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In this paper, we develop reduced-order models for
dynamic, parameter-dependent, linear and nonlinear
partial differential equations using proper orthogonal
decomposition (POD). The main challenges are to
accurately and efficiently approximate the POD
bases for new parameter values and, in the case
of nonlinear problems, to efficiently handle the
nonlinear terms. We use a Bayesian nonlinear
regression approach to learn the snapshots of the
solutions and the nonlinearities for new parameter
values. Computational efficiency is ensured by using
manifold learning to perform the emulation in a low-
dimensional space. The accuracy of the method is
demonstrated on a linear and a nonlinear example,
with comparisons with a global basis approach.

1. Introduction
Computational modelling is an indispensable tool
for analysis, design, optimization and control. For
applications that require a high number of model
evaluations at different inputs (e.g. uncertainty analysis
and inverse parameter estimation) the computational
expense of a computer model is often prohibitive. In
such cases, the original computer model can be replaced
with a surrogate model (or emulator) [1]. The simplest
approach to surrogate modelling consists of simplifying
the mathematical model or numerical formulation, e.g.
by assuming spatial homogeneity or using coarse grids.

The other two main approaches are based on: (i)
supervised machine learning methods to learn the
model input–output relationship (so-called data-driven
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models) or (ii) Galerkin projection schemes, to yield reduced-order models (ROMs). The projecting
basis in ROMs can be obtained through balanced truncation, Krylov subspaces or proper
orthogonal decomposition (POD) (for a recent survey we refer the reader to [2]). For partial
differential equation (PDE) models, the Galerkin projection can be performed on the original
equations (strong or a weak form) or on the spatially discretized system. The final form is an
algebraic system for steady problems or an ordinary differential equation (ODE) system in time
for dynamical problems.

The most widely used technique for PDE systems is POD [3–5], in which the approximating
subspace is obtained from solutions (called snapshots) generated by the discretized full-order
model (FOM) at selected time instances. Application of POD to dynamic, nonlinear parametrized
PDEs presents a number of challenges: (i) constructing a basis that is valid across parameter space;
(ii) dealing with high-dimensional parameter spaces; (iii) using data parsimoniously; and (iv)
efficiently computing the reduced-order system matrices and reduced-order nonlinearities in the
state variable during use of the surrogate, i.e. the so-called online phase (we may also mention the
development of stable POD schemes to overcome instabilities in the original formulations).

There are several approaches to incorporating parametric dependence: (i) to use a global
basis (meaning across parameter space); (ii) interpolation of local bases (meaning for particular
parameter values); and (iii) interpolation of local system matrices. For linear time-invariant
systems, the system matrices often take the form of affine combinations of constant matrices with
parameter-dependent coefficients. In such cases, the reduced-order system is quickly and easily
assembled for a new parameter value [6,7]. Affine forms can also be realized by using a Taylor
series expansion [8] or an empirical interpolation strategy [9]. Global basis methods extract a
single basis from multiple local snapshot matrices [6,10,11]. Obvious drawbacks are the violation
of POD optimality and the growth in the size of the global matrix with the number of samples.
There are, however, efficient sampling strategies for constructing global bases, such as the greedy
approach of [6] or by using a local sensitivity analysis [12].

An alternative approach is interpolation of local bases or local reduced-model matrices. Lieu et
al. [13] used the principal angles between two POD bases, pertaining to different Mach numbers,
to linearly interpolate a local basis for intermediate Mach numbers in a linearized fluid-structure
ROM. This method is restricted to single-parameter systems and small parameter changes.
Amsallem & Farhat [14] considered local bases as members of a Grassmann manifold, the set
of all subspaces (of a chosen low dimension) of the state space. The local bases are mapped to a
tangent space of the Grassman manifold using a logarithmic map and Lagrange interpolation is
performed in the tangent space. An inverse exponential map provides the required local bases.

Interpolation methods can also be used to approximate the reduced-order system matrices, in
order to circumvent the problem of computing these matrices for each new parameter value.
Degroote et al. [11] proposed two methods: element-wise direct spline interpolation of the
reduced-order matrices or spline interpolation of the matrices in a tangent space of a Riemannian
manifold on which the matrices are assumed to lie (a similar method was proposed in [15]). When
a global basis is not used to build the ROM, a straightforward interpolation is not possible because
the reduced-dimensional coordinates do not (in general) have the same physical meaning from
one local basis to another. Thus, a congruency transformation to a common basis is required before
direct interpolation [16] or interpolation in a tangent space [17].

Lieberman et al. [18] used a greedy algorithm to construct projections for both the state variable
and the parameters simultaneously, minimizing a measure of the error between the ROM and
FOM outputs at each iteration (different error measures were considered in [19]). Hay et al. [20]
used sensitivities (derivatives) of the POD basis with respect to (w.r.t.) the parameters either to
linearly extrapolate the POD basis for a new parameter value or to expand the POD basis by
augmenting it with the corresponding sensitivities. The growth in the basis dimension with the
number of parameters is a limitation of this approach.

The computational cost of evaluating a strong (high-order polynomial or non-polynomial)
nonlinearity in the state variable in a ROM depends on the dimension of the original state space.
Linearization methods [21,22] are only applicable to weak nonlinearities or confined regions
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of state space. Moreover, the computational cost grows exponentially with the order of the
approximating expansion. Recently, a number of hyper-reduction methods have been developed
to overcome the limitations of linearization approaches (see also the tensorial POD approach
recently developed in [23]). An early method was developed by Astrid et al. [24], based on
selecting a subset of the FOM equations corresponding to heuristically chosen spatial grid points,
followed by a Galerkin projection of the resulting reduced system onto the POD basis.

The empirical interpolation method interpolates the nonlinear function at selected spatial
locations using an empirically derived basis, and is applied directly to the governing PDE [7],
while the discrete empirical interpolation method (DEIM) is applicable to general ODE or algebraic
systems arising from a spatial discretization [25]. Both methods construct a subspace for the
approximation of the nonlinear term and use a greedy algorithm to select interpolation points.
An extension of the DEIM [26] generates several local subspaces via clustering and uses
classification in the online phase to select one of the subspaces. These approaches can also be
used for approximating (vectorized) non-affine system matrices [2]. The Gauss–Newton with
approximated tensors method operates at the fully discrete level in space and time, and is based
on satisfying consistency and discrete-optimality conditions by solving a residual-minimization
problem [27]. This leads to a Petrov–Galerkin (rather than Galerkin) problem with a test basis that
depends on the residual derivatives w.r.t. the state variable.

In this paper, we introduce an extension of POD for dynamic, parametrized, linear and
nonlinear PDEs. The method we develop involves a computationally efficient approximation of
the POD basis and the nonlinearity for new parameter values. It can be used in conjunction with
many of the methods described above, e.g. greedy sampling and methods for approximating non-
affine system matrices. In order to avoid inconsistencies and to reduce the loss of information in
the construction of new bases, we take the approach of approximating the snapshots rather than
the bases or system matrices directly. The snapshots, however, lie in high-dimensional spaces
so that direct approximations are computationally unfeasible. We overcome this issue by using
manifold learning techniques [28] to map the snapshots to a low-dimensional feature space. We
then use Gaussian process emulation (GPE) to infer values of the mapped snapshots for new
parameter values, followed by an inverse map to obtain the snapshots in physical space. For
nonlinear problems, we extend DEIM by using the same emulation approach to approximate
snapshots of the nonlinearity at desired locations in parameter space.

