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Abstract. Supervisory Control and Data Acquisition (SCADA) sys-
tems used in wind turbines for monitoring the health and performance of
a wind farm can suffer from data loss due to sensor failure, transmission
link breakdown or network congestion. Sensory data is used for impor-
tant control decisions and such data loss can make the failures harder to
detect. This work proposes various solutions to reconstruct the lost infor-
mation of important SCADA parameters using Linear and non-linear
Artificial Intelligence (AI) algorithms. It comprises of three major con-
tributions; (1) signal reconstruction from other available SCADA param-
eters, (2) comparison of linear and non-linear AI models, and (3) gen-
eralization of the AI algorithms between turbines. Experimental results
demonstrate the effectiveness of the developed methodologies for recon-
struction of the lost information for valuable planning decisions.

Keywords: Signal reconstruction · SCADA data · Condition
monitoring · Linear regression · Random forest · Neural network

1 Introduction

Wind energy generation is an ideal source of green energy due to which the capac-
ity of wind farms has been increased 30 times with a 17% cumulative growth in
the last few years. Wind energy is expected to supply 12% of worldwide energy
demand by 2020 [22]. Due to growth in the wind industry, wind turbines are
most likely to be installed in diverse climatic conditions, onshore and offshore
which would need continuous monitoring. These systems are monitored using
a Supervisory Control and Data Acquisition (SCADA) system for their oper-
ation and performance. Unexpected failures of wind turbine components cause
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an increase in machine downtime, repair cost and subsequently cost of energy.
Condition monitoring is often used to monitor health parameters, e.g. temper-
ature or vibration that shows the condition of a machinery and any significant
change in its pattern is indicative of developing failure [4]. One of the most
significant problems arises when a communication link or a sensor fails causing
faulty or no data to be received for timely probable control decisions [13]. This
research develops a system for reconstruction of the lost signal from low cor-
related parameters when one of the SCADA sensors fails to send data. Linear
and non-linear AI algorithms have been analysed to find a generalized model
which will be robust and perform better for all wind turbines in a wind farm
rather than one turbine. The wind power curve defines the relationship between
wind speed and power. It is frequently used to monitor the health of a wind
turbine using SCADA data received from other system parameters. This study
will assume that wind power, being the most important parameter to monitor
the performance and health of a wind turbine, is lost or corrupted in transmis-
sion. Artificial intelligence (AI) based models are extensively used in detecting
failures and predicting wind power from a SCADA system of a wind farm [17].

Research in the literature is focused mostly on signal reconstruction from
historical data. Signal reconstruction from other available parameters was never
considered as an option. The motivation of this research is to reconstruct a signal
when one of the SCADA sensors fails to send data either due to a sensor failure
or a communication breakdown for longer than expected. Also, when the highly
correlated variables and historical data is not available for a very long time, sig-
nal reconstruction becomes vital for optimum operation of the plant. Electrical
power generated from a wind turbine is considered to be the corrupted/lost sig-
nal in this case, since it is the most important parameter describing the normal
operation of a wind turbine and is hard to predict due to its high degree of fluc-
tuations and randomness. AI algorithms have the ability to learn and model the
non-stationary behaviours. We have explored two AI methods: random forest and
Cartesian Genetic programming evolved Artificial Neural Network (CGPANN)
and then compared these results with a linear regression model to find out the
best performing model for accurate estimation of the failed sensor data. Training
and test results on the same turbine demonstrate random forest performing much
better than its counterparts. Its performance degrades when tested on data from
other wind turbines in the same wind farm. The CGPANN model having multi-
layered feed-forward architecture arranged in Cartesian format show remarkable
generalization and continue to perform better in diverse data conditions [6].

