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Abstract

Loss of gene function is common throughout evolution, even though it often leads to reduced fitness. In this study, we
systematically evaluated how an organism adapts after deleting genes that are important for growth under oxidative
stress. By evolving, sequencing, and phenotyping over 200 yeast lineages, we found that gene loss can enhance an
organism’s capacity to evolve and adapt. Although gene loss often led to an immediate decrease in fitness, many mutants
rapidly acquired suppressor mutations that restored fitness. Depending on the strain’s genotype, some ultimately even
attained higher fitness levels than similarly adapted wild-type cells. Further, cells with deletions in different modules of
the genetic network followed distinct and predictable mutational trajectories. Finally, losing highly connected genes
increased evolvability by facilitating the emergence of a more diverse array of phenotypes after adaptation. Together, our
findings show that loss of specific parts of a genetic network can facilitate adaptation by opening alternative evolutionary
paths.
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Introduction
Loss of gene function is common in nature. An average hu-
man, for example, carries about 100 loss-of-function variants
in their genome (MacArthur et al. 2012). Even though loss-of-
function mutations can lead to genetic disorders and reduced
fitness (Stenson et al. 2017), they have also been proposed to
be an important source of phenotypic diversity in evolution
(Olson 1999; Meredith et al. 2014; Albalat and Ca~nestro 2016;
Peter et al. 2018; Sharma et al. 2018). When a budding yeast
cell loses a gene, the effect on fitness in any given condition
can vary from beneficial to lethal (Giaever et al. 2002). This
pattern of essentiality and dispensability also depends on the
genetic background, with some genes being essential in one
genotype and dispensable in another (Dowell et al. 2010; Liu
et al. 2015). Similarly, the phenotypic effect of deleting a gene
can depend on which other genes have been inactivated, a
phenomenon that has been used extensively to systematically
map interactions between genes and construct the genome-
scale genetic interaction network of budding yeast (Costanzo
et al. 2010). Given that the effect of one mutation can depend
on the presence or absence of other mutations also implies
that in some cases, the negative fitness effects resulting from
gene loss can be mitigated by other compensating mutations.
Over the years, it has been shown that the way in which cells
adapt to gene loss can be linked to the functional effect of the
lost gene (Rancati et al. 2008; Szamecz et al. 2014; Laan et al.
2015; McCloskey et al. 2018; Rojas Echenique et al. 2019). For

example, budding yeast cells lacking BEM1, a gene essential for
cell polarity, restore wild-type polarization by modulating the
activity of its interaction partner Cdc42 (Laan et al. 2015).
However, reports that link the function of the lost genes with
the mutations acquired during adaptation are based either on
small, case-specific experiments (Rancati et al. 2008; Laan et al.
2015) or on larger-scale screens where convergent evolution
between strains with defects in similar processes was rare,
which precludes drawing strong general conclusions on the
adaptive routes and overall evolutionary consequences of
gene loss (Szamecz et al. 2014; Rojas Echenique et al. 2019).
In addition, genes are not stand-alone units but rather func-
tion in a coordinated manner in genetic networks. Including
information about an organism’s genetic network architec-
ture is crucial for understanding how and why a cell compen-
sates in a specific way for the loss of a particular gene.

Here, we systematically explored the influence of genetic
architecture on adaptation after gene loss and evaluated how
gene loss affects the speed of adaptation and evolvability, that
is, the ability of the organism to produce heritable—poten-
tially adaptive—phenotypic variation (Hansen 2006). We fo-
cused on genes important for resistance to oxidative stress, a
trait involved in multiple disease phenotypes, including can-
cer, neurodegenerative disorders, and age-related diseases
(Barnham et al. 2004; Reuter et al. 2010). After identifying
specific genes important for oxidative stress resistance in
Saccharomyces cerevisiae, we evolved more than 200 strains
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in which one of these key genes was deleted under oxidative
stress and investigated whether and how they were able to
overcome their respective defects. This experimental setup
allowed us to explore whether strains that lack genes from
different modules in the genetic network adapt through dis-
tinct evolutionary routes and if by doing so, they end up in a
different place in the fitness landscape.

Results

Characterizing Genetic Network Architecture
To systematically assess which genes are important for
growth under oxidative stress, we determined the relative
fitness of each mutant in the haploid yeast deletion collection
(Giaever et al. 2002) in the presence of paraquat, a commonly
used superoxide generator (Fukushima et al. 2002). As each
deletion strain contains unique DNA barcodes, strains can be
pooled and their relative frequencies can be determined by
isolating and sequencing the barcodes (Smith et al. 2009). We
grew a pool containing all �4,800 deletion strains from the
haploid deletion collection on rich medium with and without
paraquat (fig. 1A). Next, we calculated the fitness of each
strain based on its relative number of barcodes in each con-
dition. Strains with the lowest fitness under paraquat stress
lacked genes involved in three main cellular processes: cellular
response to oxidative stress, vesicle-mediated transport, and
chromatin organization (fig. 1B and supplementary tables 1
and 2, Supplementary Material online). Conversely, the large
majority of strains with a higher fitness under paraquat stress
missed genes involved in mitochondrial function (supple-
mentary fig. 1 and supplementary tables 1 and 2,
Supplementary Material online). This is probably due to the
fact that paraquat primarily generates superoxide radicals in
the mitochondrial matrix (Cochem�e and Murphy 2008).
Because yeast cells are able to survive with absent or defective
mitochondria (Ephrussi et al. 1949), loss of mitochondrial
function would be a simple and predictable mechanism of
adaptation. To prevent this, we forced the cells to adapt while
respiring by using glycerol as a carbon source instead of glu-
cose (Gancedo et al. 1968). We then selected 48 genes whose
deletions caused a large fitness decrease in the genome-wide
screen (fig. 1B) together with three genes that in literature
have been shown to be central players in oxidative stress
resistance (supplementary table 3, Supplementary Material
online). Finally, we measured the growth characteristics of
each of these strains on rich medium with glycerol and para-
quat, ending up with 51 different deletion strains showing
varying degrees of sensitivity: from mutants that did not show
any observable growth within the sampling window, to
mutants whose growth characteristics were similar to those
of the wild type (fig. 1C). Growth rates were used as a proxy
for fitness (Szamecz et al. 2014; McCloskey et al. 2018). We
decided to include each of these 51 mutants for experimental
evolution, even those that did not show decreased fitness
under paraquat stress. This way, we are also able to evaluate
the effect of gene loss on evolution even without obvious
fitness effects.

