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Abstract: The threat of a new influenza pandemic is real. With past pandemics claiming millions
of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-
modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade
triggered by sensing subsequently induces protection for themselves and their surrounding neighbors,
termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-
stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the
antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity,
constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding
the induction of the interferon system. All these combined antiviral effectors inhibit the virus at
various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review
of mammalian and avian influenza A restriction factors, detailing their mechanism of action and
in vivo relevance, when known. Understanding their mode of action might help pave the way for the
development of new influenza treatments, which are absolutely required if we want to be prepared
to face a new pandemic.

Keywords: influenza virus; restriction factors; interferon; innate immunity

1. Introduction

Influenza viruses are segmented, negative, single stranded RNA viruses that are
members of the Orthomyxoviridae family. Influenza viruses are classified into four genera:
A, B, C and D (IAV, IBV, ICV and IDV) [1]. In this review, we will be focusing solely on
IAV. IAV finds its reservoir in waterfowl, where it is generally asymptomatic [2], but it
also circulates in poultry and certain mammalian species, including humans, pigs and
horses [3]. IAV are classified based on their haemagglutinin (HA) and neuraminidase (NA)
surface proteins. To date, 18 HA and 11 NA subtypes have been discovered, if we include
the influenza A-like bat viruses although they have been shown to unexpectedly differ
from avian and human IAV [4,5]. IAV is a seasonal virus and the causative agent of the
flu, a usually mild illness causing fever, coughs, muscle aches and fatigue, but can become
severe through the development of complications, such as pneumonia, possibly leading to
death. This virus is known to undergo two different evolution processes: antigenic drift
and antigenic shift. The IAV RNA polymerase has a low fidelity, consistently introducing
novel mutations into the viral genome. Antigenic drift is a slow process where mutations
are introduced into the HA and NA segments and accumulate over time. As a consequence,
more recent circulating strains differ from those circulating during past seasons and can
evade antibodies produced during those seasons if changes in the viral antigens HA and
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NA are sufficient. Antigenic shift is a more major event, where two different viruses infect
the same cell and hybrid progeny viruses are produced, possessing a mix of parental
viral segments, also called reassortment [6]. This can allow for the emergence of new
subtypes, to which the human population is immunologically naïve, potentially leading
to IAV pandemics (mainly due to new and/or different HA segments) [7]. Hence, four
naturally occurring pandemics have arisen since the beginning of the 20th century. The
infamous 1918 “Spanish flu” (named as such for being first reported in Spanish news
outlets due to the fact that media of countries involved in World War I were under censure)
was caused by a H1N1 virus that infected over a third of the world’s population, killing
over 50 million. Other pandemics include the 1957 H2N2 “Asian flu” killing over 2 million,
the 1968 H3N2 “Hong Kong flu” killing over 1 million and the more recent 2009 H1N1
“Swine flu” killing around 200,000 (the latter was, thankfully, milder than seasonal flu).
Genetic analysis suggests that the 1918 H1N1 virus originated from direct transfer of a
whole avian strain into humans [8]. In contrast, the two following pandemics (H2N2 and
H3N2) occurred by reassortment between the circulating human strain at the time (H1N1
and H2N2, respectively) and avian influenza viruses. As for the virus responsible for the
2009 pandemic (pH1N1), it was a complicated reassortant whose combination of genomic
segments were unique, but all segments of the virus were present in viruses found in
swine [9,10]. Also noteworthy, but different to the previous naturally occurring pandemics,
was that of 1977, also called the “Russian flu”, where the culprit was a virus that was
identical to the H1N1 virus that had circulated in humans in the 1950’s [11]. The most
probable explanation for the unlikely occurrence of reappearance of a strain identical to
the one circulating two decades prior is that of the accidental release of this virus from
a frozen source. Hence, IAV pandemics emerge in a seemingly random manner. To date
there are only a few approved antiviral treatments against flu, to which IAV can easily
escape [12–15], as well as vaccines against seasonal strains (currently pH1N1, H3N2 as
well as influenza B lineages). Vaccines are efficient when fully matching the circulating
strains, however, they take time to produce and would not be ready until months within a
new pandemic. Therefore, we are currently not ready to face a severe influenza pandemic
and the current COVID-19 crisis is a cruel reminder of the damage that can be caused by
respiratory viruses with pandemic potential.

This review has the goal of detailing the main intrinsic and innate defenses humans
and other hosts, such as ducks and chickens, possess to defend themselves from IAV
infection. These defenses come in the form of restriction factors, which are antiviral
proteins expressed by the host cell that restrict or impair viruses at various stages of their
replication cycle. These restriction factors can be constitutively expressed and/or induced
as a result of viral sensing and consequent signaling. Understanding these natural defenses
could potentially unlock ideas that might help pave the way for new treatments, necessary
in the uncertainty of future IAV pandemics.

2. Influenza A Virus Life Cycle

To understand the different restriction factors that inhibit IAV, a general understanding
of the viral life cycle is necessary. When IAV (Figure 1) encounters a target cell, the HA
surface glycoprotein interacts with a sialylated receptor on the cell plasma membrane [16,17].
Avian strains preferentially bind to α-2.3-linked sialic acids whereas human strains to α-
2.6-linked sialic acids [18,19]. After attachment, the virus enters the cell through epsin1-
dependent clathrin-mediated endocytosis, clathrin-independent endocytosis or through
macropinocytosis [20–22]. Now inside the cell, the viral particle is localized in an endocytic
vesicle. As this vesicle progresses through its lifecycle, acidification of the endosomal pH
activates the surface M2 proton pump, acidifying the viral particle [23,24]. This decrease in
pH fragilizes the matrix, allowing uncoating [25]. The acidification of the endosomal vesicle
is also responsible for the multi-step fusogenic transformation of HA [26,27]. The HA fusion
peptide then mediates the fusion of the cellular endosomal membrane together with the
viral lipid envelope, allowing exit of the eight viral ribonucleoproteins (vRNPs) into the
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cytoplasm. vRNPs are constituted of a negative strand genomic RNA segment coated with
viral nucleoprotein (NP) molecules and bound to the viral polymerase. Each vRNP acts as
an autonomous transcription-replication unit once it reaches the cell nucleus. vRNPs enter
the nucleus using the active importin α/β1 pathway mediated by the viral protein NP that
possesses a Nuclear Localization Signal (NLS) that interacts with importin α [28,29].
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Once the vRNPs are in the nucleus, viral messenger RNAs (mRNAs) are produced
from the genomic viral RNA (vRNA) template by the resident viral RNA-dependent RNA
polymerase (RdRp). This is a primed process, using primers from cellular mRNAs being
transcribed by the cellular RNA polymerase II [30]. Polymerase Basic 2 (PB2), part of the
tripartite viral polymerase along with Polymerase Acidic (PA) and Polymerase Basic 1
(PB1), binds the 5′ caps of cellular mRNAs. Following this, the PA endonuclease cleaves the
5′ end of the cellular mRNA, which releases a capped 9-17 nucleotide primer that is used
to initiate the transcription of the viral mRNA using viral genomic RNA as a template [31].
This process is called cap-snatching. The viral mRNAs also possess polyA tails, just as
cellular mRNAs, but that are produced by the viral polymerase. The newly produced
mRNAs are exported into the cytoplasm and translated by cellular ribosomes, ending in
the production of viral proteins. The viral polymerase subunits as well as NP, M1 and
NS2/NEP proteins are then trafficked back to the nucleus. Occurring at the same time
as mRNA synthesis, the viral polymerase is also responsible for vRNA replication. The
viral polymerase transcribes the negative vRNA into positive complementary RNA (cRNA)
in a non-primed process. The newly formed cRNA associates with novel NP, PB1, PB2
and PA molecules into complementary RNPs (cRNPs). Following this, the cRNPs undergo
replication to create new negative vRNA copies which associate into novel vRNPs. For
further details on the transcription and replication steps, see [32–34].

The newly formed vRNPs undergo export into the cytoplasm in a CRM1-dependent
manner, mediated by a daisy-chain of vRNP-M1-NS2-CRM1 [35–37]. Once in the cyto-
plasm, vRNPs are next trafficked towards the plasma membrane in a Rab11-dependent
process that relies on endoplasmic reticulum remodeling [38,39] and undergo assembly [40].
Ongoing questions in the lifecycle of IAV are how vRNPs are transferred to the plasma
membrane, and how they organize themselves inside the viral particle into the classical
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“7+1” formation [41]. This highly coordinated process is followed by viral budding and
egress. Release of the newly formed viral particle is catalyzed by NA that cleaves the sialic
acids retaining the particle on the cell membrane.

3. Sensing and Interferon Response
3.1. Sensing and Interferon Response in Mammalian Species

The detection of viral infections by the innate immune system occurs through the
recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition
receptors (PRRs). PAMPs are either present in invading pathogens or are generated during
infection. Viral PAMPs usually correspond to specific nucleic acid structures of the viral
genome not found in host cells or viral replication intermediates such as double-stranded
RNA (dsRNA). Distinct classes of PRRs are important for influenza virus recognition and
induced inflammation (Figure 2): the Toll-Like receptors (TLR), the Retinoic acid-inducible
gene I (RIG-I) receptor, the NOD-like receptor family member NOD-, LRR- and pyrin-
containing 3 (NLRP3) inflammasome and the Z-DNA binding protein 1 (ZBP1) (recently
reviewed in [42]). These PRRs share different subcellular localizations and act at different
stages of the viral replication cycle. Indeed, NLRP3, RIG-I and ZBP1 are located in the
cytoplasm, whereas TLR3, 7 and 8 are present within endosomes [42].

Activation of these PRRs triggers signaling cascades leading to the production and
secretion of type I and III interferons (IFNs), pro-inflammatory cytokines, eicosanoids and
chemokines, which can act in a paracrine and autocrine manner. In particular, type I and III
IFNs are potent antiviral mediators leading to the expression of hundreds of IFN-stimulated
genes (ISGs), which induce an antiviral state [43]. Type I and III IFNs are notably expressed
after PAMP recognition by RIG-I and TLR3/7/8, shortly described hereafter.