2 Background

SCADA collects data from a machine and send it to a central processing unit for
proactive measures. Data collected and stored from SCADA comprises of infor-
mation regarding every aspect of a wind farm which can be used to infer overall
health of the wind turbine in real-time. SCADA systems are often at risk due to
various factors such as the sensor failure or network congestion, limited power
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or equipment abnormality resulting in data loss [12]. Sensor failure means it
might be sending abnormal data or not sending data at all, this work is focused
on the latter one. Missing/lost data is a challenge faced in engineering and
industry specifically in applications employing sensing technologies implement-
ing intelligent real-time monitoring and control such as an offshore wind farm
SCADA data and wireless sensor networks [12]. A framework for the effective
data management and dealing with issues of missing and corrupted samples in
the acquired data is developed in [15] for effective fatigue assessment of offshore
wind turbines. Yang et al. [23] proposed a machine learning based reconstruction
model for real-time condition monitoring and fault detection. They performed
correlation analysis to select input parameters and then used Support Vector
Regression (SVR) for building a reconstruction model. Their focus was on fail-
ures caused due to high temperature, so signals relevant to temperature faults
are selected as input features to estimate generator drive end temperature. Singh
[19] used wind power curve to identify the abnormal operation of a wind tur-
bine. Wind power being considered the vulnerable parameter, since deviation of
power from its normal operational values helps in identifying probable failures
in advance. Establishing a generalised model to reconstruct the lost/corrupted
SCADA signal of wind power is the focus of this work. Lind et al. [11] have
explored a stochastic approach to reconstruct the tower top acceleration sig-
nals from a single external variable, i.e. wind speed and previous values of the
tower top acceleration. Their finding was that signal reconstruction can be used
to monitor and detect abnormal behaviour. De-noising auto-encoder (DAE) is
proposed in [1] for reconstruction of original sensor measurements from a cor-
rupted SCADA system due to covert cyber-deception attack (CCDA). An ad-hoc
method is presented in [14] to reconstruct the long bursts of data lost by SCADA
due to sensor or communication failure. Lamrini et al. [10] applied self-organizing
map (SOM)-based methods for the reconstruction of data from a water treat-
ment system to deal with data loss due to sensor failure or corrupted input data.
A number of statistical and artificial intelligence models have been proposed for
wind power estimation to prevent damage to wind turbines and ensure stabil-
ity of the power system. Sun et al. [21] proposed a hybrid model of deep belief
networks (DBN) and random forest for short term wind power forecasting.

3 Dataset

SCADA is widely used in different areas for monitoring and control in real time.
The SCADA data used in this study is acquired from La Haute Borne wind farm
(ENGIE Green)1 which consists of four wind turbines from Senvion MM82 tech-
nology located in the Grand East region in north-eastern France. The SCADA
system collected data from 31 parameters along with their statistics such as
average, maximum, minimum and standard deviation of each parameter. Since
the average value of these parameters captures most of the information, only the
1 ENGIE Green, https://opendata-renewables.engie.com/explore/dataset/la-haute-

borne-data-2013-2016/.

https://opendata-renewables.engie.com/explore/dataset/la-haute-borne-data-2013-2016/
https://opendata-renewables.engie.com/explore/dataset/la-haute-borne-data-2013-2016/
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average value of each parameter has been used for the experiments. Each data
point is sampled at 10 min interval. Nominal power for each turbine at the La
Haute Borne wind farm is 2050 kW, with a rotor diameter of 82 m and a hub
height of 80 m. Cut in wind speed of 3.5 m/s, nominal wind speed of 14.5 m/s
and cut-out wind speed of 25 m/s. Some of the parameters from the dataset
are, active power, reactive power, vane position, wind speed, nacelle angle, gear-
box bearing temperature, generator bearing temperature, pitch angle, torque
and converter torque. The layout of the wind farm with latitude/longitude and
inter-turbine distances in meters is shown in Fig. 1. The wind farm comprises of
four wind turbines: R80711, R80780, R80721 and R80736.

Fig. 1. Wind farm layout.

4 Methodology

The objective of this work is to develop a reliable signal reconstruction model
for wind power prediction from other SCADA parameters. This is necessary
because the power produced from a wind turbine depicts its health statistics
and eventually help in monitoring the condition of a wind turbine. Accurate
wind power prediction has a significant economical and technical impact for a
reliable large-scale wind power integration and important energy management
planning decisions. There has been ample work carried out to estimate power
generated from wind speed and an acceptable accuracy is reported in literature
[2]. The challenging part is to estimate wind power when the closely correlated
parameters such as wind speed, torque, apparent power, rotor speed etc. are not
available, and the system has to predict highly fluctuating wind power from very
low correlated parameters with non-linear and non-stationary characteristics.
This work is focused on restoring the lost information from the low correlated
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parameters, assuming that all the highly correlated parameters are missing. Due
to the non-linear nature of the problem, an adequately accurate algorithm needs
to be developed to model this complex relationship. Wind power is estimated in
absence of highly correlated variables. Any deviation of a power curve from its
normal operational values is indicative of a number of faults such as blade pitch
angle failure, blade damage, pitch control failure and blades affected by ice or
dirt [20].