Gene Loss Can Speed up Evolution
We then explored how strains with defects in different cellu-
lar processes adapt to chronic oxidative stress and whether
this ability depends on which gene was lost initially. To do
this, we evolved each of the 51 deletion strains in quadrupli-
cate for�150 generations (fig. 2A). In addition, we evolved 12
replicates of the wild type, amounting to a total of more than
200 independent lineages. First, as a control, we evolved the
strains in standard glucose medium with paraquat. As
expected, the vast majority of strains showed a significant
loss of mitochondrial function after 150 generations, confirm-
ing that the paraquat treatment causes oxidative stress that
mainly targets the mitochondria (supplementary fig. 2A,
Supplementary Material online). Next, we repeated the ex-
periment in medium with paraquat and glycerol as the sole
carbon source, thereby selecting against loss of mitochondrial
function because glycerol metabolism depends on respira-
tion. At the end of the evolution experiment, the majority
(80%) of the lineages showed growth (supplementary table 4,
Supplementary Material online). Only for one deletion strain
(sod2D) did none of the replicates produce viable cells at the
end of the experiment. This indicates that SOD2 is indeed an
essential gene for survival under oxidative stress in conditions
that select against loss of mitochondrial function. Next, we
selected one fit clone from each of the 202 surviving popu-
lations (190 deletion strains and 12 wild-type strains) and
measured its growth on the selective medium. The vast ma-
jority of the evolved lineages showed a dramatic increase in
fitness compared with the respective unevolved deletion
mutants (fig. 2B and C and supplementary fig. 2B and C,
Supplementary Material online). Several evolved deletion
strains (13 out of 190) reached a higher fitness than the
most rapidly adapting wild-type strain. Surprisingly, when
comparing the average absolute growth rates between strains,
a large fraction of evolved deletion strains performed better
than the average evolved wild type, even though some of
these strains initially showed severe growth defects (fig. 2B
and C). We tested whether there are indeed strains that per-
form significantly better than the wild type, versus the null
hypothesis that the higher than average wild-type fitness
values can be explained by assuming the wild-type fitness
distribution for all strains. The test showed that this null hy-
pothesis can be rejected (P < 0.001; supplementary fig. 2D,
Supplementary Material online), and we conclude that the
expected growth rates of several strains are indeed higher
than wild type. We further find that the result is robust
and does not rely on a few outliers (supplementary fig. 2D,
Supplementary Material online). Finally the result does not
depend on lower initial fitness of the deletion strains, as it also
holds for the subset of deletion strains with growth rates that
are initially similar to the wild type (supplementary fig. 2E,
Supplementary Material online).

Next, we explored which biological parameters could ex-
plain the observed growth rate after evolution. In agreement
with previous studies (Wiser et al. 2013; Rojas Echenique et al.
2019), we found a significant positive relationship between
the original growth rate and the growth rate after evolution
(fig. 2D). However, the location of the originally deleted gene

