a transient signal that orchestrates a diverse
set of events during transcription (Shilatifard 2006; Fleming
et al. 2008;Cheonetal. 2020). Four subunitshavebeeniden-
tified in yeast SAGA that are required to cleave monoubi-
quitin from H2B. The ubiquitin protease 8 (Ubp8) is the
catalytic protease subunit (Sanders et al. 2002; Henry
et al. 2003; Daniel et al. 2004). SAGA-associated factor 73
(Sgf73) (McMahon et al. 2005) anchors the DUB subunits
to the SAGA complex (Rodríguez-Navarro et al. 2004;
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McMahonetal. 2005;Köhleret al. 2008) andzinc fingerpro-
tein SAGA-associated factor 11 (Sgf11) and SI gene up-
stream of ySa1 (Sus1) are required for protease activity
(Powell et al. 2004; Ingvarsdottir et al. 2005; Lee et al.
2005; Köhler et al. 2006). In humans, more variety exists
in the subunits that encode DUB activity (Köhler et al.
2010; Atanassov et al. 2016). Furthermore, ATAXIN-7, the
homolog of yeast Sgf73, exists as three paralogous proteins
in humans (Helmlinger and Tora 2017).

Sus1 is also a functional component of the nuclear pore-
associated mRNA export machinery TREX-2 (Rodríguez-
Navarro et al. 2004; García-Oliver et al. 2012). A physical
interaction between SAGA and TREX-2 (Ellisdon et al.
2010) is essential for targeting the transcriptional machin-
ery to the periphery of the nuclear pore complex and con-
tributes to transcription-coupled mRNA export.
Moreover, a functional interaction is required for main-
taining the ubiquitination status linked to genome stabil-
ity, since SAGA deubiquitination activity depends on
TREX-2 integrity (Evangelista et al. 2018).

Species-specific subunits

The SAGA complex incorporates subunits that are impor-
tant for mRNA splicing. These are associated with the U2
small nuclear ribonucleoprotein particle (U2 snRNP) that
forms a core constituent of the spliceosome (Zhang et al.
2020.). Human SAGA contains spliceosome-associated
protein 130 (SAP130), a subunit of splicing factor SF3B
found in theU2 snRNP (Martinez et al. 2001). This finding
suggested a function for SAGA in transcription-coupled
pre-mRNA splicing. Drosophila SAGA contains SF3B3
and SF3B5. Although SF3B5 does not appear to function
in SAGA’s histone-modifying activities, it is still required
for expression of a subset of SAGA-regulated genes (Stege-
man et al. 2016). Both factors associated with SAGA inde-
pendent of RNA and interacted with Sgf29 and Spt7
(Stegeman et al. 2016). S. cerevisiae SAGA interacts
with Ppr5 via Spt3 and Spt7 in Shao et al. (2020). Prp5p
is a spliceosomal RNA-dependent ATPase required for
stable binding of U2 snRNP to the pre mRNA and subse-
quent prespliceosome assembly (Ruby et al. 1993; Xu and
Query 2007). Shao et al. (2020) proposed that the interac-
tion with SAGA mediates a balance between transcrip-
tion initiation/elongation and prespliceosome assembly.

Finally, the chromatin remodeling protein chromo-
ATPase/helicase DNA-binding domain 1 (Chd1) associ-
ates with SAGA and SAGA-like complex (SLIK) in S. cer-
evisiae (Pray-Grant et al. 2005). Chd1 has functions in
chromatin remodeling, transcription regulation, and tran-
scription elongation (Tran et al. 2000; Simic et al. 2003).
One of the two chromodomains of Chd1 specifically inter-
acts with the H3K4me3, a mark that is associated with
transcriptional activity (Pray-Grant et al. 2005). Further-
more, the SLIK complex shows enhanced acetylation of
a methylated substrate, and this activity was dependent
on a functional methyl-binding chromodomain (Pray-
Grant et al. 2005). This suggest that there can be crosstalk
between Gcn5-mediated acetylation and the recognition
of promoter methylation marks.

SAGA structure meets function

SAGA subunits coactivate gene expression at multiple
points during the process of transcription. How the sub-
units organize and how this potentiates transcription is
discussed next.

