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Abstract: In this paper, we introduce an approach for measuring human gait symmetry where the
input is a sequence of depth maps of subject walking on a treadmill. Body surface normals are used to
describe 3D information of the walking subject in each frame. Two different schemes for embedding
the temporal factor into a symmetry index are proposed. Experiments on the whole body, as well as
the lower limbs, were also considered to assess the usefulness of upper body information in this task.
The potential of our method was demonstrated with a dataset of 97,200 depth maps of nine different
walking gaits. An ROC analysis for abnormal gait detection gave the best result (AUC = 0.958)
compared with other related studies. The experimental results provided by our method confirm the
contribution of upper body in gait analysis as well as the reliability of approximating average gait
symmetry index without explicitly considering individual gait cycles for asymmetry detection.

Keywords: symmetry; depth map; gait; normal vector; point cloud

1. Introduction

Gait analysis has shown a lot of evidences demonstrating its potential to identify and diagnose
early neurological and non-neurological musculoskeletal disorders. Gait symmetry is one of the most
popular features used to perform these health-related assessments. It is a good indicator of human
motion ability to identify pathology and assess recovery for people with asymmetric gait of various
origins such as cerebral palsy, stroke, hip or knee arthritis and surgery or leg length discrepancy [1–4].
Researchers have dealt with the problem of gait symmetry estimation according to various input data
types. For instance, the use of body-mounted devices such as inertial sensors [5] or motion capture
markers [6] has provided precise measurements and promising results. In this paper, we propose an
alternative approach estimating an index of gait symmetry using a vision system. Compared with
the mentioned methods, our system does not require the precise positioning of sensors/markers on
patient’s body. Besides, our input is acquired from a single camera, the method thus, does not need
a functionality of run-time calibration/synchronization as for multiple sensors. Our configuration
consists of a treadmill where a patient walks and a depth camera placed in front of it capturing
a sequence of depth maps. To avoid occlusions in the depth maps, the treadmill console, handlebars
and vertical supports are lowered and placed on the floor in front of the treadmill. The objective of our
method is to measure a reasonable index indicating human gait symmetry during a walk. This may
work as a patient screening tool providing relevant gait information during a treatment or recovery
after a surgery. In addition, the study can be considered as an exploratory examination of surface
normals to assess gait asymmetry since this factor plays the principal role in our gait description.

The remaining of this paper is organized as follows: Section 2 provides an overview of related
vision-based studies working on human gait symmetry measurement; Section 3 describes our
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geometric feature that represents informative gait properties, Section 4 gives the schemes of symmetry
measurement, Section 5 presents our evaluation and a comparison with related studies using a dataset
of multiple data types, and Section 6 gives the final conclusion.

2. Related Work

Considering vision-based approaches that measure human gait symmetry, many studies working
with low-cost depth cameras have been proposed. These 3D vision systems can reduce the need of
manual intervention and then simplify their operation. There are two data types that are popularly
employed to represent the 3D walking posture: 3D skeleton and depth map. Typically, a skeleton
is directly estimated from the corresponding depth map [7,8] and is represented as a collection of
3D coordinates of body joints. Although this has been applied in many applications (e.g., abnormal
gait detection [9] or action recognition [10]), the skeleton estimation is unstable between consecutive
frames due to noisy depth maps. Besides, skeleton estimation algorithms usually encounter problems
(i.e., provide deformed results) when working with pathological gaits [11]. Taking these factors into
account, a sequence of raw depth maps was considered as the input of our processing.

Auvinet et al. [11] proposed a method estimating gait asymmetry based on a depth region of
lower limbs of subjects walking on a treadmill. They introduced a Mean Gait Cycle Model (MGCM),
that is composed of a sequence of Mean Depth Images (MDIs) for each leg, to obtain a representative
step cycle and decrease the influence of noise. This requires gait cycle detection and the registration of
depth maps prior to averaging since the subject’s position varies on the treadmill. A gait asymmetry
index was measured as the longitudinal difference between (left and right) pairs of such MDIs. Unlike
that approach where only the leg zone was considered, the whole depth body is involved into the
stage of feature extraction in our method. Besides, our processing flow does not require gait cycle
detection since our gait symmetry index can be directly measured on an input sequence of an arbitrary
length. Moreover, we are using surface normals that are independent of the body’s position on the
treadmill, no registration of depth maps is thus, required.