In the next section, we outline the procedures for generating ROMs and POD bases. We
provide brief details of the DEIM and explain the issues associated with parametrized and/or
nonlinear problems. In §3, we present the snapshot emulation strategy and summarize our
approach to linear and nonlinear parametrized problems. In §4, we present one linear and one
nonlinear example, comparing the results with a global basis approach.

2. Reduced-order models for parametrized dynamic partial differential
equations using proper orthogonal decomposition

(a) Problem definition and Galerkin projection
Let x= (x1, . . . , xL) denote a point in a bounded, regular domain D⊂ RL (L= 1, 2, 3), let t ∈ [0, T]
denote time and let ξ ∈X ⊂ Rl denote a vector of parameters. For the purposes of illustration,
consider a parametrized, parabolic PDE for a dependent variable u(x, t; ξ ):

∂tu+ L(ξ )u+N (ξ )u= g(x; ξ ) (x, t) ∈D × (0, T]

and u(x, 0; ξ )= u0(x; ξ ) x ∈D,

}
(2.1)

augmented by linear boundary conditions. Here, L(ξ ) and N (ξ ) are parameter-dependent linear
and nonlinear partial differential operators, respectively. The dependence on the parameters can
be through the operators, the source term g(x; ξ ) or the initial/boundary conditions.
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Let H be a separable Hilbert space with inner product (·, ·)H and induced norm ‖·]|H,
e.g. L2(D), the space of square integrable equivalence classes of functions with inner product
(v, v′)L2(D) =

∫
D v(x)v′(x) dx. Henceforth, we drop the subscript in the notation for the inner

product and norm in L2(D). It is assumed that, for each ξ , u ∈ L2(0, T;H), i.e. t �→ u(·, t; ξ ) is a
Lebesgue measurable map from (0, T) to H with finite norm ‖u‖L2(0,T;H) := ∫ T

0 ‖u(·, t; ξ )‖H dt. Then
u(·, t; ξ ) ∈H for each t ∈ (0, T). A spatial discretization of (2.1) leads to a system of ODEs:

u̇(t; ξ )=A(ξ )u(t; ξ )+ f (u(t; ξ ); ξ ) and u(0; ξ )= u0(ξ ) (2.2)

for a discrete state variable u(t; ξ )= (u1(t; ξ ), . . . , ud(t; ξ ))T, which we call the solution vector. Here d
is the number of degrees of freedom, e.g. the number of grid points in a finite-difference (FD)
approximation, the number of cells in a cell-centred finite-volume (FV) approximation or the
number of nodes (basis functions) in a finite-element (FE) approximation. The matrix A(ξ ) ∈ Rd×d

arises from the linear term L(ξ )u and f (u(t; ξ ); ξ ) ∈ Rd arises from a combination of N (ξ )u, g(x; ξ )
and possibly the boundary conditions. The latter is nonlinear for N (ξ )u �≡ 0.

The precise relationship between u(t; ξ ) and u(x, t; ξ ), the forms of A(ξ ) and f (u; ξ ), and the
incorporation of boundary conditions depend on the method used. For an FD approximation,
problem (2.1) is solved directly and the boundary conditions are incorporated in f (u; ξ ). In an FE
approximation a weak form is solved with test functions in H or a dense subspace V of H, with
boundary conditions incorporated in f and/or the definition of H. The form of A(ξ ) is determined
by the dependence of L(ξ ) on ξ . The simplest case is an affine form: A(ξ )=∑

i ci(ξ )Ai, where the
functions ci(ξ ) are known and the matrices Ai are constant.

For FD, FV and nodal-basis FE discretizations, the coefficients ui(t; ξ ) of u(t; ξ ) correspond to
the values of u(x, t; ξ ) at locations xi ∈ D̄, i= 1, . . . , d, i.e. ui(t; ξ )= u(xi, t; ξ ). We will assume this to
be the case throughout. A numerical solution of (2.2) yields the solution vector ui(ξ ) := u(ti; ξ ) at
times {ti}mi=1. Each of the discrete solutions ui(ξ ) ∈ Rd is referred to as a snapshot.

For a fixed input ξ ∈X , a Galerkin projection approximates the problem (2.2) in a proper (low-
dimensional) subspace S(ξ ) of Rd. Let vj(ξ ) ∈ Rd, j= 1, . . . , r, be an orthonormal basis for S(ξ )
(dim(S(ξ ))= r
 d), where the notation makes explicit the dependence on the input. We seek an
approximation u(t; ξ ) ∈ S of u in the space span(v1(ξ ), . . . , vr(ξ ))

u(t; ξ )=
r∑

j=1

aj(t; ξ )vj(ξ )=Vr(ξ )a(t; ξ ), (2.3)

where a= (a1(t; ξ ), . . . , ar(t; ξ ))T and Vr(ξ )= [v1(ξ ) . . .vr(ξ )]. The Galerkin projection of
equations (2.2) onto the basis vectors vi(ξ ), i= 1, . . . , r, yields (replacing u with u)

ȧ(t; ξ )=Ar(ξ )a(t; ξ )+ fr (a(t; ξ ); ξ) and a(0; ξ )=Vr(ξ )Tu0(ξ ), (2.4)

where Ar(ξ ) :=Vr(ξ )TA(ξ )Vr(ξ ) and fr(a(t; ξ ); ξ ) :=Vr(ξ )Tf (Vr(ξ )a(t; ξ ); ξ ). Equations (2.4)
represent a system of r ODEs in time for the coefficients ai(t; ξ ). The basic goal of POD (outlined
below) is the construction of a basis {vj(ξ )}rj=1 using the snapshots {ui(ξ )}mi=1.

(b) Proper orthogonal decomposition
POD is presented in a number of ways (e.g. error minimization, ‘variance’ maximization) in
the literature and often under different names. In this section, we provide a brief description of
the motivation and practical (discrete) implementation. A complete summary of the underlying
theory, alternative approaches, the links between the various interpretations and the optimality
of the chosen basis can be found in appendix A.

For a fixed ξ ∈X , POD extracts an ‘optimal’ basis for a field u(x, t; ξ ), (x, t) ∈D × [0, T],
given an ensemble of ‘snapshots’ {u(x; tj, ξ )}mj=1, x ∈D. These are continuous equivalents of the
discrete snapshots uj(ξ ). u(x, t; ξ ) can be regarded as a realization of a stationary (w.r.t. t) random
field indexed by (x, t) [3,4,29]. Applying Karhunen–Loèéve (KL) theory [30] for a fixed t yields
u(x, t; ξ )= limM→∞

∑M
i=1 ai(t; ξ )vi(x; ξ ). The vi(x; ξ ) form an L2(D) orthonormal basis and are the
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eigenfunctions (equations (A 1) in appendix A) of an integral operator C with the kernel given by
the spatial autocovariance function C(x, x′; ξ ), x, x′ ∈D.

In practice, we must work within a finite-dimensional setting. Defining U(ξ ) :=
[u1(ξ ) . . .um(ξ )], the spatial variance–covariance matrix is given by C(ξ )=U(ξ )U(ξ )T ≈ E[u(t; ξ )
u(t; ξ )T]. The continuous eigenvalue problem for C can be approximated numerically (non-
uniquely) by a principal component analysis (PCA): C(ξ )vi(ξ )= λi(ξ )vi(ξ ) for eigenvectors
vi(ξ ) ∈ Rd and eigenvalues λi(ξ )> 0, i= 1, . . . , d, arranged in decreasing order. The first r of these
vectors define the space S(ξ ) of §2a. In certain cases, it may be computationally convenient to use
variants of POD/PCA to determine the vi(ξ ). In appendix A, we provide details of the method of
snapshots and singular value decomposition (SVD), the latter of which we use in practice.