RIG-I is expressed by all cell types and activated upon binding to short dsRNA and
RNA harboring di- or tri-phosphorylated 5′ ends. Following RNA binding to RIG-I, the
latter is ubiquitinylated by TRIM25 or RIPLET E3 ubiquitin ligases, which are required for
RIG-I activation and allow its higher-order oligomerization [44]. Then, RIG-I interacts with
mitochondrial antiviral-signaling protein (MAVS), promotes its oligomerization and the
formation of a signaling hub called signalosome required for downstream signaling. RIG-I
is considered as the main immune sensor for IAV and recognizes its genomic RNA [45].
RIG-I importance was confirmed in in vivo studies in a mouse model. Indeed, type I
IFN production was impaired in Rig-I−/− mice infected by IAV, which correlated with
delayed viral clearance [46]. Of note, mice are non-natural hosts for influenza, however,
they are frequently used as models to study influenza-mediated pathogenesis given the
large variety of genetic tools available.

TLR3 recognizes dsRNA and is expressed in various cell types including dendritic
cells (DCs) and lung epithelial cells, the latter being target host cells of IAV. Numerous
studies have shown the important role of TLR3 in IAV sensing. Indeed, in human bronchial
epithelial cells, IAV infection leads to the activation of TLR3 and subsequent production of
proinflammatory cytokines [47]. However, infection of Tlr3−/− mice with IAV resulted in
higher viral production in lungs but also a diminished proinflammatory cytokine response,
which is actually less detrimental for IAV infected mice [48]. These results suggest that
defense mechanism against IAV requires a tight regulation of immune responses in order to
control IAV replication without exacerbated inflammatory responses. In that context, TLR3,
while promoting viral clearance, could also participate in IAV-mediated pathogenesis.

TLR7 is mainly expressed by plasmacytoid DCs (pDCs) and lung epithelial cells
whereas TLR8 is expressed by immune cells such as monocytes, macrophages and DCs.
Classically, binding of single-stranded RNA by TLR7/8 in endosomes leads to their activa-
tion and the induction of their downstream signaling pathway in a Myeloid differentiation
primary response 88 (MyD88) adaptor-dependent manner (Figure 2). Mice deficient for
Myd88 are more susceptible to IAV infection when sublethal doses where used for wild
type animals [49]. However, the involvement of TLR7/8 in IAV immune sensing remains
debated. Indeed, another study using Myd88−/− mice showed no requirement of MyD88
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in protection against IAV infection using lethal doses of IAV even for the wild-type mice,
which could explain the discrepancy between the two studies [48]. Moreover, pDCs, which
are the professional IFN producers, were surprisingly shown to not impact the course of
IAV infection in mice [50].
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Following engagement of RIG-I and TLR3/7/8, several transcription factors such as
IRF3, IRF7 (in pDCs or in cells pre-exposed to IFN), AP1 and NF-κB are activated and
translocate to the nucleus, leading to the transcription of type I/III IFN genes. Type I and III
IFNs are then secreted and act in a paracrine and autocrine manner. The type I IFN receptor
(composed of IFNAR1 and IFNAR2 subunits) is ubiquitously expressed, whereas the type
III IFN receptor (composed of IFNLR1 and IL10R2 subunits) is preferentially expressed
on mucosal epithelial cells, liver cells and some myeloid cells [51]. Upon binding to their
cognate receptors, type I and III IFNs activate a Janus kinase (JAK)/signal transducer and
activator of transcription (STAT) pathway. This signaling cascade results in the transcription
of several hundreds of ISGs, some having antiviral and immunomodulatory properties,
and in the establishment of an antiviral state in infected and neighboring cells.

Type I and III IFNs are well known to potently inhibit IAV replication in humans and in
mice, both in vitro and in vivo through the expression of ISGs (reviewed in [52]). Moreover,
IAV infection has also been shown to be restricted by type I IFNs in vitro in bat cells [53].
In line with this, mice models where IFN signaling is abrogated or exogenous IFNs are
administrated, demonstrated the important role of both type I [54–58] and type III [59], [60]
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IFNs in vivo in IAV clearance and in the control of influenza-induced pathogenesis. Type
I and III IFNs induce a similar subset of ISGs, with type I IFN leading to a more rapid
induction and decline of ISG expression [43,61]. Importantly, type III IFNs are produced
earlier than type I IFNs following IAV infection of mice, which leads to viral inhibition
without inducing inflammation [61,62].

Of note, the importance of type I and III IFNs antiviral activities was also evidenced
in humans. Indeed, exogenous prophylactic administration of IFNα seemed to reduce the
severity of influenza infection [63]. Moreover, in humans, carried inborn errors in genes
involved in the type I/III IFN pathway such as TLR3 [64], IRF7 [65] or IRF9 [66] were
reported in some life-threatening influenza patients. This highlights a critical role of type I
and III IFNs in influenza disease severity and in the control of influenza replication.

Furthermore, the role of type I and III IFNs extends beyond a role in limiting viral repli-
cation. Indeed, type I and III IFNs are important to shape adaptative immune responses.
Mice lacking type III IFN receptors show defective DC responses, ultimately preventing
the optimal generation of effector CD8 T-cells [67,68], protective memory T-cell responses
against IAV [67] and optimal antibody responses [68]. This effect of type III IFN appears
indirect and depends, at least in part, on the secretion of thymic stromal lymphopoietin
(TSLP) by microfold cells (M cells) in the upper airways [68], which promotes migration
of resident CD103+ DCs to draining lymph nodes and germinal center reactions. Thus,
type III IFNs via TSLP potentiate the establishment of adaptative immune responses [68]
(reviewed in [61]).

Similarly, type I IFN favors memory CD8 T-cell cytolytic activity in an antigen-independent
manner, by promoting the expression of granzyme B [69]. Furthermore, mice that lack
STAT1, which fail to signal through all three types of IFN receptors, do not succeed to gener-
ate an IgG2a response and present a significant bias toward TH2 (T helper 2) differentiation
and IgE response, which is at the origin of an exacerbated lung pathology [70].

3.2. Sensing and Interferon Response in Avian Species

The Galliformes order, which includes chickens, are characterized by the absence of
RIG-I [71], which has been proposed to be at the origin of the high susceptibility of chickens
to RNA viruses compared to ducks [72]. Despite the fact that RIG-I is the main sensor for
IAV in mammalians, an IFN response is mounted in chickens infected by highly pathogenic
influenza virus strains, potentially due to sensing of viral RNAs by RIG-I-like receptors
MDA-5 and LGP2 [73–75]. Moreover, in chickens, only TLR3 and 7 are involved in the
recognition of RNA viruses given that TLR8 is pseudogenized [76]. Type I and III IFNs
are nevertheless produced in response to the activation of these PRRs, which inhibit IAV
replication in vitro, in ovo and in vivo [77–79].

3.3. Viral Antagonism of Innate Immune Sensing by IAV

IAV has evolved various proteins such as NS1, PB1-F2 or PA-X to counteract the
induction of innate immune responses either by inhibiting innate immune sensing or by
inhibiting signaling downstream of type I or III IFN receptors (reviewed in [42,80]).

NS1 inhibits RIG-I-mediated immune sensing through several mechanisms. For
instance, NS1, by interacting with dsRNA through its RNA binding domain, sequesters
RIG-I ligands [81–83]. Furthermore, NS1 has been shown to interact with several proteins
such as the E3 ubiquitin ligases TRIM25 or RIPLET, preventing RIG-I activation [84–86].

PB1-F2 is encoded from a +1 open reading frame (ORF) of the PB1 gene as a result
of a leaky ribosomal scanning in some IAV strains. PB1-F2 plays pleiotropic effects, such
as the enhancement of viral polymerase activity [87], the induction of cell death [88] or
the modulation of innate immune signaling [89]. Concerning the latter, PB1-F2 has been
shown to interact with the transmembrane domain of MAVS, leading to the dissipation of
the mitochondrial membrane potential, which is essential for MAVS-mediated signaling.
Moreover, association of PB1-F2 with MAVS could also impair its oligomerization at
mitochondria, which is required for downstream signaling [90,91].
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PA-X is encoded by IAV segment 3 via +1 ribosomal frameshifting, generated by
ribosomal pausing on a rare CGU codon. PA-X shares the first 191 amino acids with PA,
containing the endonuclease domain [92,93]. PA-X expression induces a general inhibition of
host cell translation. This host cell shut-off is due to the degradation of host PolII-generated
transcripts by the endonucleolytic domain in coordination with the 5′ to 3′-exonuclease
Xrn1, leading to, among other effects, the inhibition of innate immune response [94–97].

4. IAV Restriction Factors

Restriction factors come in many forms but with the common effect of inhibiting viral
replication. These proteins can act at various stages of the viral lifecycle and have also
started emerging as being able to potentiate viral sensing and regulate antiviral signaling
pathways. In this part of the review, we will focus on restriction factors that are able to
inhibit IAV at various stages of its life cycle, be they constitutively expressed or induced
following viral sensing. Figure 3 gives an overview of all restriction factors described here
and the step they inhibit.
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Figure 3. Schematic representation of IAV life cycle with the host cell restriction factors that target
each step. Factors highlighted in green are those that are generally accepted or that have consequent
data backing them, in orange factors that need further investigation to confirm their role as IAV
restriction factors for instance in vivo (e.g., NCOA7-AS) and in grey, those for which very little data
is available.
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4.1. Restriction Factors Inhibiting Viral Entry

Viral entry into a host cell is an absolutely critical step in the life cycle of viruses, only
possible if the adequate receptors are present at the cell surface. Interestingly, a number of
restriction factors act at this step and are reviewed hereafter.

4.1.1. IFITMs: Major, Pan-Viral Restriction Factors Preventing Cytosolic Entry

Interferon-induced transmembrane proteins (IFITMs) are small transmembrane pro-
teins [98,99] that are evolutionary conserved across vertebrates [100,101]. In humans, the
IFITM family is composed of five genes (IFITM1; IFITM2; IFITM3; IFITM5; IFITM10),
whereas in mice, two additional genes (Ifitm6; Ifitm7) have been described. Generally,
vertebrate IFITM families can be divided into immunity-related IFITM (IR-IFITM), IFITM5
and IFITM10. Initially, IFITM3 was identified in a siRNA screen to identify host factors
modulating IAV infection [102]. IFITM1/2/3 proteins have since been shown to exert an
antiviral activity against a wide range of viruses (reviewed in [103]). IFITM proteins are
thought to be type IV transmembrane proteins based on epitope mapping in cells [104–106]
and preliminary structural studies [107]. IFITMs are mostly located in early and late endo-
somes, and lysosomes for IFITM2/3, as shown by immunofluorescence studies [108,109]
and live cell imaging [110,111]. However, IFITM1 lacks the AP2 sorting motif (YXXΦ) at the
N-terminus and is rather located at the plasma membrane. Both the antiviral mechanism
and specificity of IFITMs are linked to their cellular localization, with IFITM1 being more
active against viruses that enter the target cell at the plasma membrane, whereas IFITM2/3
preferentially inhibit viruses entering target cells through endocytosis. Of note, IFITM3
can be incorporated into nascent viral particles and prevent viral spread by inhibiting
subsequent viral fusion with a new target cell, as shown in the case of HIV-1 [112,113].