Another recent method that computes a gait normality index was described in [12]. The authors
individually processed the depth and silhouette information to provide a pair of scores that are then
weighted summed to get the gait normality index. Depth information was provided by a histogram of
depth-related features of keypoints. A hidden Markov model (HMM) was structured to represent the
transition of such histograms within the input sequence of depth maps. The likelihood provided by
this HMM given a new sequence was used as a partial gait normality indicator. The second partial
score was estimated by considering the change of pixel-based projections over a sequence of binary
silhouettes. Differently from that study, our method directly embeds the transition of depth-related
properties as well as implicitly considers the silhouette-based symmetry in a single processing flow.

3. Depth-Based Geometric Feature

The depth camera in our approach is placed in front of a person walking on a treadmill to capture
depth frames from a frontal view. The right-handed camera coordinate system is thus, similar to the
illustration in Figure 1, in which the positive x and y respectively point to the left and up while the
z-axis points from the camera to the subject.
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Figure 1. Our scene configuration and the corresponding 3D camera coordinate system.

3.1. Human Body Segmentation

We only consider the body pixels, a step of background removal is thus, necessary since the input
of the system is a sequence of depth maps. This operation can be easily performed by a depth-based
segmentation (e.g., [11]). In detail, a 3D bounding box above the treadmill is specified and all
points within this volume are considered belonging to human body. This method is appropriate
for applications where the geometric relation between the camera and the treadmill is fixed. On the
other hand, some SDKs provided together with the depth camera also have a functionality of human
detection. For example, the Microsoft Kinect applies a random forest classifier on each depth map
to assign a label (e.g., head, neck or shoulder) to each pixel, consequently the body is a collection of
pixels of body-part labels [7,8]. We employ the latter method since it does not require a definition of
a 3D region.

3.2. 3D Reprojection

Our geometric feature is computed in the 3D space, a reprojection is thus, performed to convert
the depth body in each input frame to a 3D point cloud. Given a depth camera with an internal matrix
of focal lengths fx and fy, and principal point (cx, cy)>, a 3D point (x, y, z)> can be reconstructed from
a 2D point (u, v)> with depth value d as

x =
(u− cx)d

fx
, y =

(v− cy)d
fy

, z = d (1)

There is an obvious advantage of using 3D point clouds instead of depth frames: the depth map is
a projection result where each pixel contains 2D coordinates and a depth (u, v, d) while the reprojection
maps the pixel into a point cloud in a uniform 3D coordinate system (x, y, z) which is more appropriate
for geometric operations.

3.3. Cloud of Normal Vectors

Once a 3D point cloud is obtained for the body in each depth map, a collection of normal vectors
is estimated to provide a raw representation of points’ direction. Surface normals are important
properties of any geometric surface and are computed directly from the point cloud.

The normal calculation of a 3D point is performed with eigenvectors and eigenvalues of
a covariance matrix created from the points in its neighborhood [13]. Given an arbitrary 3D point
cloud, such neighbor regions can be determined with the support of a KD-tree [14]. An illustration of
this estimation is presented in Figure 2.
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Figure 2. The normal cloud estimated from a depth map via a 3D reprojection. All normal vectors must
point to the camera (i.e., non-positive z-coordinate) as a postprocessing of determined orientations.

Let us notice that there is a trade-off between the processing time and the result of normal
estimation. In detail, defining a neighborhood using a large radius leads to a longer processing
time but the estimated normals are less sensitive to noise in the input point cloud. Recall that our
approach directly applies on point clouds reconstructed from the depth maps without performing
any enhancement (e.g., noise filtering). We defined a small neighborhood of 3-centimeters radius
in our experiments (see Section 5) since normal vectors belonging to a large area will be further
combined in the next step. This combination implicitly performs a noise removal and provides
a reliable approximation of cloud surface direction.

3.4. Silhouette-Based Region Separation

A cloud of normal vectors cannot be directly used as a feature representing the human posture
since different clouds might have various numbers of points. A possible solution is to segment the
cloud into specific regions of interest. Concretely, we may define a fixed number of 3D regions together
with their positions and combine the normal vectors within each one. This operation normalizes the
cloud representation to a new array where each element corresponds to a 3D region.