3. Basis emulation and discrete empirical interpolation method extension
For each input/parameter ξ , the snapshot matrix U(ξ ) is obtained from the FOM and the basis
Vr(ξ ) is constructed according to §2b. To perform an analysis w.r.t. the inputs, this procedure
is computationally prohibitive. A global basis across the parameter space of interest [10] can be
constructed by computing a set of snapshot matrices U(ξ j) for ξ j ∈X , j= 1, . . . , n. The vi(ξ ) are
extracted from a global snapshot matrix [U(ξ1), . . . , U(ξn)] ∈ Rd×nm (usually after an SVD to avoid
rank deficiency).

The global basis method uses information only from the ‘truth approximation’, i.e. the FOM.
The optimality of the POD method, on the other hand, is violated since the snapshots used
to derive the basis do not pertain to the parameter value of interest (the particular dynamical
system under consideration) during the online phase. Furthermore, the range of validity of the
global basis could be limited for complex mappings between the parameters and the outputs [13].
Interpolation methods (and the method we propose) violate the truth approximation in the sense
that the snapshots or quantities derived therein are not obtained from the original model. In
contrast to the global basis, however, these methods attempt to construct more accurate ROMs
during the online phase. The main limitation is the accuracy of the interpolation or emulation,
which depends on the data available and on the method itself. Moreover, it may not be possible
to obtain sharp error bounds using such methods (in cases where the underlying PDE problem is
amenable to a rigorous analysis).

Another problem associated with the standard POD–Galerkin approach is that the
computational efficiency is compromised when f (·; ξ ) ∈ Rd is a strong nonlinearity, since
the evaluation of fr in equation (2.4) has a computational complexity that depends on d
[31]. The DEIM [25] seeks a set of vectors wi(ξ ) ∈ Rd, i= 1, . . . , d, such that the subspace
span(w1(ξ ), . . . , ws(ξ ))⊂ Rd for some s
 d well approximates f (u(t; ξ ); ξ ) for an arbitrary t.
That is, an approximation f (u(t; ξ ); ξ )≈W(ξ )h(t; ξ ), where W(ξ )= [w1(ξ ) . . .ws(ξ )] and h(t; ξ ) ∈ Rs.
The basis {wi(ξ )}di=1 is constructed from snapshots of the nonlinearity {f i(ξ )}mi=1, where f i(ξ )=
f (ui(ξ ); ξ ), from which we form the matrix F(ξ )= [f 1(ξ ) . . . f m(ξ )]. A PCA on F(ξ )F(ξ )T or SVD of
F(ξ ) yields the {wi(ξ )}di=1, arranged such that the corresponding eigenvalues decay with i.

Since the system f (u(t; ξ ); ξ )=W(ξ )h(t; ξ ) is overdetermined in h(t; ξ ), the DEIM selects s of
the d equations to obtain an ‘optimal’ solution. Let us introduce the matrix P= [ep1 . . . eps ] ∈ Rd×s,
where epi is the standard Euclidean basis vector in Rd with non-zero entry located at the pith
coordinate. Assuming PTW(ξ ) is non-singular, we obtain

fr(a(t; ξ ); ξ )≈Vr(ξ )TW(ξ )h(t; ξ )=Vr(ξ )TW(ξ )(PTW(ξ ))−1PTf (u(t; ξ ); ξ )

=Vr(ξ )TW(ξ )(PTW(ξ ))−1f (PTu(t; ξ ); ξ ), (3.1)

assuming that the function f (·; ξ ) acts pointwise. The indices pi ∈ {1, 2, . . . , d}, i= 1, . . . , s are
specified by a greedy algorithm [25] that satisfies the following error bound (for a given s):

‖f − f̂‖ ≤ ‖(PTW(ξ ))−1‖ ‖(I−W(ξ )W(ξ )T)f‖, (3.2)
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where ‖ · ‖ is the standard Euclidean norm and f̂ :=W(ξ )(PTW(ξ ))−1PTf is the DEIM
approximation of f . This estimate is valid for a given t (considering f as a function of t) by virtue
of the second factor on the r.h.s., which is the error in the best 2-norm approximation of f in
range(W(ξ )).

In this paper, we introduce a systematic and rigorous method to approximate the local basis
and the nonlinearity by first approximating the snapshots {ui(ξ )}mi=1 and {f i(ξ )}mi=1 for an arbitrary
input ξ using Bayesian nonlinear regression. These snapshots lie in very high-dimensional
spaces and thus we use a recently developed method that exploits manifold learning to yield
a computationally feasible Gaussian process (GP) model. Below we describe the components
of this emulation method and subsequently explain how it can be used for a POD analysis of
parameterized, dynamic problems.

(a) Formulation and solution of the learning problem
For an arbitrary input ξ , consider the mapping η : X →O⊂ Rmd defined below:

y= η(ξ )= (u1(ξ )T, . . . , um(ξ )T)T∈ Rmd, (3.3)

i.e. a vectorial rearrangement of snapshots {ui(ξ )}mi=1 for the given value of ξ . We can define
a similar map yf = ηf (ξ ) for snapshots of the nonlinearity {f i(ξ )}mi=1. The emulation procedure
mirrors that described below for the snapshots {ui(ξ )}mi=1.

We aim to approximate the mapping η(·) given training points yj = η(ξ j) ∈O (in a high-
dimensional space) for design points ξ j ∈X , j= 1, . . . , n. One of the main methods for dealing
with such high-dimensional outputs is to define approximate outputs in a q-dimensional subset
Oq ⊂O (q
md) using PCA and independently emulate the q coefficients of the points in Oq

for new values of ξ [32]. Shah and co-workers [33,34] extended the latter method by replacing
PCA with manifold learning methods, making it applicable to a broader class of output spaces
O. In this paper, we employ the method of [33,34] with kernel PCA (kPCA), which is outlined
in appendix B, together with an approximation of the inverse map. kPCA [35] defines a map
φq : O→Fq, where Fq is a q-dimensional feature space. The coordinates zi(y) of points φq(y) in
Fq define composite maps from the input space X to R, i.e. zi(ξ ) := zi(η(ξ )), i= 1, . . . , q. We place
independent GP priors over these maps, justified by the properties of kPCA.

The approximation of η : X →O given the training points {yj}nj=1 is then substituted for
independent approximations of the coefficients zi(ξ ), i= 1, . . . , q, given training data {zi(ξ j)=
zi(η(ξ j))}nj=1, which is obtained from equation (B 1) in appendix B. The value of zi(ξ ) for
a new input ξ is inferred from scalar GPE (outlined in appendix C) as the mean of a
posterior distribution. Given {zi(ξ )}qi=1, an approximation of the inverse φ−1

q : Fq→O yields an
approximation of y= η(ξ ) ∈O, from which we can obtain {ui(ξ )}mi=1 using definition (3.3). GPE is
exact at the training points if there are no (spurious) errors in the training data. In the present case,
an error is introduced in the pre-image map so that the training snapshots will not be recovered
exactly. This error, however, is negligible (§4). We note that the size of md is not a limitation for
the manifold learning methods employed in this paper, in which the eigenvalue problems are
primarily dependent on the number of training points n.

(b) Main algorithm
Once the snapshots {ui(ξ )}mi=1 (and {f i(ξ )}mi=1 for nonlinear problems) are obtained using the
procedure outlined in §2b for a new input ξ , POD can be performed in the usual manner (with
the extended DEIM for nonlinear problems). The entire procedure is outlined in algorithm 1. We
mention that kPCA can be replaced with other manifold learning methods, e.g. diffusion maps or
Isomap [33,34]. We introduce the terminology ‘kGPE-POD’ to denote the method of algorithm 1
without the extended DEIM (i.e. steps 1a–7a alone). Similarly, we use the terminology ‘kGPE-
POD-DEIM’ to denote the method of algorithm 1 with the extended DEIM (steps 1a–7a and steps
1b–7b together).
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Algorithm 1. kGPE-POD (steps 1a–7a) and kGPE-POD-DEIM (steps 1a–7a and 1b–7b).