Helsen et al. . doi:10.1093/molbev/msaa172 MBE

2990



NHX1

LST4

RAM1

COG5

LST7

YLR236C

VPS38

COG6

BSD2

VPS30

CHS5

VPS24

OCA2

SDD1

NEM1

EMC5

RIM21
BRO1

MON1

VPS4

VPS53VPS3

VPS60

VPS1

VPS8

VPS27

COG7

VAM6APS3

YNR005C

SAP155

OPI11

YDL009CYOR008C-A

UCC1

ANS1

PEP12

VPS54

GYP1

PEP7

VAM7

APM3

VAC14

APL6

RCY1

APL5

VPS61

HIR1

XRS2

NPT1

HPC2

POL32

NGG1

TED1

SIR4

CTR1

YPR123C

HST1

YAF9

HIR2

HDA1

SUM1

RFM1

POP2

CCR4

HDA3

ALD5

YJL120W
NCL1

GDT1

YOR072W

MRS4

RPL8A

YMR031W-A

YME2

DOA1

SNF8

SRN2

OCA4

RIM13

OCA6

ERG3

HOF1

RIM9

LDB19

APQ12

SMF3
SAC6

GCR2

DAP1

TEF4

YHR045W

RPP1A MDM20

STB5HYR1

FRA1

DEG1

YBT1

YBP1

RPE1

SOD2
YAP1

SKN7
MIG1

RIM101

GRX3

SSN8

SSN3

TDA5

RAD50

MET18

SWI6

HTZ1

IRC21

TUP1

DIP5

A

C

B

Yeast deletion collection
~4,800 strains

0 mM paraquat

1 mM paraquat

Chromatin organization

Cellular response to oxidative stress

Vesicle-mediated transport

Deletion strain reconstructed and
selected for experimental evolution

Sensitive deletion strain

Hypersensitive deletion strain

FIG. 1. A comprehensive genetic screen identifies cellular processes important for resistance to paraquat stress. (A) Schematic overview of the
experiment. All the deletion strains from the haploid deletion collection were pooled, and the pool was grown with and without paraquat to
determine the relative fitness of each individual mutant under paraquat stress. (B) Interaction network with the genes that, when deleted, increase
sensitivity to paraquat (log FC < �3.5). Three of the most enriched cellular processes are highlighted in gray (chromatin organization), gold
(cellular response to oxidative stress), and blue (vesicle-mediated transport). The size of the nodes represents the sensitivity to paraquat as
determined in the genome-wide screen. The thickness of the edges represents the confidence score associated with the interaction as determined
by STRING. Nodes with red borders represent genes for which deletion mutants were made and which were selected for experimental evolution.
(C) Growth rates and final OD600 values after 120 h of deletion strains selected as starting strains for experimental evolution on YP 2% (w/v)
glycerol with 0.125 mM paraquat. Error bars represent SEM of four replicate measurements. Strains are colored based on the cellular process they
belong to: gray for chromatin organization, gold for cellular response to oxidative stress, and blue for vesicle-mediated transport.
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FIG. 2. Deletion strains greatly improve growth during adaptive evolution. (A) Schematic overview of the evolution experiment and gene network
with all selected genes. Strains with deletions in different modules of the genetic network underlying resistance to oxidative stress are evolved in
quadruplicate under paraquat stress for 150 generations. Genes in the network are colored corresponding to the indicated cellular processes they
belong to. The color scheme is maintained throughout the figure. (B) Growth rates of one fit clone from each evolved population on rich medium
with 2% (w/v) glycerol and 0.125 mM paraquat. Each point represents the mean of four replicate measurements. The deletion strains are sorted
according to their average growth rate after evolution. The red dotted line represents the average growth rate of the wild type before evolution. (C)
Improvement in growth rate of one fit clone for each evolved population on rich medium with glycerol and paraquat. (D) Result of a multivariate
linear model analysis of the growth rate after evolution in function of various biological parameters. Shades of blue correspond with significance
level. (E) Estimated regression coefficient per network module of the deleted gene with their 95% confidence intervals (multivariate linear
regression).
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in the genetic network proved to be a much better predictive
factor of a mutant’s ability to adapt to oxidative stress
(fig. 2D). Strains with deletions in particular submodules,
such as NAD homeostasis or the H2AZ histone variant within
the chromatin organization module, respectively, performed
significantly better and worse than the average evolved strain,
irrespective of the growth rate of their ancestors (fig. 2E).
Importantly, strains with a deletion in the NAD homeostasis
submodule or the endosome submodule also reached higher
mean fitness levels than evolved wild-type strains (P < 0.05,
Mann–Whitney nonparametric tests). Together, these results
show that gene loss can speed up evolution in a genotype-
dependent way, even to levels higher than the average
evolved wild type.

Mutational Patterns Reflect Genetic Network
Architecture
We then went on to investigate whether gene loss in distinct
cellular processes causes strains to compensate by acquiring
mutations in distinct pathways. We sequenced the previously
selected fit evolved clones (190 deletion strains and 8 wild-
type strains), together with the ancestor wild type, and iden-
tified the mutations that were acquired during adaptation.
On average, strains contained five single nucleotide variants
(SNVs) and one indel, the majority of which were, respec-
tively, nonsense mutations or mutations that cause a frame-
shift (fig. 3A, supplementary fig. 3 and supplementary table 5,
Supplementary Material online). About half of the evolved
strains (51%) had aneuploidies, and 9% increased total ploidy
(supplementary table 6, Supplementary Material online).
Across samples, we observed a remarkably large number of
genes that were hit repeatedly (fig. 3B). This strong signature
of parallel evolution became even clearer when looking at the
level of cellular processes. By doing a Gene Ontology (GO)
enrichment test across all samples, we found several distinct
processes that are mutated much more often than expected
by chance and thus are very likely to have been subject to
positive selection (fig. 3C and supplementary table 7,
Supplementary Material online). Next, we examined whether
the mutations can be linked to the process that was per-
turbed by the initial deletion. By performing targeted GO
enrichment tests per genetic module, we indeed found strong
patterns of such module-specific mutation patterns (fig. 3D
and supplementary table 8, Supplementary Material online).
For example, mutations involved in nicotinamide riboside
transport were almost exclusively found in strains with
defects in NAD homeostasis (P < 0.0001) and mutations
involved in the response to amino acids (SPS) were specific
to strains with defects in endosomal vesicular transport (P<
0.0001) (fig. 3C and D). There were also some examples where
adaptive mutations could be linked to a single gene instead of
to a module. For example, every sod1D strain acquired muta-
tions in genes involved in Mn2þ transport (supplementary
table 5, Supplementary Material online), an adaptive mecha-
nism which has been previously reported (Elashvilis et al.
1992). In addition to mutations being specific to the module
of the deleted gene, some of them also had a larger effect on
the growth rate of the evolved strain than others (fig. 3D).

Some genotypes were more prone to acquiring mutations
with such a large effect, which could be part of the explana-
tion of why some strains in the end do better than the wild
type.

To further investigate and validate whether the compen-
satory mutations that were acquired during experimental
evolution are indeed linked to loss-of-function mutants in
particular cellular functions, we chose three processes with
the strongest specific signature (ERAD-M: endoplasmic-
reticulum [ER]-associated protein degradation; SPS, amino
acid sensing; NRT1: transporter for nicotinamide riboside)
(fig. 4A) and deleted the mutated genes in the ancestral (un-
evolved) deletion strains. The mutations that were observed
in these genes were predicted to cause loss of function, so we
reasoned that a gene deletion would have a similar effect.
Each of these gene deletions did indeed increase fitness in
their corresponding deletion background (fig. 4B–D). For ex-
ample, suppressor mutations in NRT1 were primarily found in
hst1D, sum1D, and npt1D, three strains that are involved in
NAD homeostasis. In these ancestral backgrounds, deleting
NRT1 was indeed the only tested mutation that managed to
improve growth. Interestingly, each of the tested deletions
also showed a positive growth effect in genetic backgrounds
in which this mutation was not observed during evolution.
For example, mutations in SPS or NRT1 increased fitness in
the trx2D background, yet this combination of mutations
never occurred during evolution. In general, suppressor muta-
tions with the largest beneficial effect on growth seem to have
been favored by selection (fig. 4B–D).