IFITM proteins are known to prevent cytosolic entry of the targeted viruses and a
number of hypotheses to explain their activity, mostly based on the study of IFITM3,
have emerged (reviewed in [99]). Overexpression of IFITM3 leads to an expansion of late
endocytic compartments (Rab7- and LAMP1-positive compartments) along with their over-
acidification, which suggests that IFITM3 could have a role in controlling pH-dependent
viral entry [114]. It has also been proposed that IFITM3 inhibits hemifusion and lipid
mixing [115]. However, it was later shown that IFITM3 prevents IAV cytosolic entry without
inhibiting hemifusion, by affecting the formation of the fusion pore [116]. Interestingly, the
impact on the formation of the fusion pore was later confirmed and IFITM3-positive vesicles
were shown to fuse with vesicles containing incoming virions before hemifusion. This
phenomenon was specific to viruses restricted by IFITM3 only and leads to an increased
rate of virus trafficking to late endocytic compartments [111,117].

IFITM proteins possess intramembrane (IMD) and transmembrane (TMD) domains
separated by an intracellular loop (ICL) and variable N- and C-terminal domains. All these
domains play an important role in anti-IAV activity (as reviewed in [103]). Indeed, the
CD225 domain, which is highly conserved among them, comprises the IMD, the TMD
and the ICL domains and is essential for antiviral activity [118]. Moreover, deletion of the
N-terminal domain of IFITM3 resulted in an impaired ability to inhibit IAV [118]. Specific
motifs have been shown to be important for the antiviral activity, namely the 20YXXΦ23

motif in IFITM2/3, which is important for correct subcellular localization [119] or the
81SVKS84 motif of IFITM3 in the CIL domain, which is essential for IAV inhibition [120].
IFITM proteins are highly modified by post-transcriptional modifications (PTMs), which
modulate their antiviral activity. Indeed, murine and human IFITM3 have been reported
to be S-palmitoylated on cysteines 71, 72 and 105, and this is important for antiviral activ-
ity [104,121]. S-palmitoylation is a reversible PTM, which increases IFITM3 hydrophobicity
and affinity for cellular membranes and controls its clustering to membranes [121]. Fur-
thermore, other PTMs have been shown to play a pivotal role in IFITM3 restriction of
IAV. Indeed, phosphorylation of tyrosine 20 [122,123], ubiquitination of lysines 24, 83, 88
and 104 [104] and monomethylation of lysine 88 [122] have been shown to alter IFITM3
antiviral activity against IAV.
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Importantly, in vivo studies in mice have confirmed that IFITM3 is a potent inhibitor
of IAV infection [124,125]. Indeed, infection of Ifitm3−/− mice with different strains of
IAV leads to a fulminant viral pneumonia and to death. More specifically, upon infection
with the low-pathogenic A/X-31 (H3N2) IAV strain, mice showed little difference in virus
replication in the lungs during the first 48 h of infection. However, lungs of Ifitm3−/−

mice contained 10-fold higher levels of replicating virus than the WT mice at 6 days post-
infection and this was associated with profound morbidity [124]. Analysis of immune
cells recruited to lungs showed that the lack of IFITM3 resulted in a reduced proportion
of CD4+ and CD8+ T-cells but an elevated proportion of neutrophils [124]. This was also
associated with increased levels of pro-inflammatory cytokines such as TNF-α, IL-6, G-CSF
and MCP-1 [124]. Moreover, extrapulmonary lesions, such as myocarditis, have also been
reported upon IAV infection in mice, and IFITM3 expression in cardiac tissue has been
shown to protect mice against such cardiac lesions [126]. Interestingly, IFITM3 also plays
a pivotal role in protecting immune cells from IAV infection. Following IAV infection in
mice, IFITM3 is upregulated in respiratory DCs, limiting viral load and apoptosis in those
cells. In the absence of IFITM3, DCs also show impaired migration from lung mucosa to
the draining lymph node, thus preventing antigen presentation to naïve CD8+ T-cells and
the establishment of adaptive immunity [127]. Similarly, IFITM3 is transiently expressed in
activated T-lymphocytes, following cognate antigen recognition or type I IFN stimulation.
However, IFITM3 is mostly expressed in lung tissue-resident memory T cells (TRM), a cell
population that ensures the first line of defense against pathogen re-encounter while being
directly exposed to infection. In TRM cells, IFITM3 expression is maintained after primary
IAV infection due to hypomethylation of its promoter, leading to enhanced survival after a
new challenge with IAV [128]. Altogether, these observations indicate that IFITM3 plays a
pivotal role in the establishment of both innate and adaptative immune responses.

As mentioned above, host genetics strongly impacts susceptibility to various infections.
Two genetic variations within human IFITM3 have been described to be associated with
increased IAV infection severity. Both are single nucleotide polymorphisms (SNPs), the
most prevalent being the rs12252-C, mainly present in Asian populations [129]. Multiple
studies, including two meta-analyses, found that rs12252-C is associated with severe
outcomes following IAV infection [124,130–133] (meta-analyses: [134,135]). However, these
results are controversial, as other studies showed no association between the polymorphism
and the risk of severe influenza [136–138]. rs12252-C is a synonymous SNP which is located
at a splice acceptor site, potentially leading to a putative truncated IFITM3 with a 21 amino
acid deletion at its N-terminus, termed D21-IFITM3 [124]. Nevertheless, an in vitro study
showed that D21-IFITM3 still restricts IAV infection [139], and studies performed in rs12252-
C homozygous patients have failed to detect the truncated isoform of IFITM3 by high-
throughput RNA-sequencing [140,141]. The second SNP associated with severe risk of
influenza infection is rs34481144-A, mainly present in Caucasian populations [129]. This
SNP is present in the 5′UTR region of IFITM3, in the promoter region. It modulates IFITM3
expression by governing CTCF binding to the gene promoter, thus inactivating IFITM3
transcription. However, in a recent Brazilian cohort, rs34481144-A was not associated with
severity or mortality during IAV infection, nor with IFITM3 levels [138], highlighting the
complexity of this type of analysis.

Considering the importance of several species in the zoonotic lifecycle of influenza
viruses, numerous studies have elucidated roles of IFITM proteins in the restriction of
IAV in avian species, swine and bats. Of note, the IR-IFITM gene cluster is conserved
across mammals [142]. Indeed, it has been shown that five IFITM proteins are present in
swine (two homologs of IFITM1, and one homolog of IFITM2, IFITM3 and IFITM5), which
display antiviral activity against IAV in porcine cells [143]. The subcellular localization of
swine IFITM proteins is similar to their human homologs [143]. In bats, IFITM3 has been
shown to inhibit IAV cell entry and to be located in early/late endosomes [144]. Moreover,
bat IFITM3 is S-palmitoylated on cysteines 71, 72 and 105, just as the human homolog,
which is also important for its antiviral activity [145]. Finally, the repertoire of IR-IFITM is
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conserved between mammals and avian species. IFITM3 has been shown to restrict IAV
in both chickens [146] and ducks [147], but no effect of duck IFITM1, IFITM2 and IFITM5
has been observed [147]. Following infection with both low and highly pathogenic avian
influenza (LPAI/HPAI) strains, duck IFITM1/2/3 are highly upregulated in the lungs and
the ileum from day 1 post-infection, whereas only IFITM3 was modestly upregulated in
the ileum of chickens.

4.1.2. NCOA7-AS: A V-ATPase Regulator, Preventing Endocytosis-Mediated Viral Entry

The short isoform of Nuclear Receptor Coactivator 7 (NCOA7), NCOA7-Alternative-
Start (NCOA7-AS, also called NCOA7-B), belongs to the TLDc (Tre2/Bub2/Cdc16 (TBC),
lysin motif (LysM), domain catalytic)-containing family of proteins. Seven TLDc proteins
are found in humans and mice, including Oxidation resistance (OXR) proteins, and NCOA7
short and long isoforms (AS and Full-Length, FL, respectively) [148]. TLDc proteins
have been shown to play a protective role against oxidative stress, through an unknown
mechanism [149] (reviewed in [148]). NCOA7-FL is a known interactor of the estrogen
receptor, which translocates to the nucleus upon estradiol treatment, where it was suggested
to act as a transcriptional coregulator [150]. NCOA7-AS does not seem to share this property
and is uniquely upregulated by type I IFNs via an internal promoter [151]. Recently,
NCOA7-AS has been shown to inhibit infection with IAV and other viruses entering the
cell via endocytosis, by limiting viral entry into the cytoplasm of host cells [152]. Both
NCOA7-FL and -AS have been shown to interact with several subunits of the vacuolar
ATPase (V-ATPase), the proton pump responsible for endolysosomal acidification [152–154].
Through an as yet unelucidated mechanism, NCOA7-AS interaction with the V-ATPase
leads to a higher acidification of the endolysosomal system, which increases antigen
degradation and seems detrimental to IAV by, possibly, affecting the ability of HA to allow
fusion [152]. Interestingly, NCOA7-AS acts independently of IFITM3 [152], but further
work is now warranted to fully elucidate the NCOA7-AS molecular mechanism of action
as well as its importance in vivo.