In our work, we separate a cloud of normal vectors according to human body anatomy and
symmetry. Concretely, the body in each depth map is simply split into four equal-size regions using
a 2× 2 grid, in which the grid is easily determined as the bounding box of body silhouette. The vertical
split is necessary for our objective: symmetry measurement. This split is expected to indicate the
difference between the left and right body sides along the movement. The horizontal split is to
individually consider the upper and lower body parts to assess whether using only the lower body
is enough for the task of gait analysis (as done in [9,11]). Besides, this separation also reduces the
risk of losing relevant information regarding specific upper and lower limb motion during walk.
For example, when the left leg is moving forward during a stride, the left hand tends to be backward.
The combination within each region (i.e., one of four grid cells) is simply performed as an algebraic
addition of normal vectors. The representation of each input depth body is then a collection of four
accumulated vectors {vTL, vTR, vBL, vBR} in the 3D camera space. An example of this step is shown in
Figure 3, in which the terms TL, TR, BL, BR respectively indicate the top-left, top-right, bottom-left,
and bottom-right regions. Although the resolution 2× 2 is small, it represents well the human body
anatomy typically used by physicians for localization for diagnosis or treatment and provided good
results in our experiments in Section 5.
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Figure 3. The separation applied on each cloud of normal vectors and the corresponding result of
region-based accumulation. The frontal, side and top views are to provide an easy understanding for
Section 3.5.

3.5. Angle Conversion

Instead of directly employing the four 3D vectors as a feature supporting the gait symmetry
measurement, we convert them into a scalar value corresponding to the angle between the left and
right side vectors projected onto a specific plane. In this work, we consider the three main planes used
in anatomy and then evaluate their potential.

3.5.1. Transverse Plane

The transverse plane vertically splits the body silhouette. Given the coordinate system shown in
Figure 4, the plane is parallel with Oxz and goes through the horizontal line splitting the 2× 2 grid (see
Figure 3). Each 3D accumulated normal vector u = (ux, uy, uz)> is first projected onto the transverse
plane to obtain a new vector û = (ux, 0, uz)>. We then compare the direction of the vectors between
the left and right sides. Assuming left-right symmetry, the mean value of the angle α between the left
side vector ûL and the reflected right side vector ûref

R w.r.t. the positive z direction z = (0, 0, 1)> should
be small. This angle is computed as

α = cos−1
(

ûL · ûref
R

‖ûL‖ · ‖ûref
R ‖

)
(2)

with ûref
R = 2(z · ûR)z− ûR in which the dot notation · indicates the inner product.

3.5.2. Sagittal Plane

The sagittal plane is parallel with the base plane Oyz and goes through the vertical line splitting
the 2× 2 grid. Similarly to the previous section, we also project each accumulated vector onto the
sagittal plane and then calculate the angle between the left and right sides. In detail, the projected
result of a vector u = (ux, uy, uz)> is determined as û = (0, uy, uz)>. The angle between ûL and ûR is
determined as
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β = cos−1
(

ûL · ûR

‖ûL‖ · ‖ûR‖

)
(3)

When extracting the angle feature using the sagittal plane, we do not need to reflect one of the
two input vectors since the gait symmetry is analyzed via a comparison between left and right body
parts instead of upper and lower ones (see Figure 4). During a normal (symmetric) walk, the mean
value of ûL and ûR over a gait cycle should be close and the periodic angles β should be stable.

3.5.3. Coronal Plane

The coronal plane is parallel with the base plane Oxy and is perpendicular to both transverse
and sagittal planes. After projecting accumulated normal vectors onto the coronal plane, we perform
the angle calculation in the same fashion as the transverse plane with a reflection w.r.t. the positive
y direction y = (0, 1, 0)> in order to indicate the left-right symmetry. Given an accumulated normal
vector u = (ux, uy, uz)>, its projection onto the coronal plane is thus, û = (ux, uy, 0)> and the angle is
computed as

γ = cos−1
(

ûL · ûref
R

‖ûL‖ · ‖ûref
R ‖

)
(4)

where ûref
R = 2(y · ûR)y− ûR.

O

x

y

z

sagittal plane

coronal plane�
��
�

transverse plane
@
@
@
@
@

uL

ûL
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ûL

uR

ûR
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Figure 4. (Top) 3D representation of a body and the three anatomy planes together with the camera
coordinate system. (Bottom) angle estimation based on transverse, sagittal and coronal planes.
In the case that the coordinate system does not satisfy the requirement described in Figure 1, a rigid
transformation is necessary to simplify the angle estimation.
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3.5.4. Feature Representation

After performing the feature extraction, each depth body is represented by three angles α, β and
γ estimated for the lower and upper limbs. Recall that these three angles are independently processed
in the next steps as well as in the experiments to give an evaluation. A geometric description of the
three angle calculations is given in Figure 4 to provide a visual understanding.