1a: Snapshots from FOM:
uj(ξ i)

T, i= 1, . . . , n, j= 1, . . . , m
2a: Set: yi← η(ξ i)
← (u1(ξ i)

T, . . . , um(ξ i)
T)T, i= 1, . . . , n

3a: Do kPCA for {yi}ni=1
→{(z1(yi), . . . , zq(yi))

T}ni=1
4a: for j← 1 to q do

{η(ξ i)← zj(ξ i)← zj(yi)}ni=1
Perform scalar GPE: zj(ξ )← E[η(ξ )]

end for
5a: Inverse map:

η(ξ )←∑
j∈J yjχ (dj,∗)/

∑
i∈J χ (di,∗)

6a: Snapshots for input ξ :
(u1(ξ )T, . . . , um(ξ )T)T← η(ξ )

7a: Perform POD with {ui(ξ )}mi=1

1b: Collect nonlinearity snapshots:
f j(ξ i), i= 1, . . . , n, j= 1, . . . , m

2b: Set: yf
i ← ηf (ξ i)

← (f 1(ξ i)
T, . . . , f m(ξ i)

T)T, i= 1, . . . , n

3b: Do kPCA for {yf
i }ni=1

→{(zf
1(yf

i ), . . . , zf
q(yf

i ))T}ni=1
4b: for j← 1 to q do

{ηf (ξ i)← z
f
j (ξ i)← zf

j (yf
i )}ni=1

Perform scalar GPE: z
f
j (ξ )← E[ηf (ξ )]

end for
5b: Inverse map:

ηf (ξ )←∑
j∈J yf

jχ (dj,∗)/
∑

i∈J χ (di,∗)
6b: Snapshots for nonlinear term:

(f 1(ξ )T, . . . , f m(ξ )T)T← ηf (ξ )
7b: Perform DEIM on {f i(ξ )}mi=1

4. Results and discussion

(a) Two-dimensional contaminant transport
We consider the transport of a contaminant governed by a convection–diffusion equation. This
model can be used, for example, for real-time prediction or for quantifying uncertainty in the
concentration to support decision-making [11]. The problem is specified as follows:

∂tu+ q · ∇u− μ∇2u= 0 x= (x1, x2) ∈D := [0, 1]× [0, 1]

and u= 0 x ∈ ∂D, u(x, t)= u0 t= 0

}
, (4.1)

where u(x, t; ξ ) denotes the contaminant concentration (mol m−3), q is the fluid velocity (m s−1)
and μ is the contaminant diffusion coefficient (m2 s−1). The input ξ is defined below. The
initial concentration is given by u0(x)= (2πk0)−1/2 ∑3

i=1 ki exp(−k0(x− xi)T(x− xi)/2), where x1 =
(0.2, 0.2)T, x2 = (0.2, 0.8)T, x3 = (0.8, 0.8)T, k0 = 0.01, k1 = 1, k2 = 2 and k3 = 3. The magnitude of the
velocity field is inversely proportional to the distance from x= (x̂1, x̂2)T,

q(x)= a1(x1 − x̂1)e1 + a2(x2 − x̂2)e2

(x1 − x̂1)2 + (x2 − x̂2)2 , (4.2)

where e1 and e2 are unit vectors in the x1- and x2-directions, respectively, and ai ∈ R. To avoid the
singularity at x= (x̂1, x̂2)T, the norm of velocity is set to zero at this location. We also set a1 = a2 = 1
and μ= 1, and consider variations in the input ξ = (x̂1, x̂2)T ∈X := [0, 1]× [0, 1].

The problem was discretized in space using a cell-centred FV method with d= 2500 square
cells (control volumes). Central differencing was used for the diffusive term and a first-order
upwind scheme for the convective term, defining the velocity values on a staggered grid. A
fully implicit Euler method was used to solve the resulting semi-discrete linear problem with
100 equal time steps in t ∈ [0, T], T= 0.2 s. A total of 500 inputs ξ j ∈X , j= 1, . . . , 500, were
generated using a Sobol sequence [36]. For each input, the FOM was solved to yield solution
vectors (snapshots) ui(ξ j) ∈ Rd, i= 1, . . . , 100, j= 1, . . . , 500. The data points (vectorized snapshots)
yj = η(ξ j), j= 1, . . . , 500, were obtained using equation (3.3). Referring to appendix A, we set

H= L2(D) to define the POD basis and optimality. Of the 500 data points, nt = 300 were reserved
for testing. Training points were selected from the remaining 200 data points (n≤ 200).
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Figure 1. Tukey box plots ofε with increasing q for the contaminant transportmodel (nt = 300,n= 80 andm= 10): (a) kPCA
and (b) Isomap. (Online version in colour.)

A Gaussian kernel was used for kPCA. The free parameter s2 was taken to be the average
square distance between observations in the original space [37]: s2 = n−2 ∑n

i,j=1 ‖yi − yj‖2.
Polynomial, multi-quadratic and sigmoid kernels were also tested. The best performance was
achieved with the sigmoid and Gaussian kernels. For the inverse mapping, Nn = n was used (i.e.
all training points). For the GPE, we used a squared exponential covariance function and a zero
mean function (after centring). The hyperparameters were found using a maximum-likelihood
estimate (MLE) (gradient descent). Errors in the predictions of the vectorized snapshots yj were

measured using a normalized error: ε = ‖yp
j − yj‖/‖yj‖, where yp

j denotes the prediction of the
test point yj = η(ξ j), j= 1, . . . , nt, using steps 1a–6a of algorithm 1. Errors in the predictions using
kGPE-POD/kGPE-POD-DEIM at ξ j were measured using a relative error εr,

εr = 1
m

m∑
i=1

‖up
i (ξ j)− ui(ξ j)‖
‖ui(ξ j)‖

, (4.3)

where up
i (ξ j) is the prediction (steps 1a–7a in algorithm 1) of the test point (snapshot) ui(ξ j).

We first examine the normalized errors ε in the predictions of the test data points yj = η(ξ j),
j= 1, . . . , nt. Using m= 10 of the snapshots (selecting every 10), figure 1 shows Tukey box plots of
ε for the nt = 300 test cases as the manifold dimension q is increased, using n= 80 training points.
Outliers are plotted individually using a ‘+’ symbol. We note that when predicting the training set
in this case using q= 10 the maximum value of ε was around 10−11, while the median was around
10−12. As a comparison we also include the result for Isomap (replacing kPCA in algorithm 1).
The best results were obtained with kPCA, for which the errors converge after q= 6 dimensions
(negligible further decrease). Diffusion maps were also tested and gave results similar to kPCA.
The same pattern was observed at n= 40, 120 and 200 training points and also for all values of m
up to 100. Based on the results, the approximating manifold dimension was set to q= 10 for all
values of n and m (using kPCA).

