
Gene expression

Understanding sequencing data as

compositions: an outlook and review

Thomas P. Quinn1,*, Ionas Erb2,3, Mark F. Richardson1,4 and

Tamsyn M. Crowley1,5

1Bioinformatics Core Research Group, Deakin University, Geelong 3220, Australia, 2Centre for Genomic Regulation

(CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain, 3Universitat Pompeu Fabra (UPF),

Barcelona, Spain, 4Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University,

Geelong 3220, Australia and 5Poultry Hub Australia, University of New England, Armidale, NSW 2351, Australia

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on October 24, 2017; revised on March 20, 2018; editorial decision on March 20, 2018; accepted on March 26, 2018

Abstract

Motivation: Although seldom acknowledged explicitly, count data generated by sequencing plat-

forms exist as compositions for which the abundance of each component (e.g. gene or transcript)

is only coherently interpretable relative to other components within that sample. This property

arises from the assay technology itself, whereby the number of counts recorded for each sample is

constrained by an arbitrary total sum (i.e. library size). Consequently, sequencing data, as composi-

tional data, exist in a non-Euclidean space that, without normalization or transformation, renders

invalid many conventional analyses, including distance measures, correlation coefficients and mul-

tivariate statistical models.

Results: The purpose of this review is to summarize the principles of compositional data analysis

(CoDA), provide evidence for why sequencing data are compositional, discuss compositionally

valid methods available for analyzing sequencing data, and highlight future directions with regard

to this field of study.

Contact: contacttomquinn@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 From raw sequences to counts

Automated Sanger sequencing served as the primary sequencing tool

for decades, ushering in significant accomplishments including the

sequencing of the entire human genome (Metzker, 2010). Since the

mid-2000s, however, attention has shifted away this ‘first-genera-

tion technology’ toward new technologies collectively known as

next-generation sequencing (NGS) (Metzker, 2010). A number of

NGS products exist, each differing in the sample preparation

required and chemistry used (Metzker, 2010). Although each prod-

uct tends toward a different application, they all work by determin-

ing the base order (i.e. sequence) from a population of fragmented

nucleotide sequences (i.e. a cDNA library), such that it becomes pos-

sible to estimate the abundances of unique sequences (Metzker,

2010). However, these sequence abundances are not absolute

abundances because the total number of sequences measured by

NGS technology (i.e. the library size) ultimately depends on the

chemistry of the assay, not the input material.

Depending on the input material, NGS has many uses. These

include (i) variant discovery, (ii) genome assembly, (iii) transcriptome

assembly, (iv) epigenetic and chromatin profiling (e.g. ChIP-seq,

methyl-seq and DNase-seq), (v) meta-genomic species classification or

gene discovery and (vi) transcript abundance quantification (Metzker,

2010). The application of NGS to catalog transcript abundance is bet-

ter known as RNA-Seq (Metzker, 2010) and can be used to estimate

the portional presence of transcript isoforms, gene archetypes or

other. RNA-Seq works by taking a population of (total or fractio-

nated) RNA, converting them to a library of cDNA fragments,

optionally amplifying the fragments, and then sequencing those

fragments in a ‘high-throughput manner’ (Wang et al., 2009).
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When sequencing smaller RNA (e.g. microRNA), an additional size

selection step is used to ensure a uniform size of the RNA product

(Head et al., 2014).

The result of RNA-Seq is a virtual ‘library’ of many short

sequence fragments that are converted to a numeric dataset through

alignment (most often to a previously established reference genome

or transcriptome) and quantification (Griffith et al., 2015). The

alignment and quantification steps summarize the raw sequence

data (i.e. reads) as a ‘count matrix’, a table containing the estimated

number of times a sequence successfully aligns to a given reference

annotation. The ‘count matrix’ therefore provides a numeric distilla-

tion of the raw sequence reads collected by the assay; as such, it con-

stitutes the data routinely used in statistical modeling, including

differential expression analysis (Griffith et al., 2015). Two factors

complicate alignment and quantification. First, assembled references

(e.g. genomes or transcriptomes) are only just references: sequences

measured from biological samples will have an expected amount of

variation, either systematic or random, when compared with the

reference. This variation necessitates that the alignment procedure

accommodates (at least optionally) a certain amount of mismatch

(Conesa et al., 2016). Meanwhile, some reads (notably short reads)

can ambiguously map to multiple reference sites, an undesired out-

come that is amplified by mismatch tolerance (Conesa et al., 2016).