4.1.3. ZMPSTE24: An IFITM Cofactor, Which Also Acts Independently

Zinc-metallopeptidase STE24 (ZMPSTE24) is a zinc-metalloprotease containing seven
transmembrane domains, which is constitutively expressed and localized at the membrane
of cytoplasmic organelles as well as at the inner nuclear membrane [155]. In mammals,
this protease is notably required for the maturation of lamin A, which is important for
nuclear architecture. ZMPSTE24 has been recently identified as a restriction factor of a large
number of viruses entering cells via endocytosis, among which IAV [155], [156]. However,
ZMPSTE24 expression is not upregulated by type I IFNs or viral infection [155]. ZMP-
STE24’s antiviral activity is independent of its protease activity, as shown by mutations of
the conserved HEXXH catalytic motif [155]. Reminiscent of IFITM3 or NCOA7-AS, ZMP-
STE24 inhibits cytosolic entry of IAV. Interestingly, ZMPSTE24 has been shown to interact
with IFITM1/2/3 and to be required for IFITM antiviral activity. However, IFITM proteins
are not necessary for ZMPSTE24′s antiviral activity, as overexpression of IFITM3 in ZMP-
STE24−/− cells does not restore the restriction phenotype. This suggests that ZMPSTE24
acts downstream of IFITM proteins, as well as independently of IFITMs. Furthermore,
in vivo studies in laboratory mice revealed that deletion of Zmpste24 leads to higher vi-
ral titers upon IAV infection, along with an increased production of pro-inflammatory
cytokines and a higher mortality rate [155].

4.1.4. CH25H: A Restriction Factor In Vitro but an Enhancer of Inflammation In Vivo

Cholesterol-25-hydrolase (CH25H) is an enzyme induced by type I IFNs and which
catalyzes the oxidation of cholesterol into 25-hydroxycholesterol (25HC), a soluble oxys-
terol. Both CH25H and 25HC are important regulators of cholesterol homeostasis. Shortly,
CH25H and 25HC inhibit the transcription factor sterol regulatory element-binding protein
(SREBP) and activate the transcription factor liver X receptor (LXR). These two transcrip-
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tional factors have a great importance in modulating cellular cholesterol homeostasis [157].
Moreover, 25HC also represses the expression of the HMGCR gene and induces the degra-
dation of the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) protein, which
leads to an inhibition of the cholesterol biosynthesis pathway. CH25H and its product
25HC have been shown to be involved in the restriction of a large number of enveloped
viruses by inhibiting the fusion between viral and endosomal membranes [157]. This
antiviral activity was also observed in vitro for IAV both in canine MDCK cells (i.e., the
cell line typically used for IAV amplification in vitro) [158] and in murine immortalized
airway epithelial cells [159], suggesting that CH25H is a restriction factor for IAV. However,
surprisingly, deletion of Ch25h in a mouse model of IAV infection is protective [159], and is
associated with a decreased inflammatory-induced pathology. This discrepancy between
in vitro and in vivo results may be correlated with a role of CH25H as an amplifier of
inflammation, which surpasses its restriction activity [159].

4.1.5. B4GALNT2: A Factor with the Potential of Inhibiting Avian IAV Entry
When Overexpressed

Genetic loss-of-function screens such as whole-genome CRISPR/Cas9 screens or RNAi
screens have been widely used to identify host-dependency factors. However, little have
focused on discovering factors that inhibit viral replication, until recently. Indeed, a new
approach based on a whole-genome CRISPR/Cas9 activation screen recently led to the
identification of β-1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2) as a pan-avian
influenza virus inhibitor [160]. B4GALNT2 is a glycosyltransferase, which catalyzes the
transfer of a N-acetylgalactosamine (GalNAc) to the penultimate galactose of α-2.3-linked
sialic acids. Thus, without changing the relative amounts of sialic acids at the cell surface,
B4GALNT2 prevents the interaction of HA with these receptors. The specificity of sialic acid
targeted by this protein explains the spectrum of IAV strains inhibited, namely avian strains,
which have a preference for α-2.3-linked sialic acids [160]. However, the importance of
endogenous B4GALNT2 in the control of avian IAV has not been demonstrated by loss-of-
function studies, which would be important to carry out. Moreover, as pigs are considered
as mixing vessels, it would be interesting to study the role of B4GALNT2 in the inhibition
of avian IAV replication in pigs.

In addition to B4GALNT2, this CRISPR/Cas9 activation screen identified two other
potential influenza inhibitors: the transmembrane 9 superfamily member 2 (TM9SF2) and
Ras Additionally, Rab Interactor 2 (RIN2) [160]. TM9SF2 is an endolysosomal protein whose
role in the maturation of the endosome was postulated, while RIN2 is an interactor of the
early endosome-associated protein Rab5. However, neither the molecular mechanisms
involved in their restriction activity nor their physiological role have been further explored.

4.1.6. MUC1: A Decoy for IAV Viral Particles

Airway epithelial cells secrete mucus, which constitutes one of the first physical
barriers to infection in the lungs, acting like a shield blocking the binding of pathogens
to their cellular receptors. Proteins from the mucin glycoprotein family, and notably cell
surface mucins (cs-mucins), are important components of the mucus. They contain a large
extracellular domain which displays several oligosaccharides, and which is non-covalently
linked to a transmembrane domain, allowing it to be shed from the cell surface. Moreover,
the cytoplasmic tail of cs-mucins can activate signaling cascades upon phosphorylation
and interaction with intracellular adaptor molecules [161–165]. MUC1 is a member of
the cs-mucin family, is constitutively expressed and is upregulated by type I IFNs [166].
In addition to its shield role, MUC1 was suggested to be an important downregulator of
infection-driven inflammation responses upon bacterial infections [167]. Interestingly, this
role extends to IAV infection, as IAV-infected Muc1−/−mice display, more rapidly, high viral
loads and a faster, enhanced inflammatory response than wild-type mice [168]. In vitro,
IAV was found to interact with MUC1 and to trigger the shedding of its extracellular
domain [168]. This secreted extracellular domain could then act as a decoy and bind
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IAV to limit cell infections. As cs-mucins are highly conserved across species, it could be
interesting to explore the potential antiviral role of MUC1 in other species.

4.2. Restriction Factors Inhibiting Viral Genome Replication

The steps of nuclear import, transcription, replication, protein translation, vRNP
assembly and nuclear export are targeted by a large number of restriction factors acting
either by inhibiting viral replication and transcription, translation or by degrading viral
components such as the subunits of the viral polymerase or vRNAs.

4.2.1. MX Dynamin-Like GTPases: Broad-Spectrum Antiviral Proteins with Possible
Multiple Modes of Action

The family of large dynamin-like GTPases all share a similar three-dimensional struc-
ture and general organization: a N-terminal domain of various length and unknown
structure, a globular head that sports the GTPase activity, a stalk domain as well as a
middle domain (or bundle signaling element, BSE) that allows the flexibility of these
mechanoenzymes [169]. Human Myxovirus resistance proteins 1 and 2, MX1 and MX2
(also named MxA and MxB) are members of this family and possess potent antiviral activity
against a broad range of viruses [170]. MX1 is best known for its ability to inhibit IAV
infection, but it can also inhibit a wide range of positive- or negative-single stranded or
double stranded RNA viruses as well as certain DNA viruses [170], and MX2 inhibits
HIV-1, Herpesviruses, HCV and HBV [171–177]. The MX genes were first discovered
in mice (MmMx1), with the serendipitous observation that the A2G mice strain were
resistant to IAV infection whereas most inbred laboratory strains, lacking a functional
MmMx1 locus, were highly susceptible [178]. The subsequent creation of transgenic mice
expressing a functional MmMx1 or human MX1 confirmed the importance in vivo of MX1
proteins [179,180]. MX1 is an ISG induced by type I or III IFN signaling [181], but it is
commonly known that ectopic expression of MX1, without the induction of other ISGs, is
sufficient for IAV restriction. Human MX1 is a cytoplasmic protein whereas mouse MmMx1
is mostly nuclear, which would probably hint at slightly different mechanisms of action for
IAV restriction.

MX1 proteins possess intrinsic antiviral determinants that are essential for effective
IAV restriction. Indeed, the presence of a functional GTPase domain [182], an intact
BSE [183] and oligomerization via the stalk domain [184] are essential for correct anti-
IAV activity. Other essential determinants are two loops localized at the end of the stalk:
the L2 and L4 loops [185]. The L4 loop, which has been positively selected throughout
evolution [186], harbors essential amino acids (F561 and G562) for its antiviral activity [187].
This is different from MX2, which only needs its N-terminal domain and an oligomerization
domain for HIV-1 restriction [188–190]. Despite many years of intense study, the exact
mechanism of action of MX proteins remains misunderstood. What is largely admitted
nevertheless in the case of MX1 is that the main viral target in the case of IAV seems to
be the viral NP protein, as it has been shown that mutations in NP can confer resistance
to MX1 restriction [191–194]. This is reinforced by the fact that avian strains of IAV are
more susceptible to inhibition than human strains and this has also been attributed to
NP [180,195]. In the case of MmMx1, PB2 could also be an additional target [196,197]. MX1
proteins can form dimers and further oligomerize through numerous interfaces and have
been theorized to form ring-like structures that could circle around vRNPs, possibly by
interacting with NP (and potentially PB2) [196,198], but experimental data supporting
this model are still lacking. In any case it seems that the antiviral mechanism of action of
MX1 may act at several steps of the viral lifecycle, be it nuclear import of vRNPs, viral
protein production or directly on replication itself [170,199–201]. To fully understand the
fine details of MX1-induced IAV restriction, more studies are needed to confirm/contest
the many hypotheses that exist in the literature.

Several studies have been performed to determine the importance of MX1 in humans
through the search for polymorphisms within the human population [202–204]. G-G
interface allelic variants were discovered, resulting in loss of GTPase activity, but were
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found in heterozygotes and did not show any dominant-negative effect on wild-type
MX1 [202,203]. Several other variants were discovered in the stalk domain that resulted
in loss of antiviral activity with dominant negative effects [203]. Unfortunately, no data
of IAV infection history from homozygous carriers of these mutations are available. This
aspect is nicely reviewed in [205].

Another interesting aspect of MX1 biology is the fact that mammalian MX1 proteins
are active in cell types belonging to other species. For example, human MX1 expressed
in mouse cells is active against IAV [206] and the opposite is also true for MmMx1 in
human cells [196,207]. Transgenic mice expressing human MX1 are also protected against
IAV infection [180,208,209] and have proven to be very useful models in the field. These
observations may either suggest the existence of common crucial cofactors conserved
between species, or that MX1 proteins are sufficient by themselves to inhibit IAV, but
further in-depth studies are required to elucidate this.