Genetic and biochemical experiments identify critical
core subunits

The first genetic and biochemical studies grouped SAGA
subunits based on their mutant phenotypes and effects
on the composition of the complex (Grant et al. 1998c).
Complete deletion of the adaptor proteins Gcn5, Ada2,
or Ada3 cause the Ada− growth phenotype, which is char-
acterized by the inability to grow on minimal medium
and the inability to repress Gal4-VP16-mediated toxicity
(Berger et al. 1992; Piña et al. 1993; Marcus et al. 1994;
Eberharter et al. 1999; Lee et al. 2011). Deletion of Spt3
or Spt8 causes the Spt− phenotype, which is characterized
by the abnormal initiation of certain transcripts (Winston
and Carlson 1992). Deletion of the gene Spt7 or Spt20
causes both Ada− and Spt− phenotypes (Marcus et al.
1996; Roberts andWinston 1996) and their deletion is syn-
thetically lethal in combination with mutations in genes
that encode members of the Swi/Snf or Mediator com-
plexes (Roberts andWinston 1997). In contrast, nullmuta-
tions in the SAGA genes Gcn5, Spt3, and Spt8 do not
cause lethality in combination with mutations in these
other transcriptional regulators, which sets Spt20 and
Spt7 apart (Roberts and Winston 1997). In addition,
Spt20, Spt7, and also Ada1 deletion disrupts SAGA com-
plex formation as well as function (Grant et al. 1997; Hori-
uchi et al. 1997; Roberts and Winston 1997; Sterner et al.
1999;Wu andWinston 2002).Together, these studies dem-
onstrate that Spt7, Spt20 and Ada1 are critical structural
core components of the S. cerevisiae SAGA complex.

Architecture of the SAGA complex

The first structure of the SAGA complexwas derived from
electron microscopy and mapped subunit positions with
different labeling techniques and mutant yeast strains
(Wu et al. 2004). This divided SAGA into five domains
(Fig. 1A). Domains I and V are involved in transcriptional
regulatory functions as domain I consists mainly of the
Tra1 protein, required for interaction with activators,
and V contains the TBP-binding protein Spt3. Domain
III contains the HAT Gcn5, and central domains II, III,
and IV contain the TAF subunits and the structural com-
ponents Spt7, Spt20, and Ada1. Later studies roughly
mapped the DUB subunits a region corresponding to
domain III, close to TAF subunits Ada1 and Spt7 (Fig.
1B; Setiaputra et al. 2015). These models showed that
the Spt subunits form a TBP-binding surface that is adja-
cent to Tra1 on one side and both enzymatic modules at
the other lateral side of the TBP-binding surface (Wu
et al. 2004; Setiaputra et al. 2015).

Tra1was initially thought to be a critical structural core
subunit, mainly because its large size (∼430 kDa) would
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allow it to act as a scaffolding protein. However, theAda1
and Spt20mutants that lackTra1 are still able to form par-
tial SAGA complexes; thus, Tra1 cannot be a critical sub-
unit that nucleates SAGA assembly (Wu and Winston
2002; Lee et al. 2011). In fact, Tra1 assumes a peripheral
position and is not located centrally in the complex at
all, nor does it extensively cross-link to different subunits
(Figs. 1C,D, 3) (Han et al. 2014; Diaz-Santin et al. 2017;
Sharov et al. 2017). High-resolution cryogenic electron
microscopy (cryo-EM) studies show that Tra1 connects
via a narrow hinge region to SAGA (Fig. 1C; Diaz-Santin

et al. 2017; Sharov et al. 2017; Cheung and Díaz-Santín
2019). The main connection forms between the Tra1
FAT domain and several regions of Spt20 and Taf12 (Fig.
3A,B; Han et al. 2014; Elías-Villalobos et al. 2019; Papai
et al. 2020; Wang et al. 2020)
Further cross-linking mass spectrometry experiments

corroborated these data and show that TAFs and Ada1 as-
sume a central position and are interlinked with Spt sub-
units, and link the HAT and DUB module to the TAF/
Ada1 center, whereas Tra1 does not form many interpro-
tein connections (Fig. 1D; Han et al. 2014).

Modular divisions of the SAGA complex

A yeast combinatorial depletion study generated a com-
prehensive interaction matrix for all the SAGA subunits
(Lee et al. 2011). Themodular organization of the complex
aswell as the interrelationships between its subunitswere
determined with computational methods after the sys-
tematic purification of several tagged SAGA subunits in
genetic deletion strains (Lee et al. 2011). Thismodel divid-
ed the SAGA subunits in four modules (Fig. 2A): the enzy-
matic HAT module (Gcn5, Ada3, Ada2, and Sgf29); the
DUB module (Ubp8, Sgf73, Sgf11, and Sus1); the TAF
module, composed of all of the SAGA TAF proteins
(Taf6, Taf5, Taf12, Taf9, and Taf10); and the SPT module,
consisting of all of SAGA’s SPT proteins (Spt7, Spt8, Spt3,
and Spt20) together with Tra1 and Ada1.
Thus, the critical core subunits (Ada1, Spt7, and Spt20)

that had been mapped to a central location within the
complex (Wu et al. 2004; Han et al. 2014; Setiaputra
et al. 2015) also reside together in the Spt module (Lee
et al. 2011). However, the exact positions of Ada1, Spt7,
and Spt20 raised the question of how they could form a
central structural core. Spt7 and Spt20 cross-linked to dif-
ferent sets of subunits and not to each other (Fig. 1C; Han
et al. 2014). Specifically, Spt7 cross-linked to Spt8, primar-
ily between the C terminus of Spt7 and WD40 repeats at
the center of Spt8 (Han et al. 2014). Spt7 also cross-linked
to Gcn5 and Ada3, showing close positioning of Spt7 to
the HAT module, in agreement with the models by Wu
et al. (2004) and Setiaputra et al. (2015) In contrast,
Spt20 cross-linked to neither Spt7, Spt8, nor the HAT
module. Instead, Spt20 cross-linked to TAFs, the DUB
module, and Spt3 (Han et al. 2014).
The latest high-resolution cryo-EM structures of SAGA