4. Gait Symmetry Measurement

4.1. Basic Measurement

Given three angles α, β and γ estimated from a collection of accumulated normal vectors
v = {vTL, vTR, vBL, vBR} (see Figure 3) according to the transverse, sagittal and coronal planes, our basic
gait symmetry index is measured as the summation of top and bottom contributions, i.e.,

Iα(v) = αT + αB

Iβ(v) = βT + βB

Iγ(v) = γT + γB

(5)

The addition of non-negative angles corresponding to each anatomy plane allows the accumulation of
the left-right differences resulting from the upper and lower limbs. We consider two different schemes
for computing the mean value of I as our gait symmetry measurement.

4.2. Frame-Based Index

The first scheme is that a gait symmetry index is estimated for each depth body according to
Equation (5). The temporal factor is then considered by calculating the average of these per-frame
indices as the indicator of gait symmetry along the movement. In detail, given a sequence of n
collections v of accumulated vectors measured from n consecutive depth bodies, the gait symmetry
index corresponding to each of three angles α, β and γ is computed as

If(v1..n) =
1
n

n

∑
i=1

I(vi) (6)

where n should correspond to one or several gait cycles. During a normal symmetric walk, If should
be small for α and γ and stable for β over a gait cycle.

4.3. Segment-Based Index

Unlike the previous index measurement, the second scheme firstly performs an addition of
accumulated normal vectors at the same grid cells over a sequence of consecutive depth bodies and
then estimates the symmetry index using Equation (5) only once as

Is(v1..n) = I
(

1
n

n

∑
i=1

vi

)
(7)

This segment-based index may be interpreted as the within-frame measurement of a mean posture
determined from a sequence of depth bodies. Therefore, for a symmetric gait, Is should be small for all
three (sagittal, transverse and coronal) planes over a gait cycle.

5. Experiments

Since there is no benchmark dataset with ground truth gait symmetry index, we performed the
evaluation of our method according to a specific application to distinguish normal and abnormal
walking gaits. A good index measurement is expected to well separate the two gait types. In detail,
the indices of normal walking gait provided by a symmetry indicator should be in a specific value
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range while the ones of anomalous gaits are distributed in other regions. These areas are expected to
be well distinguishable. In practical applications, the gait symmetry index of a patient should converge
from abnormal values to the normal range during a recovery. The measure of separation ability is the
Area Under Curve (AUC) estimated according to the Receiver Operating Characteristic (ROC) curve
since we are dealing with a problem of binary classification.

5.1. Dataset

Our experiments were performed on a dataset of multiple data types introduced in [15].
The dataset includes depth maps, point clouds, silhouettes and 3D skeletons that were acquired
by a frontal depth camera. These data captured normal walking gaits and 8 abnormal ones that were
performed by nine subjects (eight males, one female, 20–39 years old, 154–186 cm height and 51–95 kg
mass) on a treadmill. These anomalous walking gaits were simulated by either padding a sole under
one of the two feet or mounting a weight to an ankle. The former gaits were defined to focus on
frontal asymmetry, i.e., the body centroid tends to be tilted to the left or right side, while the latter ones
produce a movement with unequal speed and displacement between left and right legs. These gait
abnormalities are appropriate to demonstrate the motion of patients having a problem with their
lower limbs and have been used in related studies [11,16]. Each gait is represented by a sequence of
1200 frames corresponding to approximately 60 gait cycles. For this study, each of the 81 walking
sequences was represented by 1200 consecutive depth maps in our evaluation.

This dataset was acquired by a Microsoft Kinect 2 at a frame rate of 13 fps. The camera was
mounted at a height of 1.7 m. The distance between this camera and the subject was 2.3 m and the
camera direction was parallel with the ground. Since Kinect two measures a depth map according to
the Time-of-Flight technique, it provides smoother results with more details compared with cameras
using structured light such as the Kinect version 1.

5.2. Evaluation Scheme

As mentioned in previous sections, we have different tests that can be independently performed
to provide a comparison. First, there are three planes for the angle estimation including the transverse,
sagittal and coronal ones. Second, we can individually consider the potential of frame-based and
segment-based indices. Besides, we also evaluate the use of only the lower body (i.e., the angles
estimated according to vBL and vBR) since some recent studies (e.g., [9,11]) focused only on this part.
Therefore, we obtained 12 evaluations for the 12 independent processing flows.

In order to provide an overall assessment for our method, we calculated an AUC over the entire
dataset by focusing on a specific application: abnormal gait detection. Such evaluation assumes that
the gait symmetry index belongs to a specific value range for normal walk while is beyond this range
given an abnormal one. The leave-one-out cross-validation scheme was also employed to evaluate the
distinguishing power of within-subject indices. Concretely, an AUC was calculated for each subject
and the average AUC was finally used as the assessment result. This computation also allowed to
compare our method with related studies where a training set is required.