Losing Hub Genes Increases Evolutionary Variability
Apart from its modular structure, another important feature
of the architecture of genetic networks is the number of
physical and genetic interactions of each gene. It has been
hypothesized that losing genes with many connections (so-
called hubs) would lead to a more diverse evolutionary out-
come (Koubkova-Yu et al. 2018; Helsen et al. 2019). We there-
fore determined the phenotypic profile of the evolved strains
across 22 different environments (fig. 5A and supplementary
table 9, Supplementary Material online). In order to quantify
the phenotypic variation between strains, we determined the
average distance between phenotypic profiles for each strain
carrying the same gene deletion. This measure represents the
diversity of the evolutionary outcome for each genotype.
Interestingly, we found that the phenotypic distance between
replicate lineages varied with the number of genetic interac-
tion partners of the original gene deletion. On average, line-
ages that evolved from a mutant in which a gene with more
genetic interactions (i.e., a hub) was deleted showed more
variability in their phenotypic profiles (fig. 5B). To investigate
whether this increase in phenotypic variability was linked to
an increased mutational variability, we determined the vari-
ation in the mutational spectrum of the evolved lineages that
lacked the same gene. Here too, variability increased with the
number of genetic interactions of the originally deleted gene,
but only marginally (supplementary fig. 4, Supplementary
Material online). Instead, the increase we do observe for genes
with a lot of genetic interactions is the result of a specific
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FIG. 3. Evolution is convergent at the level of modules and individual genes. (A) Number of SNVs and indels per sequenced sample. (B) Number of
times a particular gene is hit across the sequenced samples, compared with what would be expected by chance. (C) Overview of the cellular
processes (GO terms) that are mutated more often than expected by chance across all samples (supplementary table 7, Supplementary Material
online), and two of the most frequently duplicated chromosomes. The size of the circles represents the fraction of independently evolved clones
with a mutation in the indicated gene or pathway. (D) Specificity of each mutated process for the original genetic background and its influence on
growth rate. The left side of the figure shows how often each mutated process (rows) is found within the original genetic backgrounds (columns),
the latter of which are represented by genetic modules of the deleted genes. P-values represent enrichment scores and were calculated using a
competitive gene set overrepresentation test as calculated by the camera function of the edgeR package. The right side of the figure shows the
effect of having a mutation in one of these processes on the growth rate of the evolved strains. The average growth rates are calculated across all
evolved lineages. **P < 0.01, ***P < 0.001, ****P < 0.0001 (Student’s t-test).
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FIG. 4. Validation of module-specific adaptation. (A) Mutations in ERAD-M, SPS, or NRT1, projected onto the original gene deletion network with
genes important for resistance to paraquat stress. The intensity of the colors corresponds to the relative frequency of individually evolved clones
with a mutation in the indicated complex, pathway or gene. (B) Growth curves of double deletion mutants (ancestral deletion and adaptive
deletion) on YP 2% (w/v) glycerol with 0.125 mM paraquat. Each row contains one of the original genetic backgrounds that were used during
experimental evolution, and each column contains deletions in genes that were indicated to be adaptive. Dark blue curves represent the growth of
the ancestor strain without any other additional deletions (first column), orange curves correspond to the growth of the double deletion strain
indicated by the row and column headings, and gray curves represent growth curves of all other strains within the same row. Error bars represent
the standard deviation of four replicates. (C) Heat map with the increase in growth rate for each combination of deletions. (D) Heat map with the
increase in final OD600 for each combination of deletions.
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subset of hub gene deletion mutants, such as strains with
deletions in the HIR complex (fig. 5C). Strains lacking genes
with many interaction partners have previously also been
shown to exhibit a higher level of within-strain phenotypic
variation (Levy and Siegal 2008). In other words, when such
genes are deleted, a population grown from these deletion
strains will show more phenotypic variability between indi-
vidual cells. Remarkably, this measure, also known as pheno-
typic potential, showed a significant positive correlation with
the phenotypic distance between replicate lineages (fig. 5D).
This could imply that a strain with a gene deletion that
generates more variability between individuals can evolve in
various ways and give rise to descendants with a wide range of
phenotypes across different environments.

Discussion
Our results show how gene loss can be compensated and can
ultimately even facilitate and enhance adaptation.
Furthermore, the results also reveal the importance of geno-
type and genetic architecture during adaption to gene loss.

Specifically, the evolutionary fate of a deletion strain depends
on the molecular function of the deleted gene and its place in
the genetic network, as this strongly influences the direction
and variation of the mutational trajectories during evolution.
For example, strains lacking genes involved in NAD homeo-
stasis acquired mutations in NRT1, a transporter of the NAD
precursor nicotinamide riboside. Deleting NRT1 also has a
positive—albeit smaller—effect on growth in other genetic
backgrounds, which indicates that NAD balance plays a gen-
eral role in protecting cells against paraquat stress. On the
other hand, mutations in ERAD-M were primarily found in
strains that lost genes important for the primary response to
oxidative stress. Paraquat has previously been shown to at-
tenuate the unfolded protein response (UPR) in the ER, and
this effect is even stronger specifically in strains that have lost
genes involved in the response to oxidative stress (Maity et al.
2016). The ERAD-M machinery is known to degrade IRE1
(Sun et al. 2015), the sole sensor and activator of UPR in
the ER in yeast (Shamu and Walter 1996), so inactivating
ERAD-M might help restore the UPR.