A secondary, nonetheless important, role in IAV control was recently discovered for
MX1. Indeed, MX1 was found to be an inflammasome sensor in human respiratory ep-
ithelial cells upon IAV infection, triggering IL-1β secretion [209]. The MX1 inflammasome
formation was found to be dependent on MX1 oligomerization and also observed with cy-
toplasmic porcine MX1, but not nuclear MmMx1 [209], which may potentially be explained
by the differential localization of these proteins. Transgenic mice expressing human MX1
induced inflammasome activation in respiratory epithelium upon IAV challenge [209],
showing a potential relevance in vivo. Nevertheless, the authors showed that the MX1
inhibition of early steps of IAV replication was independent of the inflammasome [209],
reinforcing the idea that MX1 plays multiple roles during IAV infection.

While MX1 from humans and mice as well as in other mammals such as rats, pigs and
bats are potent anti-influenza A factors [210–212], in ducks and chickens, MX1 seems to
be inactive against avian IAV. Indeed, chicken MX1 was shown to be devoid of antiviral
activity against several low and highly pathogenic strains and to be non-essential for the
IFN response in chickens [213–216]. This could be due to the fact that chicken MX1 does
not possess a GTPase activity, which is known to be crucial for the anti-IAV activity of
human and mouse MX1 [182,215]. Similar to chicken MX1, duck MX1 has not been found
to possess antiviral activity against IAV [217]. It would be interesting to understand the
molecular mechanisms that lead to this loss of function in poultry as MX1 seems to be a
crucial IAV restriction factor, especially since the overexpression of human MX1 or MmMx1
in chicken cells is able to inhibit IAV replication [215].

4.2.2. GBP Dynamin-Like GTPases: Indirect and Direct Inhibitors

Guanylate binding proteins (GBPs) are also part of the large dynamin-like GTPases,
like MX proteins, and have been shown to have a broad antimicrobial restriction activity,
encompassing bacteria, protozoa and viruses [218]. The GBP family is composed of seven
members which are ISGs induced by type I and type II IFNs [219]. Some of these proteins
have been shown to inhibit IAV [220–223]. Indeed, a splice variant of human GBP3, hGBP-
3∆C, and to a much lower extent GBP1, were shown to possess anti-IAV activity [220].
Overexpression of hGBP-3∆C potently decreased IAV replication and, conversely, silencing
of GBP3 significantly increased IAV replication (by over 1 log). The overexpression of
hGBP-3∆C decreased IAV polymerase activity and the accumulation of viral RNA species,
and GTP binding was found to be necessary for IAV restriction by hGBP-3∆C [220]. An-
other study observed antiviral activity of GBP1 through overexpression experiments [221],
however depletion experiments are still lacking to confirm the physiological role of GBP1
in inhibiting IAV replication. GBP1 antiviral activity was suggested to be antagonized by
NS1, but only ectopic expression of NS1 was used to show this [221], therefore further
evidence is needed. In cells from guinea-pigs, guinea-pig GBP1 has been proposed to play
a role in RIG-I mediated restriction of IAV, as its knockdown dampened the IFN response
as shown by reducing the induction of MX1 mRNA after infection [224]. In line with
this, ectopic expression and silencing experiments showed that human GBP5 modestly
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inhibits IAV replication, and this was proposed to be due to an indirect effect, through the
regulation of the IFN and inflammatory responses [222]. Interestingly, GBP2 and GBP5
were also shown to inhibit the furin protease and therefore to have a negative impact on
infection by various viruses, including a modest effect on IAV [223]. On the contrary, GBP7
knockout out by CRISPR/Cas9 reduced IAV replication and its overexpression increased
IAV replication [225]. This was found to be due to the suppression of the innate immune
system by GBP7, defining it as a proviral factor [225]. In the future, it would be interesting
to see if all these different observations could be recapitulated in Gbp KO mice. Finally,
non-synonymous polymorphisms in human GBP2 have been linked to a reduced respon-
siveness to IFN treatment during HBV treatment [226], but no data on the relevance of GBP
polymorphisms in IAV infection response have been reported.

4.2.3. TRIM Proteins: A Large Family of Antiviral Proteins Implicated in Innate
Immune Signaling

The tripartite motif (TRIM) protein family contains more than 80 proteins in humans,
which are involved in various cellular processes, including cell proliferation, autophagy
and immunity [227]. They are characterized by a conserved domain organization at the
N terminus (known as the TRIM or RBCC motif) composed of a catalytic RING domain
which possesses an E3-ubiquitin ligase activity, one or two B-box domains and a coiled-
coil dimerization (CCD) domain. They also contain C-terminal domains, which vary
among TRIM proteins, for instance the SPRY domain or the PRY domain [227]. Various
TRIM proteins have been shown to restrict IAV infection and act either by inducing the
degradation of viral components or by inhibiting viral replication.

- Role of TRIM22, TRIM41 and TRIM14 in the degradation of viral components:

TRIM22 has been shown to be upregulated by type I IFNs [228,229] or by IAV infec-
tion and to inhibit IAV [228]. TRIM22 knockdown increases IAV replication by more than
one order of magnitude at low multiplicities of infection [228]. Moreover, TRIM22 is one
of the players of the IFN-induced restriction of IAV as shown by the reduced inhibition
observed once silenced [228]. Overexpression experiments have shown that TRIM22 inter-
acts with NP and poly-ubiquitinates it via its RING domain, leading to NP degradation
in a proteasome-dependent manner [228]. Interestingly, some H1N1 strains such as the
H1N1 strains isolated in 1933 and 1934 (i.e., WSN and PR8) and pH1N1 were shown to
be insensitive to TRIM22-mediated antiviral activity, whereas more recent seasonal H1N1
isolates were restricted by TRIM22 [230]. The presence of four R to K substitutions in
NP differentiate the restricted strains from the non-restricted, potentially being the conse-
quences of adaptation due to a sustained circulation in humans since 1918. Introduction
of these mutations in resistant strains sensitizes them to TRIM22 restriction. This showed
that adaptative mutations may sometimes surprisingly induce greater sensitivity to innate
immune effectors [230].

Additional TRIM proteins inhibit IAV by interacting with NP, promoting its degra-
dation. This is the case of TRIM41, which is notably not IFN-inducible [229,231]. TRIM41
interacts with NP via its C-terminal SPRY domain, mediates NP poly-ubiquitination via
its RING domain, which in turn induces NP degradation by the proteasome [232]. In-
terestingly, TRIM14, a TRIM protein lacking a RING domain and upregulated by type
I IFNs [229], has also been proposed to restrict IAV and to interact with NP [231]. This
interaction, notably mediated by the PRYSPRY domain, alters NP stability by K48-linked
polyubiquitination and NP-mediated proteasomal degradation. This suggests that the
NP-TRIM14 interaction leads to the recruitment of a yet-to-define functional E3 ubiquitin
ligase to mediate NP polyubiquitination [231].

TRIM32 was identified as a PB1 binding partner by mass spectrometry [233]. TRIM32
is constitutively expressed and located in the cytoplasm in normal conditions, but translo-
cates to the nucleus upon IAV infection. TRIM32 overexpression inhibits IAV infection and
its silencing increases IAV replication (by ~1 log) as measured by plaque assays. TRIM32
seems to inhibit IAV infection by inducing poly-ubiquitination of PB1, which leads to
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its proteasomal degradation and to the inhibition of the viral polymerase activity [233].
Further studies are still warranted to demonstrate the physiological role of TRIM32 in the
control of IAV replication by using Trim32-deficient mice [234,235].

Finally, TRIM35, another ISG, which plays a general role in the induction of type I
IFNs, leads to PB2 K48-linked polyubiquitination and to its proteasomal degradation [236].
Importantly, TRIM35 silencing has a significant impact on IAV replication in vitro (about
1 log) and Trim35−/− mice are more susceptible to IAV replication and induced death [236].

- Role of TRIM25 and TRIM56 in the inhibition of viral genome replication:

TRIM25 is a protein that plays a fundamental role in RIG-I-dependent innate immune
sensing of IAV and other viruses. Indeed, ubiquitination of RIG-I by the E3 ubiquitin ligase
TRIM25 is necessary for RIG-I activation, thus leading to the production of type I and
III IFNs following recognition of RNA ligands (reviewed in [237]). Interestingly, the NS1
proteins from all IAV strains can interact with TRIM25, however this interaction does not
always translate to an inhibition of the IFN response [84–86]. Interestingly, an additional
role of TRIM25 in the restriction of IAV has been recently unraveled [238]. Indeed, nu-
clear TRIM25 interacts with vRNPs and inhibits viral RNA synthesis independently of its
ubiquitin ligase activity. More precisely, TRIM25 inhibits the onset of RNA elongation by
preventing the movement of viral RNAs into the RdRp [238].

The overexpression of another TRIM protein, TRIM56, has been shown to restrict
IAV infection (by 1 log) as measured by plaque assays [239]. Moreover, stable knockdown
of TRIM56 led to a 6-fold increase of de novo infectious virion production. Interestingly,
TRIM56 antiviral activity is independent of its ubiquitin ligase activity and overexpression
of a 63-residue segment present in its C-terminal has the same antiviral activity as the full
length TRIM56. Moreover, the authors showed that viral RNA synthesis was impeded
in infected cells overexpressing TRIM56 [239]. However, an in vivo study demonstrated
that Trim56−/− were not more susceptible to IAV infection than wild type mice, failing to
validate a physiological role of TRIM56 in the control of IAV replication in vivo [240].

Of note, the validation of the antiviral activity of some of the TRIM proteins in vivo
can be challenging, not because of the absence of mice models, but given the importance of
many TRIM proteins in the activation or regulation of innate immune sensing pathways.
Moreover, TRIM proteins have not been extensively studied in pigs, bats or birds in terms
of diversity of the repertoire, conservation and antiviral activity compared to their human
orthologs, studies which could nevertheless be of great interest.

4.2.4. ZAP and ZFP36L1: Antiviral Zinc Finger Proteins

Zinc finger Antiviral Protein (ZAP, also named ZC3HAV1 for Zinc Finger CCCH-type
containing Antiviral 1) is an IFN-induced antiviral protein that inhibits a large variety
of viruses (reviewed in [241]). ZAP is expressed as four isoforms (S, M, L and XL) [242].
However, ZAP-S and ZAP-L are the predominantly expressed isoforms. ZAP-S and ZAP-M
isoforms are upregulated by type I IFNs, ZAP-S being the most upregulated [242]. The main
two isoforms of human ZAP protein (ZAP-S and ZAP-L), arising from alternative splicing,
differ only by the presence or the absence of a poly ADP-ribose polymerase (PARP)-like
domain at the C-terminus. Both isoforms have a N-terminal domain containing four
CCCH-type zinc fingers as well as a large central domain containing a TiPARP homology
domain (TPH) and a WWE domain. The four zinc fingers are responsible for the RNA
binding [243]. A zinc ion is coordinated via three cysteines and one histidine in each zinc
finger, although their folding and protein sequences are different.