Figure 2 compares kGPE-POD with a global basis method for increasing POD dimension
r. In the global basis method, the snapshot matrices constituting the global snapshot matrix
corresponded to the n= 80 training points used for kGPE-POD. An SVD was performed on the
global matrix before extracting the POD basis. For n= 40, the results were similar to the results
depicted in figure 2, with a slight decrease in accuracy for both methods. Using m= 10 snapshots,
the decrease in the relative errors εr in kGPE-POD is negligible for r> 15, while the global basis
method continues to improve beyond r= 50. In principle, kGPE-POD uses the correct bases for
the test parameter values. It is possible, therefore, that kGPE-POD would approach the true result
for a smaller value of r than the global basis approach, which uses a single basis extracted from
snapshots that do not pertain to the test parameter values.
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Figure 3. Histograms of εr corresponding tom= 10, r= 15 in figure 2, using: (a) kGPE-POD and (b) a global basis.

For m= 10, kGPE-POD exhibits a minimum εr that is lower by more than an order of
magnitude, while the maximum εr for both methods is roughly the same (0.04 for r≥ 15). At
r= 15 in figure 2a,b, the value of εr using kGPE-POD is lower than the minimum εr in the global
basis method in 109 of the 300 test cases. For the global basis at r= 15, there are 131 cases with
an error below the median (3.9× 10−3), while for kGPE-POD 217 cases have errors below this
value. kGPE-POD clearly exhibits a broader range of εr values, with a higher median for r> 25.
Figure 3 shows histograms of εr for the two methods in the case of r= 15, m= 10. The broader
range of εr is due to the much lower minimum and to the presence of a greater number of cases
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with εr > 0.012. The number of such cases (13) is, however, small. For m= 100 snapshots, both
methods improve, with the global basis method exhibiting the greater improvement (e.g. the
maximum εr is decreased by around an order of magnitude, whereas for kGPE-POD the decrease
is by a factor of 4 at r= 15). The global basis method has a lower median εr for r≥ 20, but also
again a considerably higher minimum (more than an order of magnitude at r= 25). At r= 30, for
example, there are 77 cases in kGPE-POD with a lower εr than the minimum for the global basis.

To gain an indication of the actual quality of the predictions for different εr, figure 4 compares
the predicted kGPE-POD concentration fields in two test cases: (i) near the median (εr ≈ 0.0021)
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Figure 5. A close-up of (a) the kGPE-POD prediction and (b) the test corresponding to figure 4a,b.

and (ii) near the upper whisker (εr ≈ 0.0127) at r= 10 in figure 2a. The change in the profiles
from one input to the other is well captured. Figure 4e,f shows the absolute pointwise errors for
the two examples. It can be seen that there are localized regions of high error. For the first case
(ξ = (0.7382, 0.4179)T), a comparison of the region of highest error (lower right quadrant) with the
test is shown in figure 5, which clearly highlights the fine-scale differences leading to the error.
The trends and general profile (and in most of the domain the actual concentration values) are
nevertheless well captured even with a small value of r.

In order to assess the generalization accuracy more fully, we considered an uncertainty
quantification problem for the accumulated contaminant concentration ū(x; ξ ) := ∫ T

0 u(x, t; ξ )dt
at the location xc = (0.5, 0.5)T, by considering ξ to be a random vector distributed according to
p(ξ )=N (μ, σ 2I), where μ= (0.5, 0.5)T and σ 2 = 0.1. The distribution of ū(xc; ξ ) was estimated
using Monte Carlo sampling with NM samples ξ i (this notation is to avoid confusion with the
design points) drawn from p(ξ ). We set q= 6, n= 80, NM = 3000 and approximated ū(xc; ξ ) with
a trapezoidal rule. Figure 6 compares the histograms obtained from kGPE-POD, the global basis
method and the FOM, using m= 10 snapshots. The FOM took 55.18 h to complete and yielded
μac = 0.011087 and σac = 0.001218, obtained from μac = (1/NM)

∑NM
i=1 ū(x; ξ i) and σ 2

ac = (NM −
1)−1 ∑NM

i=1(ū(x; ξ i)− μac)2. For r= 10, kGPE-POD exhibited reasonable accuracy with regards to
μac (within 0.2%) and σac (within 8.7%), while the global basis method was inaccurate (50% error
in σac). For m= 10, r= 50, both methods were accurate, with kGPE-POD still providing better
estimates of μac and σac. For m= 100, the results are shown in figure 7. kGPE-POD was again
more accurate for r= 10, while for r= 30 the two methods exhibited a similar level of accuracy.

(b) Burgers equation
We consider a one-dimensional Burgers equation, with inputs ξ to be defined later:

∂tu+ 1
2
∂x(u2)− 1

Re
∂xxu= g(x), x ∈D := (0, 1)

and u(0, t)= u(1, t)= 0, u(x, 0)= u0(x) := sin(kπx) e−(c1x+c2),

⎫⎪⎬
⎪⎭ (4.4)

where u(x, t; ξ ) is the flow velocity, c1, c2 ∈ R, k ∈N, Re is Reynold’s number and g(x) is a source
term. We seek a weak solution u(x, t; ξ ) ∈ V :=H1

0(D) satisfying

(∂tu, v)+ 1
2

(∂x(u2), v)+ 1
Re

a(u, v)= (g, v) ∀v ∈ V , (4.5)

where a(ϕ1,ϕ2) := (ϕ′1,ϕ′2), ϕ1,ϕ2 ∈ V , defines a bilinear functional, in which a prime denotes
an ordinary derivative w.r.t. x. The interval D̄= [0, 1] is partitioned into N + 1 equally sized
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subintervals [xi, xi+1], where xi = (i− 1)/(N + 1), i= 1, . . . , d=N + 2. A standard piecewise linear
basis {ψi(x)}di=1 defines the approximating space Vh := span(ψ1, . . . ,ψd)⊂ V .

The FE approximation u(x, t; ξ )≈ uh(x, t; ξ )=∑d
j=1 uj(t; ξ )ψj(x) leads to the weak formulation:

find u= uh(x, t; ξ ) ∈ Vh such that (4.5) holds ∀v = vh(x) ∈ Vh. We also make use of the group
(product) approximation [38]: u(x, t; ξ )2 ≈∑d

j=1 uj(t; ξ )2ψj(x) ∈ Vh. Setting u= uh and vh =ψj in (4.5),
we obtain the semi-discrete problem

d∑
i=1

u̇i(t; ξ )(ψi,ψj)+
1
2

d∑
i=1

ui(t; ξ )2(ψ ′i ,ψj)+
1

Re

d∑
i=1

ui(t; ξ )(ψ ′i ,ψ
′
j )= (g,ψj) (4.6)

together with
∑d

i=1 ui(0; ξ )(ψi,ψj)= (u0,ψj), ∀j= 1, . . . , d. Defining the solution vector u(t; ξ )=
(u1(t; ξ ), . . . , ud(t; ξ ))T, equation (4.6) and the initial condition lead to

Mu̇(t; ξ )+ b(u(t; ξ ))+ 1
Re

Su(t; ξ )= g, Mu(0; ξ )= u0, (4.7)

where the (i, j)th elements of the mass and stiffness matrices M and S are given by (ψi,ψj) and
(ψ ′i ,ψ

′
j ), respectively, and the jth components of u0 and g are (u0,ψj) and (g,ψj), respectively. The

nonlinear vector function b(u(t; ξ )) arises from the second term in (4.6). We used a Runge–Kutta
method with a variable time step to solve the semi-discrete problems in this example.