A

B C

Evolved strains
C

on
di

tio
ns

Fitness increase (%)
D

FIG. 5. Adaptation after losing genes with more interaction partners results in a higher phenotypic variability between independent lineages. (A)
Heat map with the fitness increase (%) of the evolved strains (columns) across 22 different phenotypic conditions (rows). Red hues indicate a
fitness increase as compared with the corresponding strain before evolution and blue hues indicate a decrease in fitness. (B) Phenotypic distance
between replicate lineages in function of the number of genetic interactions of the deleted gene. A high value for the phenotypic distance
corresponds with more variation between the phenotypic profiles of the replicate lineages of a particular deletion strain. *P < 0.05, ***P< 0.001
(Student’s t-test). (C) Mutational distance between replicate lineages of the wild-type strains compared with strains lacking genes from the HIR
complex. The mutational profile is defined by the genes and GO categories that were mutated after evolution. A high value for the mutational
distance corresponds with more variation between the mutational profiles of the replicate lineages of a particular deletion strain. ***P < 0.001
(Student’s t-test). (D) Phenotypic distance between replicate lineages in function of phenotypic potential, as determined in Levy and Siegal (2008).
The phenotypic potential represents the overall phenotypic variation when a gene is deleted. Lines represent the best linear fit with its 95%
confidence interval.
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Apart from yielding insight into the evolutionary role of
gene loss, comparing the mutational profiles between evolved
strains also allows us to gain insight into the organization of
the genetic network. For example, among the genes involved
in vesicular transport, we can easily distinguish which genes
are endosomal and which ones belong to the Golgi apparatus,
by determining whether their evolved deletion strains carry
an adaptive mutation in SPS. Additionally, exploring which
processes are able to compensate for loss of function in other
processes provides a novel insight into the larger-scale hier-
archy of cellular processes. Although additional experiments
are necessary to unravel why certain cellular processes can
compensate for loss of function in a particular module of the
genetic network, it is clear that both NAD balance, UPR and
amino acid homeostasis play an important role in the re-
sponse to paraquat stress.

Our findings further show that losing a gene can increase
both an organism’s speed of adaptation and evolvability, by
increasing the variability of phenotypes that emerge during
adaptation. Perhaps surprisingly, the loss of well-connected
genes that take a central position in a genetic network tends
to generate lineages during evolution with a high diversity in
phenotypic profiles. The loss-of-function of such hub genes
could therefore improve the evolutionary potential in situa-
tions that demand rapid and multifaceted innovation. In
complex environments where cells are forced to quickly
adapt multiple phenotypes, the loss of hub genes leads to
phenotypic variability, which in turn may facilitate further
adaptation. Interestingly, the evolutionary potential and
speed of adaptation also depend on the deleted gene, with
deletions in some functional modules generally leading to a
quicker and stronger recovery, sometimes even to levels
higher than the evolved wild-type strains.

Why do cells that lack a gene sometimes evolve faster and
to higher fitness values than strains that did not lose a gene? It
is clear that a gene deletion can change the evolutionary path
of a strain. A lower fitness due to a gene deletion may make a
further mutation more likely to be adaptive. To describe the
situation in an intuitive way, imagine a fitness landscape with
different peaks and valleys (Wright 1932). In the case of a
relatively fit wild-type strain, individuals may be trapped near
a local fitness peak with selective pressure keeping them near
the peak. Losing a gene may cause dramatic changes in both
the landscape and the position of the individual in the land-
scape. If a gene deletion brings the strain to a fitness valley,
individuals may then be able to reach other, higher peaks.
Indeed, simulations with digital organisms have shown that
deleterious mutations may serve as stepping stones in adap-
tive evolution (Covert et al. 2013).

It is important to note that in nature, the decrease in
fitness associated with gene loss could impede the spread
of the mutation in the population. Indeed, genes remain
functional over long evolutionary periods for this reason.
However, gene loss is pervasive across all forms of life, suggest-
ing that at least in some circumstances, loss-of-function
mutants survive (reviewed in Albalat and Ca~nestro 2016).
Indeed, depending on the condition in which they occur,
null mutations are often neutral and can even provide fitness

benefits (Costanzo et al. 2010). Moreover, our results show
that suppressor mutations that inactivate genes can help re-
store fitness levels quickly, confirming the results of previous
directed evolution studies (Kvitek and Sherlock 2011; Hottes
et al. 2013). Together with our finding that gene loss can
increase the speed of adaptation and evolvability, it becomes
clear how the loss of a gene can serve as a gateway to rapid
adaptation and evolutionary innovation.

Materials and Methods

Strains
Construction of a Prototrophic S288c Strain with Repaired

HAP1, SAL1, and MIP1
All strains used in the evolution experiments and growth
assays are derived from the haploid prototrophic S288c strain
FY4 (MATa) (Brachmann et al. 1998), in which HAP1, SAL1,
and MIP1 were repaired using CRISPR-Cas9. These three
genes are important for faithful inheritance and functioning
of mitochondria (Gaisne et al. 1999; Dimitrov et al. 2009;
Ehrenreich et al. 2010) and are mutated in the standard
S288c lab strain. Appropriate guide sequences were inserted
in pV1382, a Cas9/sgRNA delivery plasmid which was a gift
from the Gerald Fink Lab (Vyas et al. 2018). FY4 was then
cotransformed with the plasmid and a repair template using
the standard LiAc-based yeast transformation protocol, to
sequentially repair HAP1, SAL1, and finally MIP1. Correct
clones were identified using Sanger sequencing and later
also confirmed using whole-genome sequencing. The new
reference strain showed improved mitochondrial function
and mitochondrial genome stability (supplementary fig. 5A
and B, Supplementary Material online). A full list of strains
used in this study can be found in supplementary table 10,
Supplementary Material online.