from S. cerevisiae and P. pastori corroborate these results
and show how Ada1, Spt20, and Spt7 together can be part
of one and the same structural core (Fig. 2B; Papai et al.
2020; Wang et al. 2020). These structures reveal that the
TAFs, Ada1, and Spt subunits together form the structural
core of the SAGAcomplex. Spt20 and Spt7 are found at op-
posing lateral sides andAda1 at a central position (Figs. 2B,
3A). Moreover, they resolve questions on the subunit sto-
ichiometry. Both SAGA and TFIID contain Taf5, Taf6,
Taf9, Taf10, and Taf12, but TFIID contains two copies of
these TAFs (Leurent et al. 2002). The first structures could
not yet conclusively resolve their stoichiometry (Wu et al.
2004; Setiaputra et al. 2015). However, these cryo-EM
studies reveal that each subunit of the core module is

B

A C

D

Figure 1. Schematic overview of the architecture of the SAGA
complex based on electron microscopy, immunolabeling, and
cross-linking mass spectrometry techniques. (A) The first S. cer-
evisiae SAGA structure divides it in five domains (adapted from
Wu et al. 2004, with permission from Elsevier). Tra1 occupies
domain I, and domains II–IV contain TAFs, core (Ada1, Spt7,
and Spt20) and HAT subunits (Gcn5). Domain V is flexible and
contains Spt3. (B) The subsequent SAGA structure locates the
DUB module as bulging density in close proximity to TAF and
Spt subunits. (Adapted from research originally published in
Setiaputra et al. 2015. # the American Society for Biochemistry
and Molecular Biology). This structure highly resembles the pre-
vious structure (Wu et al. 2004), when domain V is flipped toward
domain I. The Spt subunits form a TBP-binding surface adjacent
to Tra1, and the DUB and HAT modules locate to the right. Ver-
tical dashes indicate the midplane. Subunit Spt3 and the DUB
module are located on the backside. (C ) Cryo-EM structure show-
ing the narrow hinge region that forms the peripheral connection
between Tra1 and the core modules (arrow; Tra1 cross-links to
Spt20 and Taf12). TheDUB (purple) andHATmodule (yellow) as-
sociatewith the structural core (green/white). The vertical stripes
indicate the midplane. The DUB module anchors via the back-
side. Both enzymatic modules form a clamp that engages nucleo-
somes, and the HAT module can swirl ∼15° toward the DUB
module (dashed arrow) (adapted from Cheung and Díaz-Santín
2019). (D) The architectural map determined by cross-linking
mass spectrometry (adapted with permission from Han et al.
2014; # 2014 The Authors) reveals the close proximity of Tra1
and the Spt subunits, and the peripheral connections of Tra1 to
the rest of the complex. The TAFswithAda1 assume a central po-
sition and are interlinked with Spt subunits. The HAT and DUB
module link to the TAF/Ada1 center, and the DUBmodule cross-
links also to Spt20.
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present as one copy (Fig. 2B). Finally, these studies catego-
rize the SAGA modules as follows: Tra1 module, core
module (Spt, TAFs, Ada1, and Spt20), HAT module
(Gcn5, Ada2, Ada3, and Sgf29), and DUB (Sgf73, Sgf11
Sus1, and Ubp8) (Fig. 2B; Papai et al. 2020; Wang et al.
2020).

The histone fold gives rise to a histone-like octamer
structure within SAGA’s core module

All of the SAGA core module subunits, except for Taf5
and Spt20, have a histone fold (HF) motif (Gangloff et al.
2001a,b). The HF is a protein–protein interaction motif
that was originally described in the heterodimerization
of histones H4 and H3, and also H2A and H2B and their
assembly from a central H3-H4-heterotetramer into the
histone octamer as it is found in nucleosomes (Luger
et al. 1997). The motif is composed of three helices sepa-
rated by two short strap loops and it assembles into heter-
odimers by interleaving the helices into the “handshake
motif” and juxtaposing the strap loops into short parallel
β-bridges (Arents et al. 1991).