5.3. Experimental Results

The AUCs obtained from the assessment of our symmetry index estimated on the whole body
are shown in Table 1. It is obvious that the segment-based index in Equation (7) was more efficient
for assessing gait symmetry than the one obtained by Equation (6) where the temporal factor was
embedded after performing the index estimation for each frame. Table 1 also shows that using the
sagittal-based angle provided better results than the transverse and coronal ones.
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Table 1. AUCs obtained from experiments considering the whole body. The first and second highest
results are emphasized in bold and underlined, respectively.

Test Data Index Estimation Transverse Plane Sagittal Plane Coronal plane

All 9 subjects frame-based 0.816 0.870 0.716
segment-based 0.895 0.966 0.832

Leave-one-out frame-based 0.819 0.931 0.722
segment-based 0.903 0.958 0.819

These properties are demonstrated again in Table 2 that presents the AUCs experimented on
only the lower body. This table also shows that when the upper body was removed from the
index estimation, the ability of gait symmetry assessment was reduced with decreasing of AUCs
at corresponding positions in the table. Therefore, the whole body should be considered when dealing
with problems related to gait symmetry index.

Table 2. AUCs obtained from experiments considering only the lower body. The first and second
highest results are emphasized in bold and underlined, respectively.

Test Data Index Estimation Transverse Plane Sagittal Plane Coronal Plane

All 9 subjects frame-based 0.707 0.727 0.514
segment-based 0.770 0.949 0.785

Leave-one-out frame-based 0.722 0.833 0.500
segment-based 0.806 0.958 0.819

In order to provide a comparison with related studies, we reimplemented some methods as
follows. The first selection was the HMM proposed in [9] that provides a gait normality index for each
input sequence of skeletons. The second one was the MGCM introduced in [11] that computes the
longitude difference between the left and right legs of an average aligned depth map as an indicator
of gait asymmetry index. A common property between these two methods is the removal of upper
body in the feature extraction stage. The model in [9] considered only 3D joints belonging to lower
limbs while the one in [11] performed the estimation on a predefined leg zone. The third implemented
approach was [12] where the researchers described the posture symmetry in both depth map and
silhouette. These two features were independently extracted to give two scores. A combination of
these scores was also proposed to improve the final gait index.

The AUCs measured according to the indices resulting from these three studies together with
our best one (i.e., corresponding to the use of sagittal plane) are presented in Table 3. Each gait index
indicating the overall gait symmetry was obtained by: a non-linear combination of per-cycle indices
in [9], a direct consideration on the average gait cycle in [11], the per-segment mean index in [12],
and our segment-based index described in Section 4.3.

Table 3. The AUCs of related studies that employ different input data types. The notations † and ‡
indicate the consideration of only lower body and the use of data augmentation, respectively. The best
results are highlighted in bold.

Method Input All 9 Subjects Leave-One-Out
HMM [9] † skeleton - 0.778
MGCM [11] † depth map 0.830 0.875
HMM [12] depth map ‡ - 0.569
Correlation [12] silhouette - 0.903
HMM + Correlation [12] combination ‡ - 0.917
Ours (lower body) † depth map 0.949 0.958
Ours (full body) depth map 0.966 0.958
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Table 3 shows that the index given by our approach was better than the related studies since our
indices of normal and abnormal walking gaits were more easily separable.

5.4. Combination of Gait Indices

As an attempt to improve the gait indices estimated according to the three planes, we performed
weighted combinations that are expected to provide a better measure. Such combined gait index
estimated on a sequence of n collections v of accumulated vectors is

I(v1..n) = wtIt(v1..n) + wsIs(v1..n) + wcIc(v1..n) (8)

where the subscripts t, s and c respectively indicate the transverse, sagittal and coronal planes.
We can also combine only two of the three measures by simply assigning a zero weight to the
remaining operand.

Instead of using a grid search to determine appropriate weights, we directly estimated them
from the gait samples of the training set in the leave-one-out cross-validation scheme. The weight
corresponding to each plane-related index was calculated as the variance of such index resulting from
training samples of normal gaits. Variance was used here as a measure of information provided by
each index. The abnormal gait patterns were not employed in this stage because the combination
might be biased and would not work well in practical situations where various abnormal gaits may
occur. We considered only segment-based gait index since it was better than the frame-based one (see
Tables 1 and 2). We observed that the combination of It and Is significantly enhanced the gait index
while the others (including the combination of all three measures) resulted in the same or slightly
lower AUCs (see Table 4).