The idea is to develop a model in which the output has low correlation
with input signals and input signals have low cross-correlation with one another
[18]. As part of the methodology, a correlation matrix has been generated and
input signals having an absolute cross-correlation coefficient greater than 0.8 are
removed from input when developing wind power signal reconstruction model in
this study. One year (2014) data is divided into 3 segments based on wind speed.
Figure 2 shows the performance curve for each region. The first segment contains
the data when the wind speed is below cut-in and the turbine blades are trying
to overcome friction. There is no power produced in this region. Instead the
wind turbine takes power from grid to keep the turbine blades moving to prevent
damage to blades due to ice and dust. The second segment is the most important
to model, as it contains data above cut-in speed to rated wind speed; there is
a rapid growth in power produced. In segment 3, constant power is produced
until the wind speed reaches the cut-off speed and the turbine is turned off to
prevent damage due to excessive wind speed. These three segments represent
the various key modes of wind turbine operation. Linear regression, random
forest and CGPANN are implemented on each of the data segment and then on
the data without segmentation. The data from wind turbine R80721 between
01/01/2014 to 31/12/2014 is selected for training and testing following the split
strategy 75% training, 25% testing [9]. Testing has been performed on the same
turbine and on data from the other three wind turbines in the wind farm. The
reconstruction algorithm performance is tested on all three segments as well as on
the whole dataset. Similarly, data from the other three wind turbines is divided
into segments and evaluated to find the best signal reconstruction algorithm.

Fig. 2. Typical power curve for a wind turbine.
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4.1 Multiple Linear Regression (MLR)

Linear regression is a statistical method used for prediction of a dependent vari-
able from a single independent variable. It is termed as Multiple linear regression
(MLR) [5] when the dependent variable Y is predicted from a set of independent
variables Xk where k is an index of the predictor variables.

Y = β0 + β1X1 + . . . . + βkXk + ε (1)

The model parameters β0 (intercept), β1 to βk (regression coefficients) are
learned from the data and ε is the residual standard deviation in Y. Python’s
Scikit-learn library [16] has implemented a number of algorithms. The linear
regression is implemented using the Scikit-learn library in this study on the
transformed dataset.

4.2 Random Forest (RF)

Random forest [3] is a supervised machine learning algorithm which consists
of an ensemble of decision trees. More trees means more robust performance.
The ensemble decision trees are trained using a bagging method. This trains a
number of learning models and its combination increases the overall results. RF
can be represented as an ensemble of C number of trees T1(X), T2(X), ..., TC(X)
having m inputs given by X = x1, x2, ...xm. The resulting ensemble produces C
outputs Ŷ1 = T1(X), Ŷ2 = T2(X), ......, ŶC = TC(X) and the mean is calculated
from the output of these randomly generated trees to give final prediction Ŷ of
random forest regression tree.

Random forest comes under the umbrella of artificial intelligence models
which develops decision trees with the root node having the most important
feature. Random forest is implemented using Scikit-learn library [16] and is used
with the default parameter setting. Hyper-parameters are not optimized since it
performed well with default parameters.

Fig. 3. a. CGPANN phenotype, b. CGPANN genotype
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4.3 Cartesian Genetic Programming Evolved Artificial Neural
Network