TAFs similar toH3, H4, andH2Bwere identified inDro-
sophila, (Goodrich et al. 1993; Weinzierl et al. 1993;
Kokubo et al. 1994; Mengus et al. 1995), humans (Wein-
zierl et al. 1993; Hisatake et al. 1995; Mengus et al.
1995; Hoffmann et al. 1996; Ogryzko et al. 1998), and
yeast (Poon et al. 1995; Reese et al. 2000) (also for review,
see Burley and Roeder 1996). Soon, biochemical studies
emerged that showed that the TAFs in TFIID could form
a histone octamer-like structure, like histones do as part
of the nucleosome (Hoffmann et al. 1996). TheDrosophila
H3–H4-resembling TAFs were found to dimerize via HF
domains (Nakatani et al. 1996) and Xie et al. (1996) dem-
onstrated with X-ray diffraction studies that aDrosophila
[Taf6-9]x2 tetramer forms, and postulated that four copies
of Taf12 will complete the octamer. In 2001, Selleck et al.
(2001) crystalized an octamer composed of two copies of
the tetramer formed by Taf6, Taf9, Taf4, and Taf12, and
other studies show that this octamer is complemented
by a hexamer of remaining TAF subunits in TFIID (Koles-
nikova et al. 2018) in Pichia pastoris, which is in agree-
ment with findings in insect cells (Bieniossek et al. 2013).

Whether histone-like TAFs arranged into an octamer
core in SAGA remained largely unclear until the stoichi-
ometry and structure of the SAGA core subunits were re-
solved. The SAGA core contains an octamer of TAF
subunits formed by the following histone fold dimer pairs:
Taf12–Ada1, Taf9–Taf6, Taf10–Spt7, and Spt3 (Fig. 2B;
Papai et al. 2020; Wang et al. 2020). The Spt3 dimer pair
is not formed by two proteins, as one copy of Spt3 contains
both halves of an interacting histone fold pair located at
the N-terminal and C-terminal ends (Birck et al. 1998).
This octamer configuration explains why previous EM
studies located Spt7 in proximity to the TAFs and espe-
cially Taf10, and mapped Ada1 in proximity of Taf12
(Fig. 2B; Wu et al. 2004; Han et al. 2014).

In contrast to the canonical symmetric histone octamer
that contains two copies of each histone, the octamer in
SAGA is asymmetric and formed by one copy of each

B

A

Figure 2. Modular division of the SAGA complex. (A) combina-
torial depletion study in S. cerevisiae reveals the interprotein re-
lationships of the complete SAGAcomplex. SAGA is divided into
four modules that are conserved in Drosophila and humans.
S. cerevisiae names are listed in the cartoon, and Drosophila
and human paralogs are listed in the expanded boxes that are col-
or-coded after their corresponding module. The four modules are
the HAT module, the DUB module, TAF module, and Spt mod-
ule. Note that Spt8 is not conserved in Drosophila and humans.
(B) New modular division. The latest cryo-EM structure of
SAGA in S. cerevisiae and P. pastori form a framework to further
understand the relationship between subunits and the function of
these subunits (Papai et al. 2020; Wang et al. 2020). The large, pe-
ripheral protein Tra1 is now considered its ownmodule. The core
module is composed of the former Spt and TAF module joint to-
gether. TAF and Spt proteins form an asymmetric octamer via
histone fold dimer pairs (indicated with black lines). Spt20 is in-
terwoven through the core and connects peripherally with Tra1.
Spt20 and Taf12 anchor Tra1. Taf5 organizes the structure of
the core and regulates the interactions of the Taf6/Taf9 dimer
pair. The structure of the SAGA core allows for a flexible inser-
tion of the two enzymatic modules.
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HF protein (Papai et al. 2020; Wang et al. 2020). In addi-
tion, it is not built up from a central histone fold domain,
but from one end through interactions with Taf5 (Papai
et al. 2020; Wang et al. 2020). Taf5 lacks a HF domain
but contains WD40 domain repeats (Durso et al. 2001).
WD40 repeat proteins act as scaffold proteins because of
their β propeller structure (Xu and Min 2011). In SAGA,
the Taf5 WD40 propeller docks to two HF pairs (Taf6-9
and Taf10-Spt7) and binds Spt20 (Wang et al. 2020).
Spt20 also contains an extended loop that forms a wedge

between the N-terminal and C-terminal Taf5 domains,
thereby stabilizing them in a defined orientation The N-
terminal helical domain of Taf5 binds theHEAT repeat re-
gion of Taf6 (Papai et al. 2020; Wang et al. 2020). This in-
teraction is conserved, and influences the dimerization of
human TAF6 and TAF9 (Scheer et al. 2012). Conversely,
Taf6 contributes one β strand to the Taf5 propeller, mak-
ing them obligate heterodimers (Papai et al. 2020; Wang
et al. 2020). Work on human cells further demonstrated
that TAF6’s HF dimer partner TAF9 also interacts with