Many alignment and quantification methods exist and are reviewed

elsewhere (e.g. Baruzzo et al., 2017; Benjamin et al., 2014; Wang

et al., 2014).

The ‘count matrix’ (or equivalent) produced by alignment and

quantification is routinely analyzed using statistical hypothesis test-

ing (e.g. generalized linear models) or data science techniques (e.g.

clustering or classification). Most commonly, data are studied using

differential expression analysis, a constellation of methods that seek

to identify which unique sequence fragments (if any) differ in abun-

dance across the experimental condition(s). Like alignment and

quantification, many differential expression methods exist and are

reviewed elsewhere (e.g. Merino et al., 2017; Seyednasrollah et al.,

2015; Teng et al., 2016). However, it is important to note that con-

clusions drawn from RNA-Seq data appear to have a certain

‘robustness’ to the choice in the alignment and quantification

method, such that the choice in the differential expression method

impacts the final result most (Williams et al., 2017).

The focus of this review is not to elaborate on the subtleties of

alignment, quantification or differential expression, but rather to

discuss the relative (i.e. compositional) nature of sequencing count

data and the implications this has on many analyses (including dif-

ferential expression analysis). In this review, we show how sequenc-

ing count data measure abundances as portions which (in the

absence of normalization or transformation) render many conven-

tional methods invalid. We then discuss methods available for deal-

ing with portional data, focusing on methods that do not use

normalization per se. Finally, we conclude by discussing challenges

specific to these analyses and by considering advancements to this

field of study. Although we emphasize RNA-Seq data throughout

this paper, the principles discussed here apply to any NGS abun-

dance dataset.

2 Counts as parts of a whole

2.1 Image brightness as portions
As an analogy, let us imagine that we instructed two photographers

to take a series of black and white photographs using a digital cam-

era. We can represent the captured images as a set of N-dimensional

vectors where each element (i.e. pixel) records the amount of light

that hit a corresponding part of the film sensor. Considering this

dataset, let us ask a pointed experimental question: which photogra-

pher captured their photographs in brighter light? Better yet, for

which pixels, on average, did Photographer A capture brighter light

than Photographer B?

On first glance, this appears straight-forward. However, we

want to know about the amount of light present when the photo-

graph was taken, not the amount of light recorded by the film sen-

sor. Although related, many factors influence the light measured at a

given pixel. These include, for example, exposure time, aperture

diameter and the sensitivity of the film sensor. Changing any one of

these parameters will change the image. Of course, such a change in

the image does not mean a change in the reality.

At each pixel, we could then define two variables: luminance,

the amount of light present at the moment of the photograph, and

brightness, the amount of light perceived by the film sensor.

Intuitively, we can understand brightness (the observed value, o), as

a function, f, of luminance (the actual value, a):

o ¼ f að Þ (1)

Even if we do not know the function, f, that relates these two

measures, we see here that the total brightness recorded (i.e.
P

o) is

an artifact of the conditions under which the luminance is measured.

Yet, if we can assume that the film sensor responds proportionally

to light and does not clip (an unrealistic and idealized assumption),

then the portional brightness would equal the portional luminance:

oP
o
¼ aP

a
(2)

In this scenario, we can understand each element of o as a por-

tion of the whole. As such, the brightness of a single pixel is only

meaningful when interpreted relative to the total brightness (or to

the brightness of the other pixels). Importantly, it follows that the

ratio of any two parts of brightness will equal the ratio of any two

parts of luminance.