ZAP has been shown to inhibit viral replication by repressing the translation or pro-
moting the degradation of viral mRNAs. To mediate this antiviral activity, ZAP recognizes
and interacts directly with specific RNA elements enriched in CpG dinucleotides [243,244].
ZAP-L silencing modestly increased IAV replication in human cells, as measured by plaque
assays [245]. Ectopic expression of tagged viral proteins and ZAP-L showed that ZAP-L
interacts with PB2 and PA subunits of IAV polymerase in a PARP domain-dependent man-
ner [245]. ADP-ribosylated PA and PB2 are associated with ZAP-L and then ubiquitinated,
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which leads to their proteasomal degradation. The viral protein PB1 interacts with ZAP-L
and counteracts its antiviral activity. Indeed, PA and PB2 binding sites on ZAP-L are in close
proximity to their PB1 binding sites, thus leading to the dissociation of PA and PB2 from
ZAP-L [245]. Furthermore, the ability of ZAP-S (which lacks the PARP domain) to inhibit
IAV has also been shown by overexpression experiments [246]. However, the relevance of
these findings is questionable, as Zc3hav1 knockout had no impact on IAV replication in
murine embryonic fibroblasts (MEFs) [246]. ZAP-S overexpression inhibits viral protein
expression by binding to viral mRNAs, promoting their degradation and inhibiting their
translation [246]. The viral protein NS1 seems able to antagonize overexpressed ZAP-S
through an unknown mechanism [246]. Nevertheless, it is tempting to speculate that NS1
might antagonize ZAP-S through TRIM25 inhibition given that the TRIM25-mediated ubiq-
uitination of ZAP-S seems critical for its antiviral activity and that some NS1 mutants fail
to do so [246]. No current validation of ZAP importance in vivo to restrict IAV replication
has been published. However, Zc3hav1−/− mice have been previously described in the
literature and could be used to serve that purpose [247,248].

ZAP appears to be evolutionary conserved in animals [249–251]. However, little is
known about the antiviral activity of ZAP orthologues in pigs, bats or in avian species.
Analysis of the antiviral activity and the binding specificity of ZAP from different avian
species, showed that ZAP from aquatic birds exhibited a broader antiviral activity, poten-
tially due to a lesser selectivity for CG-enriched RNA elements [250]. It could be of great
interest to analyze the restriction of IAV by ZAP from different species, given that ZAP
appears to be an important selection pressure shaping genome composition and could
greatly influence cross-species transmission.

Another CCCH-type zinc finger protein, ZFP36L1 has been recently discovered to har-
bor anti-influenza activity [252]. ZFP36L1 was shown to be induced upon TNF-α treatment
and by viral infection suggesting a potential role of this protein in the host cell antiviral
defense. However, ZFP36L1 is not IFN-inducible [166]. Overexpression of ZFP36L1 de-
creased viral titer (around 1 log), as measured by plaque assays and decreased M1, M2,
NS1, NS2 and HA protein levels, but not mRNA levels. Conversely, knockdown of this
protein increased viral replication (around 1 log), and this was rescued by complementation.
The proposed mechanism of action is that ZFP36L1 decreases M1 and NS2 protein levels,
inhibiting vRNP nuclear export. This is supported by the fact that NP seemed to be trapped
in the nucleus under overexpression conditions. Zfp36l1−/− mice have been generated in
other studies [253] and could be used to validate this restriction factor in vivo.

4.2.5. IFITs: Friends or Foes?

The IFN-induced proteins with tetratricopeptide repeats (IFITs) are an RNA binding
family of ISGs that are among the most upregulated during antiviral signaling. There are
four IFIT proteins coded in humans: IFIT1 (or ISG56), IFIT2 (or ISG54), IFIT3 (or ISG60)
and IFIT5 (or ISG58). These proteins are known to inhibit a wide range of viruses [254].
The first antiviral activity attributed to these proteins was the ability to bind eIF3 subunits
and decrease cap-dependent translation efficiency [255]. Later, IFITs were found to bind
non-self 5′-ppp or 2′-O unmethylated RNA [256–258] as well as to viral proteins [259].
Additionally, of note is the fact that IFITs can associate with each other which can modulate
their functions (reviewed in [260]). In the case of IAV, data is quite conflicting. Indeed,
the individual silencing of IFIT1, 2 and 3 was reported to increase IAV replication, as mea-
sured by a viral PolI reporter expression system after infection, suggesting the IFIT1/2/3
heterotrimer complex could be responsible for this antiviral activity [256]. However, inter-
estingly, another more recent study, using both CRISPR/Cas9 knockout and overexpression
experiments, showed that human and murine IFIT1 are not major restriction factors of
IAV [261]. The authors also showed that IFIT1 actually has a low binding affinity for 5′-
ppp. Moreover, in vivo studies have shown that Ifit1−/− mice do not show any differences
compared to WT mice in regard to IAV infection, indicating that murine IFIT1 does not
have a major role in restriction or pathogenesis of IAV in vivo [261]. In addition, a major
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study recently showed that IFIT2 is actually a cofactor for IAV [262]. Indeed, IFIT2 was
shown to be repurposed by IAV to become a proviral effector promoting the translation of
viral mRNAs [262]. Therefore, further studies are required to understand the role, if any, of
mammalian IFITs as restriction factors of IAV in vitro and in vivo.

An avian IFIT (avIFIT) protein in ducks was found to resemble the structure of
mammalian IFIT5. Upon testing, the authors showed that chicken cells stably expressing
duck IFIT inhibited IAV infection (by 1 log) [263]. They also showed that avIFIT was able
to bind to NP and also enhance the IFN response. Chicken IFIT5 (chIFIT5) may also harbor
antiviral properties as it has been shown to be able to interact with 5′-ppp-containing
viral RNAs [264]. The same group later showed that transgenic chickens stably expressing
chIFIT5 had marked resistance to H5N1 infection [265], while another study showed that
CRISPR/Cas9 chIFIT KO cells allowed for higher IAV replication (around 1 log) [263].
Further studies are needed to understand the molecular mechanisms at play for avian IFIT
IAV inhibition and the differences between the avian and mammalian proteins.

4.2.6. OAS-Family Proteins: NS1-Counteracted dsRNA Binding Inhibitors

Humans possess four genes coding for the 2′,5′-oligoadenylate (2-5A) synthetase
(OAS) proteins: OAS1, 2, 3 and OAS-like (OASL), that are IFN-inducible [166,266]. Once
activated by dsRNA, OAS1, 2 and 3 are able to synthesize 2-5A which bind to monomeric
RNaseL, inducing its dimerization and activation. Active RNaseL then cleaves cellular
or viral ssRNA and can induce autophagy and apoptosis, which is detrimental to viral
replication [267]. The small RNAs resulting from RNaseL cleavage of ssRNA have been
also shown to activate RIG-I signaling, leading to IFN production [268,269]. OASL lacks the
ability to produce 2-5A, but has nevertheless been shown to enhance RIG-I sensing [270].

The OAS/RNaseL system is able to inhibit a wide number of RNA viruses [271], but in
the case of IAV, it has been shown that NS1 protects from the effects of this pathway [272,273].
Indeed, a virus encoding a dsRNA-binding deficient NS1 protein was sensitive to the
RNaseL pathway [272], suggesting that NS1 dsRNA binding capability counteracts OAS
dsRNA recognition, preventing RNaseL activation and subsequent ssRNA degradation.
OAS3 has been shown to have a higher affinity for dsRNA compared to OAS1 and OAS2
and also to be the main producer of 2-5A in IAV∆NS1 infected cells, as OAS3 KO abolished
2-5A production and raised viral titer [273]. The importance of OAS proteins in vivo has
not been studied (of note, Rnasel−/−, but not Oas−/− mice exist [274]), but they are likely to
have little impact seeing as OAS proteins are antagonized by NS1.

4.2.7. PKR and NF90: An Example of Host–Virus Coevolution

Protein kinase R (PKR) is a serine/threonine kinase that possesses two N-terminal
dsRNA-binding motifs as well as an effector C-terminal kinase domain [275]. PKR is
constitutively expressed and slightly upregulated by IFN treatment [166]. During viral
infection, PKR recognizes dsRNA which induces its dimerization and the subsequent
phosphorylation of the eukaryotic translation initiation factor 2 (eIF2α) at position ser-
ine 51 [276]. This has the consequence of shutting down cellular translation, therefore
inhibiting the replication of numerous viruses [277]. However, IAV seems to have evolved
countermeasures. Indeed, in IAV infected cells, there is an increase of P58IPK which can
inhibit PKR, thereby promoting viral protein production and efficient replication [278].
NS1 has also been shown to play a protective role against PKR by binding to viral dsRNA
blocking recognition by PKR [279–282]. In line with this, IAV with defective or missing NS1
are more susceptible to the effects of PKR [279–281]. NS1 mediated inhibition of PKR has
been mapped to two essential residues in the NS1 N-terminal domain: R35 and R46 [282].
Of note, mice lacking PKR are more susceptible to IAV infection, suggesting a role in vivo
for this antiviral protein [280,283].

In chickens, PKR expression is induced following H5N1 inoculation, but this induction
is not sufficient to induce resistance [216]. Mallard duck’s PKR anti-IAV phenotype has yet
to be studied, but it has been shown to be upregulated during IAV infection and to miss
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the N-terminal second RNA binding domain compared to human PKR, which could affect
its function [284].

Interestingly, a cellular countermeasure to the NS1-mediated PKR inhibition has re-
cently been discovered: the protein Nuclear factor 90 (NF90), another dsRNA-binding
protein [285,286] able to inhibit different viruses [287]. NF90 does not seem to be induced
by IFN [166]. NF90 interacts with both NS1 and PKR, reducing the impact of NS1′s PKR
inhibition [288]. This is an interesting example of coevolution between viruses and host
cells. NF90 was also shown to exert antiviral activity against NS1-deficient IAV by inter-
acting with the C-terminus of PKR and upregulating PKR phosphorylation (knockdown
experiments in 293T cells) [289]. Of note, knockdown and overexpression experiments
showed that NF90 also independently but modestly inhibits IAV by interfering with viral
polymerase activity, possibly through an interaction with NP [290,291]. Unfortunately,
Nf90−/− mice do not seem to be viable [292], so exploring the extent of NF90 importance in
IAV infection in vivo will be complicated.