B

A

C

Figure 3. Anchor points for the enzymatic modules of
the SAGA complex (A) Front view. PDB ID 6T9I and
stylized cartoon. (B) Back view. (C ) Back view close-up
showing the insertion of Sgf73. (PDB ID 6T9I) (Wang
et al. 2020). The DUBmodule connects via the insertion
the C-terminal part of Sgf73, which enters the core prox-
imal to the Taf9 histone fold, traverses an elongated
domain of Ada1, and exits next to the Spt20 SEP domain
(Papai et al. 2020; Wang et al. 2020). Spt20 is critical for
the association of the DUB module. The HAT module
docks to SAGA at subunit Taf6, where two helical do-
mains—attributable to Ada3—lie at the surface of the
Taf6 HEAT repeat domain. Taf5, Ta6, and Taf9 likely
stabilize the configuration of Taf6 as well as the overall
structure of the core module. The conformations of the
enzymaticmodules are dynamic in vivo, and this mobil-
ity allows themodifications on a stretch of nucleosomal
histone tails up along the promoter region.
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the WD40 domain of TAF5 in a discrete TAF5–TAF6–
TAF9 subcomplex, which further emphasizes the elabo-
rate interactions between Taf5, Taf6, and Taf9 (Antonova
et al. 2018). Taken together, bothHF and non-HF core sub-
units interact and define the architecture of the core.

The core structure is important for TBP binding

Recent work has addressed how TBP is loaded onto
prompters by TFIID (Patel et al. 2020), but how SAGA
mechanistically contributed to TBP loading had remained
largely unclear. Now that the structure of the SAGA core
is resolved, several studies converge into a model where
SAGA tethers TBP to Spt subunits and loads it onto
DNA when certain conformational changes are induced,
as discussed next.

Genetic and biochemical studies have implicated all
SAGA Spt subunits in SAGA–TBP association, and Spt3
and Spt8 bind TBP directly (Eisenmann et al. 1992, 1994;
Marcus et al. 1996; Roberts and Winston 1996; Sterner
et al. 1999; Belotserkovskaya et al. 2000; Larschan and
Winston 2001; Warfield et al. 2004; Sermwittayawong
and Tan 2006; Laprade et al. 2007). Sermwittayawong
and Tan (2006) proposed a two-step model in which
SAGA, via Spt8, binds TBP to facilitate its subsequent
transfer to a TATA box. However, the role of Spt8 has re-
mained controversial. No Spt8 homologs have been de-
scribed in higher eukaryotes (Helmlinger and Tora
2017), suggesting that other subunits must sustain TBP
binding. Even in yeast, two SAGA-like complexes that
lack Spt8 are able to engage TBP and coactivate gene ex-
pression, indicating that Spt8 is not necessarily always re-
quired (Saleh et al. 1997; Grant et al. 1998b). In agreement
with a more modulatory role for Spt8 in TBP binding, im-
pairment of Spt8 barely impacts mRNA synthesis, where-
as Spt3 is absolutely required (Baptista et al. 2017). In the
model proposed by Ben-Shem and colleagues (Papai et
al. 2020), Spt8 engages TBP, and introduction of TFIIA
leads to transfer of TBP from Spt8 to Spt3. Spt8 binds
the N-terminal region of TBP (Wu and Winston 2002;
Han et al. 2014; Papai et al. 2020). The cryo-EM structures
show howmultiple Spt3 helices bind the C-terminal stir-
rup of TBP (Papai et al. 2020). In SAGA, the Spt3 HFs are
tilted compared with its analogous H2A–H2B histone
pair in the nucleosome. This tilt prevents the participa-
tion of Taf10 α3 helix in the interaction, such that Spt3
is barely linked to Taf10 and able to engage TBP (Papai
et al. 2020). Spt20 may also aid the Spt3–TBP binding.
Spt20 cross-links to the N-terminal side of TBP near the
Spt8 interaction site, but also to both ends of the Spt3
C-terminal HF (Han et al. 2014), and Spt20 deletion leads
to a severe reduction in TBP binding at the GAL 1 locus
(Dudley et al. 1999). TBP–Spt3 binding induces a confor-
mational change in Spt3 that allowsDNA to pass between
Tra1 and the remainder of the SAGA complex, which fa-
cilitates TBP loading onto promoters (Papai et al. 2020).
Since Spt3 andTFIIBmutually exclusively bind TBP (War-
field et al. 2004), the actual release of TBP from SAGA is
important for further PIC assembly (Papai et al. 2020),
but how this is regulated is not currently understood. Bio-

chemical studies suggest that TBP/TFIIA binding directs
the dissociation of the TATA box from the surface of the
histone octamer (Godde et al. 1995). Histone acetylation
also weakens the interaction between nucleosomal
DNA and histone tails, since lysine acetylation affects
the higher-order folding of chromatin fibers and loosens
—but does not totally abolish—the contacts between
the DNA and the nucleosomes (Li et al. 2007). Indeed, in
vitro binding of the TFIIA–TBP complex is stimulated
by Gcn5 HAT activity (Biswas et al. 2004). Thus, SAGA
HAT activity might support the role of TFIIA and help
to facilitate TBP release by promoting its binding to the
TATA box.