2.2 Sequence abundance as portions
RNA-Seq data, through alignment and quantification, measure tran-

script abundance as counts. However, like the brightness of a digi-

talized image, the amount of RNA estimated for each transcript

depends on some factors other than the amount of RNA molecules

present in the assayed cell. Like a photograph, it is possible to

change the observed magnitude while keeping the actual input the

same. As such, RNA-Seq count data are not actually counts per se,

but rather portions of a whole.

In fact, this is a property of all NGS abundance data: the abun-

dances for each sample are constrained by an arbitrary total sum

(i.e. the library size) (Soneson and Delorenzi, 2013). Since the

library size is arbitrary, the individual values of the observed counts

are irrelevant (i.e. provided the counts themselves are sufficiently

large). However, the relative abundances of the observed counts still

carry meaning. We can understand this by considering how, for a

given sample, o, the library size (i.e.
P

o) cancels for a ratio of any

two transcripts, i and j:

oi

oj
¼ oi=

P
o

oj=
P

o
(3)

Analogous to how the relationship between luminance and

brightness is unique to each photograph, the relationship between

the actual abundances and the observed abundances is unique to

Understanding sequencing data as compositions 2871



each sample. Each independent sample, whether derived from a

human subject or a cell line, may have undergone systematic or ran-

dom differences in processing at any stage of RNA extraction,

library preparation or sequencing, causing between-sample biases

(Soneson and Delorenzi, 2013). As such, library sizes typically differ

between samples, making direct comparisons impossible (Soneson

and Delorenzi, 2013). However, because the counts are portions of

a whole, the interpretation is complicated even when library sizes

are constant. For example, a large increase (or large decrease) in

only a few transcripts will necessarily lead to a decrease (or increase)

in all other measured counts (Soneson and Delorenzi, 2013).

Supplementary Figure S1 provides an abstracted visualization of

how this might happen. Supplementary Figure S2 provides a more

realistic example prepared using 1000 simulated transcripts (900 of

which have increased absolute abundance in one of two groups),

illustrating how equally abundant transcripts can appear under-

expressed when measured as portions [an impressive but biologically

plausible scenario (Lovén et al., 2012)].

3 Counts as compositional data

3.1 The definition of compositional data
Compositional data measure each sample as a composition, a vector

of non-zero positive values (i.e. components) carrying relative infor-

mation (Aitchison, 1986). Compositional data have two unique

properties. First, the total sum of all component values (i.e. the

library size) is an artifact of the sampling procedure (van den

Boogaart and Tolosana-Delgado, 2008). Second, the difference

between component values is only meaningful proportionally [e.g.

the difference between 100 and 200 counts carries the same infor-

mation as the difference between 1000 and 2000 counts (van den

Boogaart and Tolosana-Delgado, 2008)].

Examples of compositional data include anything measured as a

percent or proportion. It also includes other data that are inciden-

tally constrained to an arbitrary sum. NGS abundance data have

compositional properties, but differ slightly from the formally

defined compositional data in that they contain integer values only.

However, except for possibly at near-zero values, we can treat so-

called count compositional data as compositional data (Lovell et al.,

2015; Quinn et al., 2017b). Note that it is not a requirement for the

arbitrary sum to represent complete unity (Aitchison, 1982): many

datasets (including possibly NGS abundance data) lack information

about potential components and hence exist as incomplete

compositions.

3.2 The consequences of compositional data
Compositional data do not exist in real Euclidean space, but rather

in a sub-space known as the simplex (Aitchison, 1986). Yet, many

commonly used metrics implicitly assume otherwise; such metrics

are invalid for relative data. This includes distance measures, corre-

lation coefficients and multivariate statistical models (Boogaart and

Tolosana-Delgado, 2013a). For compositional data, the distance

between any two variables is erratically sensitive to the presence or

absence of other components (Aitchison et al., 2000). Meanwhile,

correlation reveals spurious (i.e. falsely positive) associations

between unrelated variables (Pearson, 1896). In addition, multivari-

ate statistics yield erroneous results because representing variables

as portions of the whole makes them mutually-dependent, multivari-

ate objects (i.e. increasing the abundance of one decreases the por-

tional abundance of the others) (Boogaart and Tolosana-Delgado,

2013a). All of this applies to NGS abundance data too (Lovell et al.,

2015).