4.2.8. MOV10 and DDX21: Antiviral Cellular Helicases

Helicases are enzymes that unwind double-stranded nucleic acids, and are classified
into three super-families and two small families based on conserved motifs (reviewed
in [293]). Some of these helicases have proven to possess antiviral activity against many
different viruses [294]. Here, we describe two helicases that have been shown to inhibit IAV.

Moloney leukemia virus 10 (MOV10) is a 5′ to 3′ RNA helicase from the UPF1-like fam-
ily [295]. It has been shown to play roles in miRNA metabolism, mRNA stabilization and
translation, retroelement inhibition and viral restriction [296–299] and is partially upregu-
lated by type I and II interferon treatment [166], [300]. MOV10 has also been proposed to
be an IAV restriction factor. Indeed, MOV10 was identified by mass spectrometry as an IAV
vRNP binding partner, through an interaction with NP [301]. MOV10 silencing increased
IAV replication (by ~1 log) and conversely, MOV10 overexpression decreased IAV replica-
tion [301,302]. MOV10 seems to inhibit IAV polymerase activity by preventing NP nuclear
import [301,302] and by possibly sequestering incoming vRNPs inside P-Bodies [302]. Of
note, NS1 was proposed to counteract MOV10 activity [302]. MOV10 has also been shown
to inhibit other viruses by enhancing the production of IFN in a RIG-I/MAVS independent
manner [300], and it would be interesting to determine whether this indirect activity play
also a role in IAV inhibition. Mov10−/− mice are not viable [303], rendering difficult the
in vivo investigation of the importance of this protein in IAV infection control.

DDX21 is part of the DEAD (Asp–Glu–Ala–Asp)-box family of RNA helicases which
are RNA-binding helicases that play fundamental roles in RNA metabolism [304]. DDX21
has been shown to resolve R loops (i.e., DNA:RNA hybrids), promoting genomic sta-
bility [305]. It has also been shown to be slightly upregulated by type II IFN [166] and
to harbor antiviral activity against RNA viruses [306]. DDX21 silencing increases IAV
replication in vitro as shown by plaque assays [307]. DDX21 binds to PB1, preventing the
assembly of the polymerase, thus inhibiting replication [307]. However, NS1 is able to
attenuate this restriction by binding DDX21 and suppressing its antiviral activity [307]. Its
physiological importance has not been demonstrated yet due to the lack of Ddx21−/− mice.

4.2.9. HDACs: Indirect Inhibitors

Histone Deacetylases (HDACs) are involved in the deacetylation of acetylated pro-
teins [308]. These proteins are classified into four classes: class I, class II, class III and class
IV HDACs, with only some of the members being upregulated after IFN treatment, such
as HDAC4 and HDAC6 with type II IFN [166]. Recent publications have suggested roles
for different members of this family in IAV replication, either as dependency factors or
as inhibitors.

Silencing experiments showed that HDAC1, a class I HDAC, modestly increases viral
infection, whereas HDAC8 seems to act as a viral cofactor [309,310]. The modest anti-IAV
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effect of HDAC1 was linked to STAT1 phosphorylation regulation and ISG induction [310].
A similar role was reported for HDAC2 [311].

Concerning class II HDACs, HDAC6 was proposed to be essential for IAV uncoat-
ing [312], however, HDAC6 silencing has an overall positive impact on IAV replication
as measured by plaque assays [313]. Pharmacological inhibition of HDAC6 increased
trafficking of viral components to the plasma membrane and viral release, a mechanism
probably involving acetylated microtubules [313]. More recently, Hdac6−/− mice were
shown to be slightly more susceptible to influenza infection, which was actually correlated
with a downregulation of several innate immune pathways [314]. Further clarification on
the impact and the role of HDAC6 is therefore required. Another class II HDAC, HDAC4,
has also been proposed to harbor a modest anti-influenza activity [315].

Class III HDACs, also known as sirtuins, have been proposed to modestly inhibit
influenza virus infection through depletion experiments, without further characteriza-
tion [316].

Finally, a class IV HDAC member, HDAC11, has also been shown to exhibit anti-
influenza activity, probably by regulation of the IFN response [317].

The roles of HDACs in the host cell influenza defense are often modest and indirect,
with some members playing proviral rather than antiviral roles. More studies would
therefore be necessary to understand the molecular mechanisms and the importance
in vivo of HDACs on IAV infection.

4.2.10. ANP32s: Major Cofactors and Potential Minor Inhibitors

The mammalian acidic nuclear phosphoprotein 32kDa (ANP32) family consists of five
members: ANP32A, B, C, D and E, but there is an ongoing debate over the true existence
of C and D as bone fide expressed genes. These proteins all contain an N-terminal leucine-
rich repeat (LRR) region, a central region and a C-terminal unstructured low-complexity
acidic region (LCAR) region. ANP32 proteins are known to carry out various roles such as
chromatin regulation, phosphatase regulation, involvement in apoptosis and intracellular
transport [318]. ANP32A was initially discovered to be a major co-factor of IAV determining
species specificity [319], mediating the assembly of the IAV replicase [320].

Identification of ANP32A as a major factor in IAV life cycle and in host restric-
tion/adaptation was a breakthrough. It was known for a long time that the polymerase
from classical avian influenza A viruses did not function efficiently in human cells and that
the PB2 subunit, and in particular residue 627, contributed to this host restriction [321,322].
The lack of a cellular cofactor for the avian polymerase in mammalian cells was previously
suggested to be responsible for this restriction [323]. Chicken ANP32A was indeed iden-
tified through an elegant genetic screen as an essential cofactor allowing an avian-origin
PB2 protein to function in mammalian cells [319]. In addition, ANP32A was shown to be
crucial for IAV replication in both birds and mammals, but avian-adapted polymerases
are not able to efficiently use mammalian ANP32A. A 33 amino acid motif is missing
from the mammalian version of ANP32A in comparison to avian ANP32A proteins and
introduction of this motif in mammalian ANP32A allows avian-origin PB2 to function in
mammalian cells [319]. Interestingly, ostriches and other ratites lack this region, which
elegantly explains the previous observation that ostriches behave more like mammalian
species regarding avian IAV PB2 adaptation (i.e., acquisition of the mammalian signature
PB2 E627K) [324]. Later, both ANP32A and ANP32B were shown to be essential for IAV
replication in human cells, but either of them being redundant, as cells that lacked one
were still able to support the polymerase, but cells lacking both could not [325].

Another study, which confirmed the importance of ANP32A and ANP32B as host
cofactors, highlighted that other members of ANP32 family such as ANP32C, ANP32D and
ANP32E have an opposite, negative effect on IAV replication [326]. Indeed, overexpressing
human ANP32C or ANP32D together with ANP32A had a negative effect on the replication
of IAV (possessing either the avian PB2-627E signature or the human PB2-627K signature)
compared to ANP32A overexpression alone [326]. ANP32E only had a negative effect for
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avian PB2-627E signature IAV, but knockdown of ANP32E did not show any effect [326].
Of note, Anp32e−/− mice have been produced and are viable [327], but seeing as a mice
KO model of ANP32A did not show any significant effect on IAV infection [328] we
could imagine a similar outcome for Anp32e−/− mice. Nevertheless, more studies must
be performed to assess the mechanisms through which ANP32C, ANP32D and ANP32E
might impair viral polymerase activity.

Chickens also possess ANP32s but with the particularity that chicken ANP32A con-
tains a splicing site, which allows for the production of two splice variants, ANP32A-33
and ANP32A-29, of which ANP32A-33 is more potent [329,330]. A team recently made the
discovery that SRSF10 is able to bind to a cis-regulatory element, promoting the production
of ANP32A-29 transcripts and decreased that of ANP32A-33 transcripts. This had a nega-
tive impact on avian IAV polymerase activity but not mammalian strains, as mammals do
not produce the two ANP32A-29 and ANP32A-33 splice variants [331].

4.2.11. ISG15: ISGylation-Mediated Inhibition of NS1 Activities

Interferon-stimulated gene product 15 (ISG15) is one of the most upregulated ISGs [332].
It is a ubiquitin-like protein known to be conjugated to lysine residues of proteins in a
process called ISGylation. This process involves the E1 activating enzyme Ube1L, E2
conjugating enzyme UbcH8 and E3 ligase enzymes Herc5 or TRIM25/EFP. The effects on
cellular proteins of ISGylation are many (reviewed in [333]), such as the enhancement of
antiviral signaling through IRF3 ISGylation to give an example [334]. Many viral proteins
have been discovered as targets of ISGylation [333]. The first evidence of ISG15 impacting
IAV replication was that Isg15 deficient mice were shown to display increased susceptibility
to IAV infection [335,336]. It is thought that NS1 is the target of ISG15′s antiviral activity, as
NS1 has been shown to be a target of ISGylation, which prevents a number of its essential
functions [337,338]. Further studies on ISG15 are therefore required to fully understand its
impact on IAV infection.

4.2.12. ISG20: An Exonuclease Affecting IAV Replication When Overexpressed

IFN-stimulated gene 20 kDa protein (ISG20) is a 3′ to 5′ exonuclease with specificity
for ssRNA and is induced by interferon signaling [339]. This protein has been shown to
inhibit a wide range of viruses, including IAV [340,341]. ISG20 overexpression was shown
to decrease IAV replication [342,343], and an IFN-inducible, long-non-coding RNA sharing
most of its sequence with ISG20, Lnc-ISG20, and regulating ISG20 expression, was shown
to also impact IAV replication [344]. The effect of overexpressed ISG20 was shown to be
dependent on its exonuclease activity and attributed to an interaction with NP, as shown
by immunoprecipitation using overexpressed ISG20 and viral infection [343]. Although not
confirmed for IAV, the antiviral effect of ISG20 against some viruses has also been shown to
be attributed to an upregulation of the type I IFN response [345] or to an inhibition of viral
translation [341]. Evidence of a physiological role of ISG20 against IAV, using depletion
experiments, as well as in vivo experiments are still lacking. Of note, Isg20−/− mice are
available [341] and could be used to this end.