The core structure allows a flexible link of the enzymatic
modules

The yeast DUB module forms two functional lobes orga-
nized around the catalytic subunit. N-terminal residues
of Sgf73 are located between the two Ubp8 domains and
potentiate Ubp8 activity (Köhler et al. 2010; Samara
et al. 2010). Ubp8, the subunit containing DUB activity,
is inactive unless associated with the three other subunits
of theDUBmodule (Köhler et al. 2008; Lang et al. 2011). In
contrast to yeast, in humans and Drosophila the anchor-
ing subunit Ataxin-7 is completely dispensable for DUB
module enzymatic activity (Mohan et al. 2014). The
DUB module joins the SAGA core module close to the
Tra1 hinge region and subunit Sgf73 forms the anchor
(Köhler et al. 2010; Samara et al. 2010; Morgan et al.
2016;Wang et al. 2020). The C-terminal part of Sgf73 is re-
quired for insertion into the core module (Lee et al. 2009;
Kamata et al. 2013; Durand et al. 2014; Han et al. 2014)
and enters the core proximal to the Taf9 histone fold, tra-
verses an elongated domain of Ada1, and exits next to the
Spt20 SEP (shp1, eyc, and p47) domain (Fig. 3A–C; Papai
et al. 2020; Wang et al. 2020). Tra1 and Spt20 are critical
for the association of the DUB module in S. pombe (Elí-
as-Villalobos et al. 2019). Likely, Tra1 stabilizes the con-
figuration of Spt20 in such a way that the DUB module
can anchor. This finding further stresses that non-HF-con-
taining core subunits are also important for SAGA struc-
ture and explains why Ada1 and Spt20 are critical
structural subunits, required for the integration of the
DUB activity.

Several studies investigated how the enzymatic mod-
ules contact the nucleosome, but exact interaction sites
remain hard to identify (Durand et al. 2014; Papai et al.
2020; Wang et al. 2020). The structure of the DUBmodule
bound to an ubiquitinated nucleosome superimposed
onto the S. cerevisiae SAGA structure shows that one nu-
cleosome fits between the HAT and DUB module (Wang
et al. 2020). The HAT module maps close to the DUB
module, and is the most mobile region of the complex
(Setiaputra et al. 2015; Papai et al. 2020; Wang et al.
2020). It adopts multiple conformations and orientations.
Accordingly, the bulk of this module is visible only as an
elongated featureless density. In contrast to the DUB
module, no parts of the HAT module are embedded in
the SAGA core. The HAT module docks to SAGA at
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subunit Taf6, where two helical domains—attributable to
Ada3—lie at the surface of the Taf6 HEAT repeat domain
(Papai et al. 2020;Wang et al. 2020), which agreeswith ear-
lier work that demonstrated that Ada3 links the HAT
module to the SAGA complex (Han et al. 2014).
It is interesting that the Taf6 HEAT repeat domain is

important for anchoring the HAT module. As eluded to
earlier, this domain is also important for the modulation
of TAF9–TAF6 dimerization by TAF5 (Scheer et al.
2012; Antonova et al. 2018). Deletion of the Taf6 HF
domain does not affect the stability of the yeast SAGA
complex, even though it does disrupt the H3/H4-like
Taf6/9 dimer pair (Dahiya and Natarajan 2018), which
agrees with the notion that other interactions stabilize
Taf6 and Taf9. Indeed, in the human TAF5/TAF6/TAF9
subcomplex, the TAF9 C-terminal domain wraps around
the TAF5 WD40 repeat domain like a clamp with three
major anchor points (Antonova et al. 2018). In TAF9 mu-
tants where the TAF9/TAF5 interaction surface is
completely disrupted, SAGA fails to form completely.
The only interaction that this mutant TAF9 canmaintain
is that with TAF6. TFIID is less stable, and interference
with one of the three major anchor points is already suffi-
cient to affect complex stability (Antonova et al. 2018).
This indicates that TAF5/TAF6 have different stabilizing
protein contacts in each complex also (for review, see
Timmers 2020). In TFIID, Taf5 docks to the octamer-
like fold, where it is stabilized by Taf4 (Wang et al.
2020). In SAGA, which lacks Taf4, Ada1 assumes the po-
sition of Taf4 and stabilizes Taf5, and the Taf5N-terminal
tail occupies a rather distant position where it is further
stabilized by Spt20 and contacts Taf6 (Wang et al. 2020).
Thus, in the SAGA complex, Taf5, Spt20, and Ada1 are
important stabilizers of Taf6 and Taf9, which is in agree-
ment with all the genetic and biochemical studies that
have uncovered since the very early discovery of the
SAGA complex that Spt20 and Ada1 are critical core com-
ponents for structural integrity and SAGA function.