In the life sciences, count data are usually modeled using the

Poisson distribution or negative binomial distribution (Bliss and

Fisher, 1953). For NGS abundance data, the negative binomial

model is preferred because it accommodates situations in which the

variance is much larger than the mean [a common feature of biologi-

cal replicates in RNA-Seq studies (Soneson and Delorenzi, 2013)].

These distributions are typically used to model the abundance of

each gene across samples, and are necessary because analyzing non-

normalized and non-transformed count data as if they were nor-

mally distributed would imply that it is possible to sample negative

and non-integer values, contradicting the assumptions behind many

statistical hypotheses (Buccianti, 2013) [although it is possible to

extend Gaussian analysis to counts by use of precision weights (Law

et al., 2014)]. Yet, NGS abundance data are compositional counts,

not counts, meaning that the measured variables (i.e. components)

are not univariate objects (Boogaart and Tolosana-Delgado, 2013b).

This fact necessitates (at the very least) an additional normalization

step that corrects for the arbitrary library sizes.

3.3 Normalization to effective library size
The simplest normalization would involve rescaling counts by the

library size (i.e. the total number of mapped reads from a sample)

(Soneson and Delorenzi, 2013), but this does not transform compo-

sitional counts into absolute counts. Similarly, RPKM and also TPM

cannot be considered valid normalizations in this sense (see the

Supplementary Material for more details). Instead, analysts most

often use other, more elaborate normalization methods that (gener-

ally speaking) offset the individual counts of each sample based on

the counts of a reference (or pseudo-reference) gene (Dillies et al.,

2013). The magnitude of this offset is related to the effective library

size (i.e. the sum of a library’s counts put on a common scale with

the other samples) (see the Supplementary Material for more

details). Effective library size normalization for RNA-seq data was

first proposed in an attempt to address the relative (i.e. closed)

nature of the data through a method known as the trimmed mean of

M-values (TMM) (Robinson and Oshlack, 2010). This normaliza-

tion works by inferring an ideal (i.e. unchanged) reference from a

subset of transcripts based on the assumption that the majority of

transcripts remain unchanged across conditions. Here, the reference

was chosen to be a weighted and trimmed mean (Robinson and

Oshlack, 2010), although others have proposed using the median

over the transcripts as the reference (Anders and Huber, 2010). The

TMM normalizes data to an effective library size based on the prin-

ciple that if counts are evaluated relative to (i.e. divided by) an

unchanged reference, the original scale of the data is recovered. In

the language of compositional data analysis, this approach is

described as an attempt to ‘open’ the closed data, and is often

criticized on the basis that ‘there is no magic powder that can be

sprinkled on closed data to make them open’ (Aitchison, 2003). Yet,

if the data were open originally (and only incidentally closed by the

sequencing procedure), this point of view is perhaps extreme. In this

case, if the analyst were to identify an offset that places the observed

abundances relative to an ideal reference, the normalization [e.g. of

the kind used by edgeR (Robinson et al., 2010) or DESeq2 (Anders

and Huber, 2010)] would indeed render the univariate analysis of

otherwise compositional data valid (see the Supplementary Material

for more details).

On the other hand, if the cells themselves produce closed data by

default [e.g. due to their limited capacity for mRNA production
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(Scott et al., 2010)], any attempt to open the data might prove futile.

Nevertheless, given the difficulties in identifying a truly unchanged

reference (and in interpreting it correctly in the case that closed data

is being produced by the cells themselves) avoiding normalization

altogether would seem desirable. After all, the choice of normaliza-

tion method impacts the final results of an analysis. For example,

the number and identity of genes reported as differentially expressed

change with the normalization method (Lin et al., 2016), as do false

discovery rates (Li et al., 2015). This also holds true for composi-

tional metabolomic data (Saccenti, 2017). Moreover, at least some

normalization methods are sensitive to the removal of lowly abun-

dant counts (Lin et al., 2016), as well as to data asymmetry

(Soneson and Delorenzi, 2013).