The coefficients ui,j(ξ ), j= 1, . . . , d, of the snapshots ui(ξ )= u(ti; ξ ), i= 1, . . . , m, for an arbitrary
value of ξ are the nodal coefficients in the FE method solution, and thus correspond to functions
ui(x, ξ ) :=∑d

j=1 ui,j(ξ )ψj(x) ∈ Vh. For the definition of the POD basis, we chose the L2(D) norm

for optimality; that is, H= L2(D) as defined in appendix A. An FE approximation of the POD
basis functions {vh

j (x; ξ )}dj=1 is given by vh
j (x; ξ )=∑d

i=1 vj,i(ξ )ψi(x) ∈ Vh, j= 1, . . . , d, in which the
nodal coefficient vj,i(ξ ) is the ith component of the POD basis vector vj(ξ ), given by vj(ξ )=
M−1/2v̄j(ξ ), where v̄j(ξ ) is an eigenvector of M1/2C(ξ )M1/2. Note that L2(D) orthogonality of the
basis {vh

j (x; ξ )}dj=1 is equivalent to orthogonality of the vj(ξ ) w.r.t. 〈vj(ξ ), vi(ξ )〉M := vj(ξ )TMvi(ξ ).

The solution vector is then expanded as in equations (2.3): u(t; ξ )≈ u(t; ξ )=∑r
j=1 aj(t; ξ )vj(ξ )=

Vr(ξ )a(t; ξ ), leading to the ROM

ȧ(t; ξ )+Vr(ξ )Tb (Vr(ξ )a(t; ξ ))+ 1
Re

Vr(ξ )TSVr(ξ )a(t; ξ )=Vr(ξ )Tg

and a(0; ξ )= a0(ξ ) :=Vr(ξ )Tu0.

⎫⎪⎬
⎪⎭ (4.8)

Another choice for optimality is H=H0
1(D) with a(·, ·) as the inner product and associated semi-

norm |ϕ|1 = a(ϕ,ϕ)1/2. The POD eigenvalue problem
∫ T

0 a(u, v)u dt= λv (see appendix A) leads
to the eigenvalue problem C(ξ )TSvj(ξ )= λvj(ξ ). The POD basis vectors are then given by vj(ξ )=
S−1/2v̄j(ξ ), where v̄j(ξ ) is an eigenvector of S1/2C(ξ )S1/2, and are mutually orthogonal w.r.t. 〈·, ·〉S.
In the present example, this approach gave almost identical results.

Case 1. In the first example, we set g(x)≡ 0 and k= 1. The inputs were defined as ξ =
(c1, c2, Re)T ∈X = [2, 5]× [0.1, 1]× [10, 1000]. A total of 500 inputs ξ j ∈X were selected using a
Sobol sequence and numerical experiments were performed by solving the FOM (4.7) with d= 64
nodes, for each j= 1, . . . , 500, to obtain the solution vectors u(ti; ξ j) and nonlinearity b(u(ti; ξ j)) at
times ti = 0.25i, i= 1, . . . , 40 (m= 40). This yielded the data points (vectorized snapshots) yj = η(ξ j)

and yf
j = ηf (ξ j), j= 1, . . . , 500, according to equation (3.3). Of the 500 data points, nt = 300 were

reserved for testing, and training points were selected from the remaining 200 points. The details
of kPCA and GPE were as described in the previous example.

Analysis of the normalized errors ε for the nt test cases with n= 160 training points showed
convergence after q= 8 dimensions. Isomap gave similar results while Diffusion maps was
inferior. We used q= 9 (kPCA) in the results presented below. Figure 8a shows the results
of kGPE-POD-DEIM for an increasing r (with s= r). The relative errors converge after r= 30,
i.e. further decreases are negligible. Figure 8b compares the predicted velocity profiles at t=
0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s from kGPE-POD-DEIM and the FOM for a point (εr ≈ 0.041) above
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the upper whisker at r= 10 in figure 8a. The two sets of profiles are very close. The inset in
figure 8b shows the absolute pointwise error at t= 2.5, 5 and 10 s. Inspection of the full set of
profiles showed that the error grew with time until the front developed, after which the error
decayed. The highest absolute error was around 8.62× 10−4 at x= 0.703, t= 5.65 s, for which
u(x, t)≈ 0.103 m s−1. Thus, the maximum error was around 0.84%.

With no approximation of the nonlinearity, a comparison between kGPE-POD and the global
basis method exhibited trends similar to those seen in the previous example. For m< 30 and n≤
200, kGPE-POD required fewer POD vectors to achieve a given level of accuracy; the lower bound
for εr at r= 10 was one order of magnitude smaller for kGPE-POD. Both methods improved with
increasing m, with the global basis method showing a greater improvement, especially in the
lower bound for εr. For m= 30 and n= 180 the results are illustrated in figure 9, which shows that
around r= 28 both methods exhibit similar levels of accuracy in terms of the maximum, minimum
and median εr.

Case 2. In a second case, we set g(x)= 0.02ex, k= 3 and c2 = 0.2, with inputs ξ = (c1, Re)T ∈X =
[2, 5]× [10, 1000]. As before we selected 500 inputs using a Sobol sequence and ran the FOM to
generate data points, with nt = 300 reserved for testing. In this case, we use d= 128 nodes and
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Figure 10. Tukey box plots ofεr with increasing s for Burgersmodel case 2 (nt = 300, n= 180 andm= 200) using kGPE-POD-
DEIM with: (a) r= 30 and (b) r= 50. (Online version in colour.)
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Figure 11. Velocity profiles predicted by the FOM (filled circles, every third node) and kGPE-POD-DEIM (solid lines) at t=
0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s for Burgers model case 2. (a) A point near the median (εr ≈ 0.0022) at r= 30, s= 40 in
figure 10a; (b) a point near the upper whisker (εr ≈ 0.0154) at r= 30, s= 40; (c) point with the highest error (εr ≈ 0.0282)
at r= 30, s= 40; (d) point with the highest error (εr ≈ 0.0072) at r= 50, s= 55 in figure 10b.

after inspection of the normalized errors ε we set q= 9. In contrast to the previous case, a large m
(m> 120) was required for accurate results.

Figure 10 shows the trends in the kGPE-POD-DEIM relative error εr on the nt = 300 test points
with increasing s for two values of r, using n= 180 and m= 200. For a fixed r, the errors decrease
with an increasing s. For a fixed s, the errors were seen to decrease as r was increased up to
a certain value. For higher values of r the solutions became less stable, with a corresponding
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increase in the error. This was more pronounced for small values of s. The optimal distribution of
errors (in terms of the median, quartiles and extrema) was achieved for values of s between 5 and
10 higher than the value of r. Similar results for Burgers equation can be found in [39,40].

For r= 30 and s= 40, figure 11a,b compares the FOM and kGPE-POD-DEIM profiles at t=
0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s. The first of these corresponds to a point near the median of the
relevant box plot in figure 10a, while the second corresponds to a point near the upper whisker.
Figure 11c shows the point with the highest error using the same values of r and s. In this case,
instability develops as the front forms but eventually settles. Using r= 50 and s= 55, the case
with the highest error is shown in figure 11d. In figure 11d, we see that the solutions at early
times are more stable. The observed instability is a common feature of POD models [27,41,42].
Stabilization schemes, e.g. alternative inner products, post-processing steps and modification of
the underlying model [42–44], can be incorporated within the framework we have developed in
order to eliminate or minimize such problems.

5. Conclusion
In this paper, we introduced a new POD-ROM method for dynamic, parameter-dependent linear
and nonlinear PDEs. The method uses a Bayesian nonlinear regression to infer the basis for
new parameter values and is thus potentially applicable to a broader window of parameter
space than existing methods. Compared with a global POD method, our method requires extra
computational effort on each run to diagonalize the snapshot matrix. The actual influence of
this is small (as the uncertainty quantification in the first example demonstrates) since most of
the computational time is spent on solving the ROM. In the examples considered (and others
not presented) the global basis method requires a high value of r to reach the same level of
performance (in terms of the minimum and maximum relative errors) as our method, particularly
for low values of m. At these high values of r, much of the benefits of the global basis method as
a surrogate model would be eliminated.