The composition of the HAT module facilitates
its function

The SAGA HAT module contains four Ada subunits that
are critical for the regulation of the enzymatic lysine ace-
tyltransferase activity as well as specific lysine residue
recognition (Piña et al. 1993; Horiuchi et al. 1995; Synti-
chaki and Thireos 1998; Grant et al. 1999; Balasubrama-
nian et al. 2002; Ringel et al. 2015). Recombinant Gcn5
acetylates free histones (Kuo et al. 1996), but the Gcn5-as-
sociated proteins enhance the ability of Gcn5 to acetylate
nucleosomal histones and confer uponGcn5 the ability to
acetylate an expanded set of lysine residues (Grant et al.
1997, 1999) on both histone and nonhistone substrates
(Kim et al. 2010).
The particular requirement for Ada2 became evident

when Gcn5 with an active HAT domain but missing
Ada2-interacting portion could not sustain yeast growth
(Candau et al. 1997). Recent structural work reveals the
molecular explanation. Ada2 contains the SANT his-
tone-binding domain (found in Swi3, ADA2, N-Cor, and

TFIIIB, hence named SANT) (Sterner et al. 2002), a ZZ-
type zinc finger (ZZ) domain involved in histone tail bind-
ing (Zhang et al. 2019) and a Swi3p, Rsc8p, and Moira
(SWIRM) domain, a eukaryotic domain found in proteins
implicated in chromatin remodeling and gene expression
(Boyer et al. 2002; Sterner et al. 2002; Qian et al. 2005;
Da et al. 2006). The SANT domain does not appear to
act as a histone tail-binding module, because it is posi-
tioned away from the Gcn5 peptide-binding pocket. In-
stead, the structure of Gcn5 and Ada2 associated with
acetyl-CoA substrate suggests that the SANT domain en-
hances binding of the acetyl-CoA substrate (Sun et al.
2018). Gcn5, Ada2, and Ada3 form a heterotrimeric com-
plex when expressed and combined in vitro. They form an
oblong complex where Ada2 as the linchpin holds Ada3
andGcn5 together (Horiuchi et al. 1995; Balasubramanian
et al. 2002). Ada3 links the HATmodule to SAGA, but de-
leting the most C-terminal portion of Ada3 does not com-
promise SAGA stability, nor does it lead to disassociation
of Gcn5 from the SAGA complex (Han et al. 2014). How-
ever, it still causes the classical Ada− growth phenotype,
and to an extent equivalent to complete deletion of the
ADA3 gene (Han et al. 2014). Therefore, the C-terminal
domain of Ada3 is required for full Gcn5 activity in vivo.
In vitro, the trimeric complex of Ada3, Ada2, and Gcn5

is sufficient for nucleosomal H3K9 and H3K14 acetyla-
tion (Balasubramanian et al. 2002). In vivo, Sgf29 is likely
required for promoter recruitment and H3K9 acetylation
at these regions is impaired in Sgf29 mutants (Bian et al.
2011). Sgf29 contains a tandem tudor domain that binds
histone H3 methylated on lysine 4 (Bian et al. 2011).
H3K4me3 recognition allows SAGA to dock to pre-exist-
ing trimethyl marks at promoter regions and promotes
subsequent processive acetylation (Ringel et al. 2015).
The C-terminal Ada3 mutant likely cannot bind Sgf29
and processive acetylation is disturbed such that the
Ada− growth phenotype presents itself.

Distinct requirements of different modules during gene
regulation

Although SAGA holistically integratesmultiple coactiva-
tor functions, there is a distinct genetic requirement for
each module during gene regulation. For example, even
though Tra1 is important for recruitment of SAGA to pro-
moter regions, S. pombe SAGA complexes lacking Tra1
display only very limited defects in gene regulation and
show no global decrease in gene expression (Helmlinger
et al. 2011). In addition, gene expression profiles of spt3Δ
or spt8Δ mutants are distinct from those of ubp8Δ or
sgf11Δ, indicating that loss of TBP-binding ability affects
gene expression to a different degree than loss of DUB ac-
tivity (Ingvarsdottir et al. 2005). Deletion strains that in-
terfered with HAT function (gcn5Δ, ada2Δ, or ada3Δ
mutants) behaved comparably, but affected only a moder-
ate number of genes (178), and only a subset of these were
affected by loss of Sgf29 (Helmlinger et al. 2011). Together,
these data suggest that SAGA’s coactivator function de-
pends on its structural integrity, ability to engage TBP,
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anchor the DUBmodule, and HAT activity. However, not
all genes require all of these activities.