Cartesian genetic programming evolved Artificial Neural Network (CGPANN)
was first proposed in 2010 [8]. The study conducted in [7] shows that CGPANN
has performed best when compared with Hidden Markov model (HMM), Auto
Regressive Integrated Moving Average (ARIMA), regression model, Classifica-
tion and Regression tree (CART), and neural network model for time series
prediction. The essence of CGPANN is to tune the hyper parameters using evo-
lutionary programming called Cartesian genetic programming (CGP) instead
of traditional gradient based methods. All neurons are arranged in Cartesian
format in CGPANN. Recently, a single row format has been used, since it pro-
vides more flexibility of generating infinite graphs as shown in Fig. 3. Figure 3
shows the CGPANN phenotype with corresponding genotype in part A and B.
Not all neurons are connected in CGPANN while creating graphs from output
to inputs. This ability of CGPANN provides the flexibility of generating arbi-
trary graphs. The numbers in genotype can change during evolutionary training
using mutation operator, causing the network topology to change accordingly
producing novel solutions to the problem. Direct encoding scheme is used to
encode connection weights, connection type, and the topology of the network.
The 1 + λ(λ = 9) evolutionary strategy is followed to produce population of
probable solutions. In this work, the log sigmoid function is used as the activation
function as represented by Eq. 3.

hθ(x) =
1

1 + e−θT x
(2)

4.4 Evaluation of Model Performance

The following two performance metrics are applied to evaluate the abilities of
three models to reconstruct the wind power from loosely correlated parameters.

RootMeanSquareError(RMSE) =

√
√
√
√(

1
N

)
n∑

i=1

(yi − ŷi)2 (3)

MeanAbsoluteError(MAE) =
1
N

n∑

i=1

|yi − ŷi|. (4)

where yi is the actual value, ŷi is the estimated value and N is the total
number of observations.

5 Experimental Setup

The proposed wind power reconstruction model is trained on the parameters
available in the SCADA dataset under consideration. The framework for the
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Fig. 4. Framework of wind power data reconstruction model

experimental setup is shown in Fig. 4. Conditioning monitoring data from the
SCADA system is segmented based on different wind speeds, it results in four
sub-dataset. Each segment is analysed separately to select inputs for training.
Figure 5 shows the correlation heat map for each segment. The heat map is used
for two purposes in this research, first to verify the different modes of operation
of a wind turbine by showing the difference in heat map of each segment. It
demonstrates that correlation between different variables varies across various
segments. Second, to locate the variables having an absolute cross-correlation
greater than 0.8 and removing these from the input. The main aim of this
research is to reconstruct the important parameter i.e. wind power which shows
the health of a wind turbine from poorly correlated input parameters. Pitch angle
Ba has very low correlation with power in segment 1, but noticeable negative
correlation in segment 2 and 3. Blade pitch angle keeps on changing to capture
most of the wind energy. When the power production gets low due to change
in wind direction in segment 2, pitch angle is changed to increase the power
production. In segment 3, when power reaches its rated maximum value, pitch
angle is adjusted to stop production and prevent turbine blades from damage.
Similarly, wind speed is recorded by three sensors (Ws, Ws1, Ws2) at different
locations in a wind turbine. Wind speed has highest correlation with power in
segment 2, since power produced relies on wind speed in this region. In seg-
ments 1 and 3, correlation between wind speed and power produced is low as
there is constant power produced due to wind energy in these two regions. The
heat map demonstrates various operational modes in each segment to exploit
wind turbine physics. After the input selection, each sub-dataset is split into
training and testing data. Training data is then used to develop three recon-
struction models using Linear Regression, Random Forest and CGPANN. The
trained reconstruction models are then tested on two types of testing datasets,
that include testing data from same wind turbine it is trained on and the data
from other three wind turbines in the same wind farm.
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Fig. 5. Heat map showing cross-correlation between input parameters in each segment.

5.1 Results and Analysis

To validate the performance of linear and non-linear methods for wind power
reconstruction, experiments have been carried out on four wind turbines’ data
for the year 2014. Table 1 shows the results obtained by testing the trained
algorithms’ performance on different segments and all year (2014) data of the
turbine R80721. Random forest (RF) performs exceptionally well in all three
segments as well as on the overall data without segmentation when tested on
same wind turbine data (R80721) it has been trained on. Random forest performs
well on segments 1 and 2 giving mean absolute error (MAE) of 0.02. On segment
3 MAE is 0.06 and on data without segmentation MAE is 0.05. High values of
error on complete data shows that the data segmentation can be helpful in
accurately reconstructing the power production of a wind turbine from other
SCADA parameters.