Table 4. The AUCs estimated from each single gait index and possible combinations. The notations are
similar to Equation (8) and the best results corresponding to each row are highlighted in bold.

It Is Ic It & Is Is & Ic It & Ic It & Is & Ic

Full body 0.903 0.958 0.819 0.986 0.972 0.903 0.986
Lower body 0.806 0.958 0.819 0.958 0.958 0.792 0.958

5.5. Discussion

According to the experimental results presented in the previous section, the following properties
might be useful for further studies to extend the proposed approach as well as deal with the problem
of gait index estimation.

First, the proposed method is appropriate to work on noisy depth maps as demonstrated by the
experiments. Recall that there is no enhancement step (e.g., filtering) performed to improve the depth
map quality. However, the number of such noisy (unreliable) points is much smaller compared with
informative ones. By grouping the points into four large regions and then performing accumulation,
the effect of noise can be significantly reduced. Another possible factor that could deform the body
depth map is the subject’s clothing. Therefore, comfortable but tight fitting clothes should be worn
during the examination.

Second, the temporal integration of depth features should be performed before applying
Equation (5) to measure the symmetry. In other words, the use of segment-based index according to
Equation (7) is preferred to the frame-based one. This means that surface normals of the mean posture
over several gait cycles reveal important information about the gait symmetry. In summary, our index
can be considered as an average measure of symmetry indices of consecutive gait cycles given a long
sequence of depth maps.

Third, the upper body has its contribution in the gait analysis. When this body part does not
participate in any stage, the symmetry description might lose useful information, and the resulting
index is thus, less efficient.



Sensors 2019, 19, 891 11 of 13

Finally, the sagittal gait index provided consistently the best results on our dataset and played the
main role in the improvement of combined indices. This result is supported by the literature where
kinematic gait measurements in the sagittal plane provide the most appropriate information [17].
In addition, the time series of this index may be appropriate for further investigations on gait analysis
such as gait cycle segmentation or gait event demarcation. Nevertheless, transverse and coronal planes’
measurements might provide additional information important in clinical gait analysis. Again, let
us notice that employing these planes requires an appropriate setup of camera coordinate system as
illustrated in Figure 1 in order to simplify consequent calculations.

Although the input of our method is a sequence of depth maps, the geometric feature is directly
extracted from the corresponding 3D point clouds. Therefore, the proposed approach is still applicable
given such cloud data. However, the stage of estimating normal vector for each 3D point might be
slightly time-consuming (especially with high-density clouds) since it depends on the determination of
point’s neighborhood. For example, when assigning a radius of 5 centimeters for neighborhood search,
the processing time was 3 times longer than 3 centimeters while the system accuracy was almost
unchanged. When the depth map is available, a pixel neighbor is useful for this task since we know
the correspondence between a pixel and its reprojected 3D point. In summary, the computational cost
might be unexpectedly changed depending on the input data, but this is not a significant problem
since there are some algorithms supporting the fast calculation of normal vectors (e.g., [18,19]).

6. Conclusions

An original approach estimating a gait symmetry index from a sequence of depth maps has
been presented in this paper. By employing a 3D reprojection, a geometric feature is proposed to
extract useful posture characteristics according to the region-based accumulation of 3D normal vectors.
Since surface normals are independent of the subject’s position on the treadmill, no registration of
depth maps is required in our methodology. Two schemes of embedding temporal factor are also
considered and evaluated to give a reasonable recommendation for further works. The potential
of surface normals for gait asymmetry assessment has been demonstrated by experiments on a gait
dataset of 97,200 depth maps where the obtained results outperformed related studies in the task
of distinguishing normal and abnormal walking gaits. This vision-based approach is an alternative
method for gait symmetry measurement beside conventional motion systems that employ wearable
sensors. The practical advantages of our method are the use of low-price devices and its easy setup
without run-time calibration (as approaches using multiple input signals) or accurate sensor placement.
Our system may work as a patient screening tool providing relevant gait information during a treatment
or recovery after surgery. In further works, possible extensions of the body surface normal features
can be investigated to improve the gait symmetry index estimation. Besides, the proposed index
will be measured on a larger dataset and the results will be collected over multiple sessions/days
for assessing their stability as well as modeling their change during the recovery of patients. Finally,
investigating partial surfaces according to body parts to provide limb-level motions could be an
interesting extension.
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