Since the method introduced here is a general framework, a number of modifications
could easily be made, e.g. changing the manifold learning or machine learning method, and
incorporating stabilization schemes, according to different types of problems. The manifold-
learning-based GP emulator could be treated as a general data-driven technique to interpolate
properties other than the snapshots, as has been accomplished with the method of Amsallem &
Farhat [14]. For instance, we could employ it to directly learn the POD basis Vr(ξ ) in
equation (2.3) or the system matrix Ar(ξ ) in equation (2.4), both of which would further reduce
the computational time.
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Appendix A. Variants of POD
We regard u(x, t; ξ ) as a realization of a zero-mean random field indexed by (x, t) [3,4,29], with an
underlying probability space (Ω ,A, P), where Ω is the sample space, A is the event space and P
is a probability measure. It is assumed that u(x, t; ξ ) is continuous in quadratic mean (q.m.) w.r.t.
x (assumption (i)) and stationary w.r.t. t (assumption (ii)). The spatial autocovariance function
then takes the form E[u(x, t; ξ )u(x′, t; ξ )]=C(x, x′; ξ ), x, x′ ∈D. For a fixed t ∈ [0, T], u(x, t; ξ ) defines
a one-parameter random field indexed by x ∈D [29]. Sample paths (fixed ω ∈Ω) are deterministic
functions u(·, t; ξ ) : D→ R. By assumption (i), u(·, t; ξ ) ∈ L2(D) for each t ∈ [0, T], so that u(x, t; ξ ) ∈
L2(0, T; L2(D)). KL theory [30] for a fixed t shows that u(x, t; ξ ) is the q.m. limit of the sequence of
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partial sums SM =
∑M

i=1 ai(t; ξ )vi(x; ξ ), with randomness entering only through t. The vi(x; ξ ) form
an L2(D) orthonormal basis and are given by the eigenfunctions of an operator C,

Cvi(x; ξ ) :=
∫
D

C(x, x′; ξ )vi(x
′; ξ ) dx′ = λ′ivi(x; ξ ) i ∈N (A 1)

with corresponding real, positive eigenvalues λ′i(ξ )>λ′i+1(ξ ) ∀i ∈N. The coefficients satisfy
E[ai(t; ξ )]= 0 and E[ai(t; ξ )aj(t; ξ )]= λ′i(ξ )δij and, since t is arbitrary, they can be interpreted as
uncorrelated random processes. The expectation operator E[X]= ∫

Ω X(ω)P(dω) is approximated
by a time average (obtained from the snapshots), assuming ergodicity.

The ‘optimality’ of the basis {vi(x; ξ )}i∈N can be interpreted in two equivalent ways. For
an arbitrary orthonormal basis {ϕi}∞i=1 of L2(D),

∑r
i=1 E[(u, vi)2]=∑r

i=1 λ
′
i >

∑r
i=1 E[(u,ϕi)2], ∀r ∈

N, i.e. a generalized ‘variance’ maximization. Equivalently, we minimize the ‘error’ E[‖u−∑r
i=1 aiϕi‖2]= ‖u−∑r

i=1 aiϕi‖2L2(0,T;L2(D)) over orthonormal bases {ϕi}∞i=1. These results carry over
to the finite-dimensional setting described below, in which case orthonormality is defined w.r.t.
an inner product in Rd. More generally, we seek min{ϕi} ‖u−

∑r
i=1 aiϕi‖2L2(0,T;H) for any separable

Hilbert space H. In this case, the POD basis is defined by the H-orthonormal eigenfunctions
v(x) ∈H of the operator Rv := E[u(u, v)H]= ∫ T

0 u(u, v)H dt. For H= L2(D), R= C using the
commutativity of the time and spatial averaging operations.

Defining quadrature points {ti}mi=1 and (equally spaced) {xi}di=1, problem (A 1) can be
approximated numerically using a midpoint rule: C(ξ )vi(ξ )= λi(ξ )vi(ξ ) for eigenvectors vi(ξ ) ∈ Rd

and positive (decreasing) eigenvalues λi(ξ ), i= 1, . . . , d. This is a PCA with a spatial variance–
covariance matrix C(ξ )=U(ξ )U(ξ )T ≈ E[u(t; ξ )u(t; ξ )T], in which U(ξ ) := [u1(ξ ) . . .um(ξ )]. The jth
component vi,j(ξ ) of vi(ξ ) can be identified with vi(xj; ξ ) and the (i, j)th entry of C(ξ ) approximates
C(xi, xj; ξ ) as the time average (1/m)

∑
k u(xi, tk; ξ )u(xj, tk; ξ ). Other interpolation procedures for (A

1) can also be used. For instance, in the FE formulation (§4b) we can approximate u(x, t; ξ ) and
vi(x; ξ ) using a standard piecewise linear basis {ψi(x)}di=1 ⊂ L2(D), which leads to C(ξ )Mvi(ξ )=
λi(ξ )vi(ξ ), where M is a mass matrix with entries Mij = (ψi(x),ψj(x)). Defining v(ξ )=M1/2v(ξ )
we obtain M1/2C(ξ )M1/2v̄(ξ )= λ(ξ )v̄(ξ ). The eigenvalue/eigenvector pairs {(v̄i(ξ ), λi(ξ ))}di=1 of
M1/2C(ξ )M1/2 yield the POD basis vectors vi(ξ )=M−1/2v̄i(ξ ) in the desired order.

The method of snapshots is used when m
 d. The temporal autocovariance function K(t, t′; ξ )=∫
D u(x, t; ξ )u(x, t′; ξ ) dx defines an operator Kai(t; ξ ) := ∫ T

0 K(t, t′; ξ )ai(t′; ξ ) dt′. The eigenfunctions
ai(t; ξ ) of K are equal to the POD coefficients, and the eigenvalues are identical to those of C. Using
E[ai(t; ξ )aj(t; ξ )]= λ′i(ξ )δij, the POD modes are given by vi(x; ξ )= (1/λ′i(ξ ))

∫ T
0 u(x, t; ξ )ai(t; ξ ) dt. The

discrete form (in space and time) of the eigenvalue problem is U(ξ )TU(ξ )ai(ξ )= λiai(ξ ), where
K(ξ ) :=U(ξ )TU(ξ ) is a kernel matrix with entries Kij = ui(ξ )Tuj(ξ ), i.e. the space-discrete form of
K(ti, tj; ξ ). The eigendecomposition is K(ξ )=A(ξ )Λ(ξ )A(ξ )T, where Λ(ξ )= diag(λ1(ξ ), . . . , λm(ξ ))
and the columns of A(ξ ) are given by the ai(ξ ). The jth component ai,j(ξ ) of ai(ξ ) approximates
ai(tj; ξ ), yielding the discrete-time approximation vi(x; ξ )= (1/λi(ξ ))

∑m
j=1 u(x, tj; ξ )ai,j(ξ ), i.e. a

linear combination of the snapshots. In the fully discrete case, using the normalization ai(ξ ) �→
a′i(ξ )/

√
λi(ξ ), we obtain vi(ξ )=U(ξ )a′i(ξ )/

√
λi(ξ ). These relationships are also evident from the

SVD of U(ξ ), that is, U(ξ )=A′(ξ )Λ(ξ )1/2V(ξ )T, where the columns of V(ξ ) are given by the vi(ξ )
and the columns of A′(ξ ) are given by the a′i(ξ ). In this context, the columns of A′(ξ ) and V(ξ ),
given, respectively, by the eigenvectors of K(ξ ) and C(ξ ), are referred to as the left and right
singular vectors. It is straightforward to show that vi(ξ )= kU(ξ )a′i(ξ ) for k ∈ R. Thus, we recover
the earlier relationship by taking k= 1/

√
λi(ξ ) to normalize the vi(ξ ).