Construction of Sensitive Deletion Strains
All deletion strains used in the evolution experiments were
made in FY4 HAP1þ SAL1þMIP1þ using the standard LiAc-
based yeast transformation protocol. Genes were deleted us-
ing a loxP-HYG-loxP cassette based on a plasmid containing a
HYG-resistance marker analogous to pUG6 (Christiaens et al.
2014). A full list of strains used in this study can be found in
supplementary table 10, Supplementary Material online.

Construction of Validation Deletion Strains
All deletion strains used in the validation experiments were
made in FY4 HAP1þ SAL1þ MIP1þ and a selection of sen-
sitive deletion strains using the standard LiAc-based yeast
transformation protocol. Deletion cassettes were based on
pUG6, conferring resistance to G418 disulfate (Güldener
et al. 1996). A full list of strains used in this study can be
found in supplementary table 10, Supplementary Material
online.

Genome-Wide Screen
Pooling the Deletion Collection
The haploid MATa deletion collection was pooled as de-
scribed in Perez-Samper et al. (2018). In short, the collection
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was thawed and 3 ml from each well was inoculated in 150 ml
YP (20 g/l bacterial peptone, 10 g/l yeast extract) supple-
mented with 2% (w/v) glucose and 200 mg/ml G418.
Cultures were grown to stationary phase (OD600 > 1.0) and
50 ml from each well was pooled and mixed. The pool was
then distributed into 1-ml aliquots and frozen.

Growing the Pool and Sample Preparation
Two deletion collection pool aliquots were thawed and pre-
grown separately for one overnight in 50 ml YP 2% (w/v)
glucose at 30 �C. A sample was procured for the initial time
point, and for each replicate�11 x 104 cells were transferred
to 200 ml YP 2% (w/v) glucose and 200 ml YP 2% (w/v)
glucose supplemented with 1 mM paraquat (Sigma-
Aldrich). The pools were grown for �6 doublings at 30 �C,
after which�11 x 104 cells were transferred to fresh medium.
This step was repeated twice, so that every pool had under-
gone�18 doublings while continuously growing in exponen-
tial phase before taking the final samples. Using a standard
zymolyase-based protocol, genomic DNA was extracted from
the two initial and four final samples. UPTAGs and DNTAGs
were then amplified in separate PCR reactions using the pri-
mers described in Perez-Samper et al. (2018). UPTAG and
DNTAG PCR mixtures coming from the same sample were
pooled, and samples were sent for sequencing on an Illumina
NextSeq 500.

Bioinformatic Analysis
Barcodes were extracted from the raw sequence reads using
cutadapt version 1.12 (Martin 2011). Extracted barcodes were
aligned to the reannotated deletion barcodes (Smith et al.
2009), using Barcas version 1.0 (Mun et al. 2016) and allowing
for a maximum of two inexact matches (mismatch, deletion
or insertion). Statistical tests to determine the differential
abundance of each mutant were performed in edgeR version
3.8 (Robinson et al. 2010), using TMM normalization. The
log2-fold change in barcode abundance (1 mM paraquat con-
dition vs. 0 mM paraquat condition) for each gene deletion
was used to rank the gene deletion strains based on their
fitness. The camera function from edgeR was used to perform
the GO enrichment analysis (Wu and Smyth 2012). Gene
networks representing the most depleted and enriched dele-
tion strains were made in STRING version 11.0 (Szklarczyk
et al. 2015) and visualized using Cytoscape version 3.7.1
(Shannon et al. 2003).

Growth Assays in Liquid Culture
All growth measurements reported in this study were done in
liquid culture, except for those associated with the pheno-
typic screens (see below).

Growth Assays on YP 2% (w/v) Glycerol
For each tested strain, one colony was inoculated in triplicate
in 150 ml YP 2% (w/v) glycerol þ 1 mM CuSO4 and serially
diluted for growth overnight at 30 �C and 900 rpm. Copper
was added to improve respiratory growth (Schlecht et al.
2014). Cultures at OD600 < 0.1 were transferred to 150 ml

of fresh medium and serially diluted for growth for another
overnight. Finally, cultures at OD600 < 0.1 were selected and
used to inoculate for growth measurements in a Bioscreen C
device. The two consecutive precultures ensure that every
culture is fully adapted and growing exponentially before
the start of the growth experiment. Cells were incubated at
30 �C, with continuous medium shaking and OD600 was
tracked every 15 min. Growth rates were determined using
an in-house python script, and final OD600 measurements
were obtained after 120 h of growth.

Growth Assays on YP 2% (w/v) Glycerol, Supplemented with

0.125 mM Paraquat
This paraquat concentration is high enough to see clear differ-
ences in sensitivity between strains, but low enough that
most of the strains are still able to grow. For each tested
strain, one colony was inoculated in duplicate in YP 2% (w/
v) glycerol þ 1 mM CuSO4, supplemented with 0.125 mM
paraquat and serially diluted for growth overnight at 30 �C
and 900 rpm. Copper was added to improve respiratory
growth (Schlecht et al. 2014). Cultures at OD600 < 0.1 were
transferred to 150 ml of fresh medium and serially diluted for
growth for two overnights. Finally, cultures at OD600 < 0.1
were selected and used to inoculate in technical duplicate for
growth measurements in a Bioscreen C device (resulting in
four growth measurements per strain). The two consecutive
precultures ensure that every culture is fully adapted and
growing exponentially before the start of the growth exper-
iment. Cells were incubated at 30 �C, with continuous me-
dium shaking and OD600 was tracked every 15 min. Growth
rates were determined using an in-house python script, and
final OD600 measurements were obtained after 120 h of
growth.