Trained models have been evaluated for their performance on other wind
turbines from the same wind farm to check if the developed models had learned
the power variation and fluctuation pattern in wind farms in general rather then
learned a single wind turbine’s operation. Table 2 shows the performance of the
three trained reconstruction models on different wind turbines in the same wind
farm. Random forest (RF) still performs well in segment 1 due to the fact that
segment 1 does not have a lot of variations and power produced in this region is
constant. Ideally, the wind turbine does not produce any power below cut in wind
speed, but it is not the case in real time as the wind turbine takes power from



216 N. M. Khan et al.

Table 1. Testing results for wind turbine 80721

Error LR RF CGPANN

Segment 1 MAE 0.1321 0.0251 0.1020

RMSE 0.0192 0.0071 0.0513

Segment 2 MAE 0.0760 0.0274 0.1163

RMSE 0.1004 0.0488 0.1838

Segment 3 MAE 0.0961 0.0669 0.0092

RMSE 0.0961 0.0681 0.0097

All data MAE 0.1043 0.0500 0.1135

RMSE 0.1302 0.0851 0.1838

national grid to keep the blades rotating slowly in the cold weather to prevent
icing. Overall, it should be noted that CGPANN outperforms random forest and
linear regression in all three wind turbines. Segment 2 is the most important
operational region of all as it has a lot of variations in power produced based on
different wind speeds. The relationship between wind power and other SCADA
parameters is not linear in this region which can be seen in Table 2 that linear
regression has highest error in segment 2. While CGPANN has lowest MAE of
approximately 0.14 and the random forest having MAE ≈0.6 which verifies that
a neural network has the property of transferability and able to learn the power
patterns in a wind farm.

Table 2. Performance evaluation in terms of MAE and RMSE for various turbines

Error R80711 R80736 R80790

LR RF CGPANN LR RF CGPANN LR RF CGPANN

Segment 1 MAE 0.1321 0.0251 0.0209 0.3686 0.0562 0.1368 0.3064 0.0681 0.1020

RMSE 0.1777 0.0563 0.0503 0.3842 0.0853 0.1417 0.3246 0.0834 0.1077

Segment 2 MAE 2.2599 0.6258 0.1432 2.7365 0.6469 0.1455 2.6814 0.6462 0.1337

RMSE 2.3981 0.6559 0.1980 2.8903 0.6737 0.2285 2.8701 0.6728 0.1951

Segment 3 MAE 0.0900 0.1537 0.0197 0.0945 0.1909 0.0668 0.0689 0.2737 0.0193

RMSE 0.0987 0.1797 0.0448 0.1131 0.2156 0.0754 0.0848 0.3037 0.0249

All data MAE 0.2391 0.1302 0.1313 0.2336 0.1292 0.1306 0.2317 0.1216 0.1220

RMSE 0.3350 0.2100 0.1903 0.3277 0.2196 0.2116 0.3134 0.1762 0.1860

In Table 2, the low error on all data without segmentation when tested on
different wind turbines is because segments 1 and 3 have low errors as compared
to segment 2. Table 3 depicts the size of data in each segment. This emphasizes
the importance of segmentation as the model might show good performance on
all data but not well on segment 2 with high variations as shown in Table 2.
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Table 3. Wind turbines training and testing data size

R80721 R80736

Training Testing Testing

Segment 1 7959 2654 10530

Segment 2 39420 13140 40520

Segment 3 8 3 22

All data 47387 15797 53560

6 Conclusion and Future Work

This paper presents a methodology to deal with the challenge of wind power
estimation from low correlation data and proposes a signal reconstruction model
for wind power in case of SCADA sensor failure in a wind farm. The proposed
model can be used to monitor the wind power signal continuously even when
the power sensor fails and the signals of parameters that are highly correlated
with wind power are also not received either. Linear regression, random forest
and CGP evolved ANN is used for real time prediction of electric power pro-
duced from a wind turbine. Data segmentation based on wind speeds help in the
accurate estimation of wind power and emphasizes the importance of segment
2. Although Random Forest testing results are better for a specific wind tur-
bine, CGPANN generalizes better when exposed to wind turbines other than it
is trained on. Accurate and timely prediction of these important parameters are
able to help in important decisions for a wind farm. This work can be extended
to the cases where more than one sensor fails. In future, the reconstructed sig-
nal will be used to identify faults in the wind turbine so that an alarm can be
generated before the actual failure.
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