4.3. Restriction Factors Affecting Viral Assembly, Egress or Maturation

To date, only a few host restriction factors have been shown to interfere with the
late stages of IAV replication cycle. The late stages comprise viral assembly, egress and
maturation of newly generated virions.

4.3.1. Tetherin/BST-2: A General Inhibitor of Viral Release with a Controversial Activity
on IAV

Bone marrow stromal antigen 2 (BST-2), also known as Tetherin, is encoded by an
ISG [346]. This protein is a type II transmembrane protein with a unique topology, possess-
ing a N-terminal transmembrane region, an ectodomain and a C-terminal glycosylphos-
phatidylinositol (GPI) anchor [346]. In humans, BST-2 is located at the trans-Golgi network
(TGN), in endosomes and within lipid rafts. Its name, Tetherin, was given due to its ability
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to restrict viral release, by retaining viruses at the cell membrane like an anchor [347,348].
However, the anti-IAV activity of Tetherin remains quite controversial. Indeed, some stud-
ies describe an inhibition of IAV (or of IAV-derived virus-like particles) egress, [349–353],
while some others refute an inhibitory role [354–357]. Interestingly, not all IAV strains
could be restricted by Tetherin, suggesting a strain-specificity that could, in part, explain
the controversial results concerning its restricting activity [353,358]. The inhibitory ac-
tivity of Tetherin was proposed to be counteracted by some viral proteins, like M2 [356]
or NA [354,355,358], but a role of M2 was also excluded [350]. Finally, in vivo studies
performed on Bst2-deficient mice revealed that they were not more susceptible to IAV
infection than wild-type mice, which would be in favor of the absence of antiviral activity
of Tetherin, at least against the strain used in this study [351]. Further studies, using other
strains, would be required to definitely conclude the absence of impact of Tetherin on IAV
replication in vivo.

Orthologs of BST-2 are present in a high number of species, including mammalian
species, but also birds, alligators, turtles and some fish [359]. Even if there is often no
amino acid sequence homology between the orthologs from different species, they share
the same unique topology. Only a few of these orthologs were tested for their ability to
restrict influenza viruses. Chicken encodes an ortholog of BST-2 (chBST-2) [360,361] and
to date, chBST-2 antiviral activity was described and characterized for only one virus, the
avian sarcoma and leukosis virus (ASLV) [361]. Further studies are required to determine
if IAV is restricted by chBST-2.

4.3.2. Viperin: An IAV Inhibitor When Overexpressed

Virus inhibitory protein, endoplasmic reticulum-associated, IFN inducible (viperin)
is an ISG that was shown to inhibit a wide range of viruses through diverse mecha-
nisms [362–365]. The first evidence for viperin inhibiting IAV was through overexpression
experiments that showed that the inhibition was by disrupting lipid rafts in vitro, therefore
inhibiting viral release [366]. Further studies confirmed an antiviral phenotype through
overexpression in vitro [354,367]. However, Viperin−/− mice did not show an enhanced vi-
ral load or lung damage, implying that viperin does not have an anti-IAV role in vivo [367].

4.3.3. PAI-1: An Inhibitory Protein Having an Effect in the Extracellular Media

Plasminogen activator inhibitor-1 (PAI-1) is part of the serine protease inhibitor (SER-
PIN) family and is coded by the SERPINE1 gene. The main role of this protein is to regulate
the activation of plasminogen, the inactive precursor of plasmin, a serine protease involved
in clearing of fibrin blood clots, by inhibiting both the urokinase-type plasminogen ac-
tivator (u-PA) and the tissue-type plasminogen activator (t-PA) [368]. A surprising role
for this protein in the inhibition of IAV maturation was recently discovered. Indeed, an
image-based screen to identify novel ISGs regulating the late stages of IAV infection led
to the identification of secreted PAI-1 as able to inhibit glycoprotein cleavage therefore
reducing the infectivity of newly produced IAV particles [369]. Serpine1−/− mice presented
a slightly increased susceptibility to IAV infection as well as a more severe disease phe-
notype. Interestingly, human genetic variability in SERPINE1 may also influence virus
spread and disease severity [369]. PAI-1 is therefore the first ISG to be described as having
an inhibitory role against IAV in the extracellular media.

4.4. Additional Factors Inhibiting IAV

Other proteins have been shown to inhibit IAV, but very little is currently known
with respect to their potential mechanism of action. A few of these factors are listed in the
following section.

Phospholipid scramblase 1 (PLSCR1) has been shown to play a role in the inhibition
of a number of viruses [370,371]. For IAV, a single study has suggested that overexpressed
PLSCR1 can inhibit IAV replication (by 2 log) and that KO increased it (by 1 log) [372].
Overexpressed PLSCR1 can form a complex with NP and members of the importin α
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family and its proposed mechanism of action would be the inhibition of NP entry into the
nucleus [372].

The knock-out of SERTA domain containing 3 (SERTAD3), an IFN-inducible transcrip-
tion factor, was shown to have a 3 to 4-fold positive impact on IAV replication in human
cells, and, conversely, its overexpression negatively affected replication [373]. Sertad3−/−

mice were also somewhat more susceptible to IAV infection [373]. The potential mecha-
nism of inhibition of SERTAD3 was suggested to be the inhibition of the polymerase as
overexpressed SERTAD3 interacted with PA, PB1 and PB2, preventing their assembly [373].

Eukaryotic translation elongation factor 1 delta (eEF1D) is a subunit of the eEF1
complex, which is involved in translation elongation and other non-canonical processes.
eEF1D knock-out has been shown to improve IAV replication (by 1 log) and, conversely,
its overexpression caused a decrease in replication (by 1 log) [374]. This has been linked
to an interaction between eEF1D and vRNP components, leading to a decrease in nuclear
import, rather than its effect on viral translation as could have been expected [374,375].

Finally, the desmosome component Plakophilin 2 (PKP2) was discovered through an
IAV comparative interatomic study to be a potential PB1 interactor [156]. Overexpressed
PKP2 decreased infection (by 3- to 4-fold) and siRNA experiments increased infection
levels (by 2- to 3-fold) [156]. The suggested mechanism of action is through the disruption
the IAV polymerase complex by competing with PB2 [156].

5. Conclusions and Perspectives

As we have seen throughout this review, host cells possess a wide array of restriction
factors, belonging to different families of proteins, that can act as one of the first barriers of
the intrinsic and innate immunity against influenza virus infection. These antiviral proteins
target multiple steps of the viral life cycle, be it entry, replication, maturation, assembly,
egress or even have an effect in the extracellular media once the virus has budded. Type
I and III IFNs are important players in the innate immunity to control IAV replication
in vivo in humans, avian species and mice. In other mammalian species such as pigs and
bats, this importance has only been shown in vitro. The protection induced by type I/III
IFNs is due to the expression of several hundreds of ISGs. Indeed, the vast majority of the
antiviral proteins described in this review are induced by type I and III IFNs, showing the
strong relationship between these factors and the IFN response. However, in the host–virus
arms race and in order to overcome the antagonism of the IFN response, viruses have
evolved proteins, such as NS1, PB1-F2 or PA-X, to counteract either the induction of the
IFN response or to directly inhibit the restriction factors (e.g., the NS1-induced inhibition
of PKR) and, thus, to promote viral replication.

Despite extensive studies and decades of investigation on some anti-IAV factors, such
as MX1 or IFITM3, mechanistic details are still lacking to fully understand the restriction
they impose on IAV. Moreover, the importance of most restriction factors in vivo or their
role in the adaptive immunity are still unknown or debated for the vast majority. Given that
some restriction factors play a role in both antiviral restriction and induction/regulation of
immune responses, results obtained in KO mice might be challenging in their interpretation.
Of note, the type I/III IFN response is important for the innate immunity but also crucially
shapes adaptative immune responses. In line with this, recent studies have shown that
some of these factors such as IFITM3 are versatile actors at the interplay between innate
and adaptive immunity. Indeed, these antiviral factors seem to modulate dendritic cells
and antiviral CD4+ and CD8+ T cell-responses. However, these mechanisms are still not
fully understood. The characterization of the immunomodulatory roles of these antiviral
proteins is essential to bridge the understanding between innate and adaptative immunity
and is an expanding area of research that is essential to fully apprehend protective immune
responses against IAV.

In this review, we also focused on the restriction factors present in other species of in-
terest for IAV, namely pigs, bats and avian species. It is important to keep in mind that most
of IAV strains circulating in humans arise from zoonotic introductions of avian-derived
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strains. As a consequence, after cross-species transmission and spill-over, avian-derived
strains are not perfectly adapted to replicate in humans, where the viral polymerase activity
is strongly impaired, missing crucial cofactors. There is also a lack of adaptation concerning
the antagonism imposed by cellular restriction factors. Despite the poor genome annotation
of poultry species, such as ducks, chickens and turkeys, or bats and pigs compared to that
of humans, the vast majority of these proteins appear to be evolutionary conserved. Even if
experimental data on these conserved proteins in all of these species are still lacking, recent
studies pinpoint the conservation of the antiviral activity of some antiviral proteins such as
MX1, IFITs or IFITM3. However, future studies are required to investigate whether each
restriction factor described here are conserved in all these species of interest and whether
their antiviral functions are similar to those of their mammalian counterparts.

With available treatments few and far between, focusing on understanding the molec-
ular mechanisms of action of these known antiviral effectors is crucial to pave the way
for the development of new therapeutic strategies against influenza. A particular focus
should also be applied to the discovery of new antiviral inhibitors for the same reasons, tak-
ing advantage of state-of-the-art technologies, such as CRISPR/Cas9 screens, to lengthen
the list of known host cell influenza inhibitors. Of note, results from large-scale siRNA
and CRISPR screens tend to have little overlap, which is expected as screens can differ
largely due to many variables such as cell types, viral strains and siRNA/sgRNA libraries
used as well as multiple experimental variables which are harder to control. Therefore,
it is of continued interest to perform these screens anew to discover as of yet unknown
restriction factors.

The uncertainty as to when the next influenza pandemic will occur, with a vivid
reminder being the current global situation due to the COVID-19 pandemic, should be
initiative enough to push research forward in this field. We are not ready for the next
influenza pandemic and the solution may well reside within our cells.
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