One striking observation is that loss of Spt20 causes
severe defects in gene regulation in S. pombe and S. cere-
visiae (Lee et al. 2000; Helmlinger et al. 2011; Bonnet et al.
2014; Warfield et al. 2017), which suggests that its dele-
tion disrupts multiple coactivation functions simultane-
ously, which is in keeping with its role as a key
structural component. However, Spt20, Ada1, and Spt7
mutants do not behave identically, suggesting that even
though these are all critical for the structure of the
SAGA complex, they do not govern the same coactivating
functions equally (Helmlinger et al. 2011). Spt20 and Spt8
mutants grossly affect the same genes. This indicates that
a portion of the genes that require Spt20 rely on TBP inter-
actions. However, the number of genes deregulated in
Spt20 mutants exceeded that of Ada1, Spt7, and also ex-
ceeded the number of genes that are misexpressed in the
Sgf73 and Ubp8 mutants. Therefore, the additional de-
fects in Spt20 mutants compared with Ada1 and Spt7
can be explained by the inability to anchor the complete
DUB module to SAGA, as has been observed in multiple
studies (Lee et al. 2011; Elías-Villalobos et al. 2019). A dis-
associated submodule of the four DUB subunits in yeast is
likely still catalytically active (Köhler et al. 2010; Samara
et al. 2010; Lim et al. 2013). This suggests that not associ-
ating the active DUB module to SAGA leads to more
severe consequences than a catalytically dead module
and raises intriguing questions about how DUB function
is regulated.

Different studies have addressed how DUB activity is
regulated at the promoter and gene body. In S. cerevisiae,
global ubH2B levels increase upon deletion of Ubp8 or the
anchoring subunit Sgf73, indicating that the DUB is inac-
tive when not anchored to SAGA (Bonnet et al. 2014).
However, in humans, loss of the anchoring subunit leads
to a decrease in global ubH2B levels and increased
ubH2B levels in gene bodies of expressed genes (Bonnet
et al. 2014). Also, in Drosophila, a global decrease in
ubH2B is observed upon deletion of the anchoring subunit
(Mohan et al. 2014). In Drosophila, DUB module activity
is regulated slightly differently than in yeast, in that Sgf11,
e(y)2, and Nonstop without Sgf73 form a catalytically
active complex (Mohan et al. 2014; Cloud et al. 2019).
In fact, even in wild-type conditions, the DUB module
(Sgf11 and Nonstop) associates with ∼600 genomic re-
gions that are not targeted by the canonical SAGA com-
plex. Approximately half of these map near TSS and
∼10% require ubiquitin protease activity, indicating that
the Nonstop regulates gene expression independent of ca-
nonical SAGA (Li et al. 2017).

Other studies in S. cerevisiae suggest that Spt20 is also
important for integration of the SAGA HAT module.
spt20Δ mutants fail to integrate the HAT module, yet
the HAT module exists as stable subcomplex (Lee et al.
2011). Spt20andAda2assemble cotranslationally (Kassem
et al. 2017), which raises the possibility that the SAGA
coremodule already engages theHATmodule in the cyto-
plasm. Inhumans, recombinant expressionof all fourHAT
module subunits leads to the formation of a stable HAT

subcomplex (Nguyen-Huynh et al. 2015). The same com-
ponents form the Drosophila ADA complex (Soffers et al.
2019), which is similar to the yeast ADA complex, which
preferentially acetylates H3K14, H3K18, and H2B
(Eberharter et al. 1999; Grant et al. 1999) but lacks the
yeast-specific Ada HAT components Ahc1 and Ahc2.
The Drosophila nuclear complex does not associate with
Spt20; thus, it is not the imported form of a Spt20–Ada2b
cotranslational assembly complex (Soffers et al. 2019).
The ADA complex localizes to sites that canonical
SAGA does not occupy, and it has HAT activity not only
on recombinant histones and core histones, but also poly-
nucleosome substrates, suggesting that it can also acety-
late chromatin in a cellular context. Loss of Drosophila
Ada2b influences the expression of ∼600 genes in larvae
and ∼900 genes in pupa (Zsindely et al. 2009; Pankotai
et al. 2013). These observations raise questions about
which genes depend on the metazoan ADA complex and
which are regulated by SAGA, and also what advantage
such redundant complexes may confer.

Conclusion

Combined biochemical, genetic, and structural studies
have painted a picture of the versatile and diverse func-
tions of the SAGA complex during gene regulation, start-
ing from its role in transcription initiation to functions
in elongation and RNA processing and export. Our under-
standing of its molecular mode of action keeps evolving
with the identificationofnewsubunits that account forad-
ditional functions, substrates, and knowledge about the
roles of individual modules. Current questions are how
the conformational flexibility directs function in vivo,
and we are eagerly awaiting further structures of nucleo-
some-bound SAGA. These will help understand whether
SAGAclamps onenucleosome at a timeor canmodify his-
tone tails of adjacent nucleosomes. From here, further
questions arise. Are pre-existing methylation marks di-
recting levels of acetylation and ubiquitination at the
same nucleosome and vice versa? Domultiple SAGA cop-
ies bind at different regions of a gene and exert different ac-
tivities, and does this explain why some SAGA-associated
marks are prevalent upstream of the transcription start
site, yet others in the gene body? Canwe account for these
differences by enzymatic activities of isolated SAGAmod-
ules? Indeed, 23 yr after its discovery, the SAGA histone
acetyltransferase complex keeps generating new para-
digms for how the components of chromatin-modifying
complexes function together and independently.
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