Petite Frequency Assays
Petite frequency assays were performed as described in
Dimitrov et al. (2009). In short, for each tested strain, one
colony was inoculated in 3 ml YP 2% (w/v) glucose in quin-
tuplicate and grown for one overnight at 30 �C. Appropriate
dilutions were plated onto YP 0.1% (w/v) glucoseþ 3% (w/v)
glycerol plates and the number of small (petite) and big
(grande) colonies was counted after growth for 5 days at 30
�C.

Experimental Evolution
For each deletion strain, four replicate starting populations
were established (eight for the wild type) by inoculating single
colonies in different wells of a 96-well plate containing 100 ml
YP 2% (w/v) glucose. Outer wells were not inoculated, just as
well as six wells in between inoculated wells to get an early
indication on cross-contamination. After one overnight, 1 ml
from each well was transferred to new plates containing 100
ml of selective medium: YP 2% (w/v) glycerol supplemented
with 0.125 mM paraquat and YP 2% (w/v) glucose supple-
mented with 1 mM paraquat. Medium containing glycerol as
a carbon source was always supplemented with 1 mM CuSO4.
Populations were then evolved by serial dilution, using a
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dilution factor of 1:100. Transfers were done every 2 days for
strains evolving on YP 2% (w/v) glucose with paraquat, and
every 4 days for strains evolving on YP 2% (w/v) glycerol with
paraquat. OD600 was measured daily to keep track of general
adaptation trends and possible contamination. Glycerol
stocks were made every 8 days. For strains evolving on YP
2% (w/v) glucose with paraquat, the paraquat concentration
was increased by 0.5 mM every four transfers, and for strains
evolving on YP 2% (w/v) glycerol with paraquat, the paraquat
concentration was increased by 0.125 mM every eight trans-
fers. As these conditions were too harsh for some of the most
sensitive strains, they were put on a separate plate with an
adjusted paraquat concentration regiment (for YP 2% (w/v)
glucose: starting paraquat concentration of 0.5 mM, increased
every eight transfers with 0.5 mM; for YP 2% (w/v) glycerol:
starting paraquat concentration of 0.0625 mM, increased ev-
ery 16 transfers with 0.0625 mM). To test whether the differ-
ence in concentration regiment influences the outcome of
evolution, the plates with hypersensitive strains also included
an additional four replicates of the wild-type strain. After
evolution, we determined the effect of the concentration
regiment on the growth characteristics of a subset of the
evolved strains by measuring their growth characteristics at
different concentrations of paraquat. Neither the concentra-
tion regiment nor the original sensitivity of the strain had an
effect on how the strains behave at different paraquat con-
centrations (supplementary fig. 6A, Supplementary Material
online). In addition to the four replicates of the wild-type
strain, our data set also contains a number of other strains
for which a number of replicates were evolved in the regular
concentration regime, whereas other replicates of the same
genetic background were evolved at the lower concentration.
When we compare the growth rates of the evolved strains in
both regimes, we do not observe a significant difference (sup-
plementary fig. 6B, Supplementary Material online). The ex-
periment was stopped after 150 generations, as most of the
populations by then showed a significant increase in fitness
(as estimated by looking at the daily increase in OD600). The
number of generations was determined by estimating popu-
lation size for each well based on the OD600 measurements
upon transfer to fresh medium.

Sampling Fit Clone from Evolved Populations
One fit evolved yeast clone was isolated from each evolved
population. Plates with evolved populations were thawed,
and 5 ml was inoculated in 150 ml YP 2% (w/v) glucose for
overnight growth. Three microliters of appropriate dilutions
was spotted on plates containing the same growth medium
as was used for evolution: Strains evolved on YP 2% (w/v)
glycerol supplemented with paraquat were spotted on plates
containing YP 2% (w/v) glycerol supplemented with 0.125
mM paraquat and strains evolved on YP 2% (w/v) glucose
supplemented with paraquat were spotted on plates contain-
ing YP 2% (w/v) glucose supplemented with 1 mM paraquat.
Plates were incubated at 30 �C until single colonies could be
clearly distinguished. From each spot, three big colonies were
selected and inoculated in 150 ml fresh YP 2% (w/v) glucose
medium for overnight growth. Using a Singer Rotor HDA

pinning robot, all isolates were spotted on agar plates con-
taining the same growth medium as used for evolution (as
described above). Plates were incubated at 30 �C and were
scanned daily using a high-definition scanner (Epson). Images
were analyzed using CellProfiler version 2.2.0 (Lamprecht et al.
2007), and based on the area of the spots over time growth
rates were calculated. The clone with the highest growth rate
out of the three selected clones was selected for sequencing
and further phenotyping. To verify that with this procedure
we pick a clone that is a fair representative for the population,
we compared the growth characteristics of the evolved bulk
populations with those of the corresponding evolved clones
(in liquid culture, for a subset of 16 population-clone pairs).
There is a clear correlation between the growth rate of the
clones and the growth rate of the populations from which
they were picked (r ¼ 0.86, P < 0.0001), indicating that the
picked clones are not just rare outliers within the population
(supplementary fig. 7, Supplementary Material online).