Appendix B. Kernel principal component analysis and an inverse mapping

(a) Kernel principal component analysis on the training data
Given training data yi = η(ξ i) ∈O, i= 1, . . . , n, kPCA [35] defines a map φ : O→F , where F is
a feature space. The mapped points are centred by φ̃(yi)= φ(yi)− φ̄, where φ̄ = n−1 ∑n

j=1 φ(yj).
The ‘tilde’ symbol is used throughout to denote the corresponding quantity centred in feature



18

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160809

...................................................

space. kPCA then applies linear PCA to the sample covariance matrix CF = n−1 ∑n
i=1 φ̃(yi)φ̃(yi)

T
.

The map φ(·) is specified implicitly via a kernel function k(yi, yj)= φ(yi)
Tφ(yj), e.g. the Gaussian

kernel k(yi, yj)= exp (−‖yi − yj‖2/s2), where s is a scale factor. Defining a kernel matrix K=
[Kij = k(yi, yj)]

n
i,j=1, a centred kernel matrix is given by K̃=HKH, where H= I− n−111T and

1= n−1(1, . . . , 1)T ∈ Rn.
We assume that dim F > n without loss of generality. The orthonormal eigenvectors w of

CF are linear combinations of φ̃(yi) and the eigenvalue problem for CF is equivalent to the
eigenvalue problem for n−1K̃ [35], which possesses orthonormal eigenvectors αi = (α1i, . . . ,αni)T,
i= 1, . . . , n. The common eigenvalues βi of n−1K̃ and CF are arranged in decreasing order. The
rescaling αi �→ α̂i := αi/

√
βi yields rescaled eigenvectors ŵi =

∑n
j=1 α̂jiφ̃(yj), where α̂ji = αji/

√
βi.

We can now write φ̃(yj)=
∑n

i=1 zi(yj)ŵi, where

zi(yj)= ŵT
i φ̃(yj)=

n∑
l=1

α̂liK̃lj = α̂T
i k̃j = α̂T

i H(kj −K1), i= 1, . . . , n, (B 1)

in which kj = (K1j, . . . , Knj)T and k̃j = (K̃1j, . . . , K̃nj)T. From equation (B 1), we can define zq(yj) :=
(z1(yj), . . . , zq(yj))

T = [α̂1 . . . α̂q]TH(kj −K1), where q< n is the approximate dimension of the
manifold on which the points reside.

The variance in the data along ŵi is equal to βi, which decreases as i increases, and the
coefficients zi(·) are mutually uncorrelated [45]. A point yj is approximated by the projection of

its image φ̃(yj) onto the low-dimensional subspace Fq = span(ŵ1, . . . , ŵq)⊂F . The projection is

defined by φ̃q(·) :=∑q
i=1 zi(·)ŵi. The 2-norm error in this approximation is equal to

∑n
i=q+1 β

2
i [45].

We use {ŵi}ni=1 as an approximate basis for the image φ̃[O]⊂F of all points in O. For an arbitrary
y ∈O, a reduced-dimensional approximation is given by φ̃q(y)=∑q

i=1 zi(y)ŵi. We can now define
the composite maps zi(·) := zi(η(·)) : X → Rr, i= 1, . . . , n.

(b) Inverse map
To define an approximate inverse map φ−1

q : Fq→O, we use a weighted average of Nn ≤ n
‘neighbouring’ points of y taken from the dataset: y=∑

j∈J ρ(yj)yj, with weights ρ(yj), where
J ⊆ {1, 2, . . . , n} defines the neighbouring points. We can define the weights in terms of the
distances dj,∗, j= 1, . . . , n, between y and yj, and use an isotropic kernel density χ (y, y′)=
χ (‖y− y′‖) to weight the samples [34]: ρ(yj)= χ (dj,∗)/

∑
i∈J χ (di,∗). In this paper, we use χ (y, y′)=

exp(−‖y− y′‖2) [34]. Since Φ̃ =ΦH, where Φ = [φ(y1), . . . , φ(yn)], we have ŵi =
∑n

j=1 α̂jiφ̃(yj)=
Φ̃α̂i =ΦHα̂i, which yields

φq(y)=
q∑

i=1

ziŵi + φ̄

q∑
i=1

ziΦHα̂i +Φ1Φ(H[α̂1 . . . , α̂q]zq + 1)=Φτ . (B 2)

The distance d̃j,∗ between φ(yj) and φ(y) in F is given by

d̃2
j,∗ = φ(y)Tφ(y)+ φ(yj)

Tφ(yj)− 2φ(y)Tφ(yj). (B 3)

Taking φ(y)≈ φq(y) and substituting equation (B 2) into equation (B 3) yields

d̃2
j,∗ ≈ τTKτ + k(yj, yj)− 2τTkj. (B 4)

Note that ΦTΦ =K and kj =ΦTφ(yj). For an isotropic kernel normalized such that k(y′, y′)= 1,

equation (B 3) gives d̃2
j,∗ = 2− 2k(yj, y), which, equating to the right-hand side of equation (B 4),

yields k(yj, y). For the Gaussian kernel, therefore, we obtain d2
j,∗ =−s2 ln k(yj, y).
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Appendix C. Gaussian process emulation
We place independent GP priors over the coefficients zi(ξ ) and emulate each independently,
using training data obtained from equation (B 1), i.e. {zi(ξ j)= α̂T

i H(kj −K1)}nj=1, i= 1, . . . , q. For

any value of i, let η(·) := zi(·). Then η(ξ j)= zi(ξ j), j= 1, . . . , n, and we define t := (η(ξ1), . . . , η(ξn))T.
A univariate GP prior indexed by ξ ∈X is placed over η, namely, η(ξ )|θ ∼ GP(m(ξ ), c(ξ , ξ ′; θ )),
where GP(m(·), c(·, ·; θ )) represents a GP with mean and covariance functions m(·) and c(·, ·; θ ),
respectively. We take m(ξ )≡ 0 by centring the data {η(ξ i)}nj=1. The quantity θ is a vector of
hyperparameters that appear in the covariance function and typically have to be inferred from
the data. We use a square exponential covariance function

c(ξ , ξ ′; θ )= θ0 exp(−(ξ − ξ ′)T diag(θ1, . . . , θl)(ξ − ξ ′))+ σ 2
n δ(ξ , ξ ′), (C 1)

where the last term is a GP noise and θ = (θ0, . . . , θl, σ 2
n )T is the vector of hyperparameters, in

which θ1, . . . , θl are the inverse square correlation lengths. The conditional predictive distribution
is obtained from p(η(ξ ), t|θ ) in the form η(·)|t, θ ∼ GP(m′(·; θ ), ν′(·, ·; θ )), with [46],

m′(ξ ; θ )= c(ξ )TC−1t, ν′(ξ , ξ ′; θ )= c(ξ , ξ ′; θ )− c(ξ )TC−1c(ξ ′), (C 2)

where C= [c(ξ i, ξ j; θ )]n
i,j=1 and c(ξ )= (c(ξ1, ξ ; θ ), . . . , c(ξn, ξ ); θ )T. We use an MLE of θ , which

is given by arg maxθL(θ ), where L(θ )= log p(t|θ )=−(1/2)(ln |C| + tTC−1t + n ln(2π )) is the
likelihood.
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