Phenotypic Screens
Growth of each of the selected clones was measured under a
variety of stresses, which were selected to influence a broad
range of cellular processes. A complete list of compounds that
were used and their concentrations can be found in supple-
mentary table 11, Supplementary Material online. Plates with
selected clones were thawed, and 5 ml of each strain was
inoculated in 100 ml YP 2% (w/v) glucose for overnight
growth. Using a Singer Rotor HDA pinning robot, all isolates
were spotted on agar plates containing the drug or condition
of choice. Plates were incubated at 30 �C and were scanned
daily using a high-definition scanner (Epson). Images were
analyzed using CellProfiler version 2.2.0 (Lamprecht et al.
2007), and based on the area of the spots over time growth
rates were calculated. Growth rates were normalized for
growth on the control condition (YP 2% (w/v) glucose), ex-
cept for conditions where another carbon source was used.
The growth rate of the evolved clones was then compared
with the growth rate of their corresponding ancestor (same
gene deletion) to calculate their increase or decrease in
fitness.

Determining Cell Ploidy
Cell ploidy of the selected evolved clones was determined by
staining the cells with propidium iodide. For each sample,
fluorescence of 50,000 cells was analyzed by flow cytometry
on an Attune NxT. A prototrophic haploid strain (FY4) and
an isogenic diploid strain (FY4/FY5) were used for calibration.

Whole-Genome Sequencing and Variant Calling
Sample Preparation and Sequencing
Using a standard zymolyase-based protocol, genomic DNA
was isolated from the ancestral wild type (FY4 HAP1þ
SAL1þ MIP1þ) and each of the selected evolved clones.
Final DNA concentrations were measured with a Qubit 2.0
and DNA quality was checked using a NanoDrop 8000 and by
gel electrophoresis. Samples were sent for paired-end se-
quencing on an Illumina HiSeq, with an average read length
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of 150 bp and an average insert size of 350 bp. Each of the
samples had a minimum haploid coverage of 100�.

Mapping and Variant Calling
The general quality of the reads was assessed using FastQC
version 0.11.5 (Babraham Bioinformatics) after which reads
were mapped to the reference S288c genome (version R64)
using bwa-mem version 0.7.12 with default settings (Li and
Durbin 2010). Indels and SNVs were called using GATK ver-
sion 4.0.0.0 (McKenna et al. 2010), according to GATK best
practice recommendations. Duplicates were marked and
HaplotypeCaller was used to call variants while setting ploidy
to the level determined by propidium iodide staining. Regions
with aneuploidies were later recalled using the adjusted local
ploidy. Variants present in the ancestral strain were filtered
out, as well as SNVs that were identical in more than three
independent samples, and indels identical in more than one
independent sample. All of the variants that were filtered out
in this way were ambiguous calls, as determined by manual
curation. Finally, all remaining SNVs and indels were verified
using intensive manual curation.

Identification of Copy Number Variants
Structural variants were called using CNVnator version 0.3.3
(Abyzov et al. 2011), using a bin size of 250 bp. The output
was verified using chromosomal density plots.

Statistical Analyses

(1) To test the hypothesis that all strains have at most the
expected growth rate of the wild type, we used a simula-
tion approach. First, as a statistic the sum of z-scores over
every data point was used. To calculate the z-score, we
took the wild type’s average growth rate and standard
deviation (SD). As we were only testing if the fitness is
higher than expected for some strains, only positive z-
scores were considered and negative z-scores were set
to zero. Growth rate residuals were normally distributed
in our observations. The H0 distribution was approxi-
mated by calculating the statistic for simulated data
sets that match the composition of our observations
(10k repetitions) by sampling observations from normal
distributions for every strain with the wild-type expected
growth rate and SD. Next, this distribution was compared
with the statistic calculated based on our observations. To
be confident on the robustness of the observed test sta-
tistic, that is, does the result not depend on a handful of
outliers, we estimated the variability in the statistic by
calculating a bootstrap distribution for our observations.

(2) Modeling growth rate after evolution. The number of ge-
netic and physical interactions of each gene, as well as the
number of phenotypes, and the information on whether
the gene has a paralog and is part of a complex were
obtained from Saccharomyces Genome Database using
the Yeastmine tool. The conservation score was calcu-
lated as the average PhastCon score over the length of
the gene. The PhastCon score for each nucleotide was
retrieved from UCSC using the sacCer3 genome assembly.

To estimate the effect of each biological parameter on
growth rate after evolution, a linear model was fitted in R
with different biological parameters as independent var-
iables. The explained variance and significance of every
variable were estimated by ANOVA, comparing the full
model to the model without the variable. The plot of the
model was made using the R package itools, and it rep-
resents the standardized coefficients with their 95% con-
fidence intervals.

(3) Mann–Whitney U tests. The Mann–Whitney U tests were
performed using the “manwhitneyu” function from the
stats module of SciPy (Virtanen et al. 2020).

(4) GO enrichment of mutations. The overall GO enrichment
of mutations across all samples was done using the com-
petitive gene set test “camera,” from the R package edgeR
(Wu and Smyth 2012). For the GO categories that were
obtained in this overall test, targeted tests using the cam-
era function were performed for each network module
against the background.

Phenotypic and Mutational Distances
The phenotypic profile of each evolved strain was defined as
the relative increase in fitness compared with its correspond-
ing unevolved deletion strain across each tested condition
(see phenotypic screens above for more details). To calculate
phenotypic distances, the average Euclidean distance was cal-
culated between each strain and all other strains that came
from the same deletion ancestor.

The mutational profile of each evolved strain was defined
as its set of genes and GO categories that were mutated
among the list of all the genes and GO categories that were
mutated at least once across all the samples. To calculate
mutational distances, the average binary (Jaccard) distance
was calculated between each strain and all other strains that
came from the same deletion ancestor.

Values for the phenotypic potential were taken from Levy
and Siegal (2008). Two outliers were identified and removed
using the ROUT method (Q ¼ 1%).

Data Availability
Aligned sequences of evolved clones have been deposited at
ENA under accession number PRJEB39189.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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