4 Principles of compositional data analysis

4.1 Approaches to compositional data
In lieu of normalization, many compositional data analyses begin

with a transformation. Although compositional data exist in the

simplex, Aitchison first documented that these data could get

mapped into real space by use of the log-ratio transformation

(Aitchison, 1986). By transforming data into real space, measure-

ments like Euclidean distance become meaningful (Aitchison et al.,

2000). However, it is also possible to analyze compositional data

without log-ratio transformations. One approach involves perform-

ing calculations on the components themselves (called the ‘staying-

in-the-simplex’ approach) (Mateu-Figueras et al., 2011). Another

involves performing calculations on ratios of the components

(called the ‘pragmatic’ approach) (Greenacre, 2017). Nevertheless,

many compositional data analyses still begin with a log-ratio

transformation.

Unlike normalizations, log-ratio transformations do not claim to

open the data. Instead, the interpretation of the transformed data

(and some of their results) depends on the reference used. In con-

trast, normalizations assume that an unchanged reference is avail-

able to recover the data (i.e. up to a proportionality constant) as

they existed prior to closure by sequencing. Yet, while log-ratio

transformations are conceptually distinct from normalizations, they

are sometimes interpreted as if they were normalizations themselves

[e.g. as in Fernandes et al. (2014)]. Although this contradicts compo-

sitional data analysis principles, conceiving of transformations as

normalizations is helpful in understanding their use in some RNA-

Seq analyses. Such log-ratio ‘normalizations’, like conventional nor-

malizations, aim to recast compositional data in absolute terms,

allowing for a straight-forward univariate interpretation of the data.

Like effective library size normalization, this is done through use of

an ideal reference.

4.2 The log-ratio transformation
First, let us consider a small relative dataset with only 3 features

measured across 100 samples. These samples belong to one of two

groups. One of the features, ‘X’, can differentiate these groups per-

fectly. The other features, ‘Y’ and ‘Z’, constitute noise. We can turn

an absolute dataset into a compositional dataset by dividing each

element of the sample vector by the total sum. Supplementary Figure

S3 shows how the relationship between samples (represented as

points) might change when made compositional. Although the two

groups appear clearly linearly separable in absolute space, the boun-

daries between groups become unclear in relative space. Meanwhile,

Supplementary Figure S2 provides a more realistic example prepared

using 1000 simulated transcripts, illustrating how the distributions

of absolute abundances and observed portions (and the distances

and correlations thereof) can differ tremendously in a biologically

plausible scenario (Lovén et al., 2012).

When analyzing compositional data, it is sometimes possible to

reclaim the discriminatory potential of relative data through trans-

formation. For example, by setting all or some of the features rela-

tive to (i.e. divided by) a reference feature, one might discover that

the resultant ratios can separate the groups (Thomas and Aitchison,

2006). In fact, any separation revealed by such ratios can be ana-

lyzed by standard statistical techniques (Thomas and Aitchison,

2006). This illustrates the concept behind the additive log-ratio (alr)

transformation, achieved by taking the logarithm of each measure-

ment within a composition (i.e. each sample vector j containing rela-

tive measurements) as divided by a reference feature (commonly

chosen as the one with index D, with D being the total number of

features) (Aitchison, 1986):

alr xj

� �
¼ ln

x1j

xDj
; . . . ; ln

xD�1j

xDj

� �
: (4)

Here the components of xj sum to unity, but we can replace the parts

xgj by the observed counts ygj without altering the expression

because the library sizes cancel.

Instead of a specific reference feature, one could use an

abstracted reference. In the case of the centered log-ratio (clr) trans-

formation, the geometric mean of the composition (i.e. sample vec-

tor) is used in place of xD (Aitchison, 1986). We use the notation

g xð Þ to indicate the geometric mean of the sample vector, x. Note

that because these transformations apply to each sample vector inde-

pendently, the presence of an outlier sample does not alter the trans-

formation of the other samples:

clr xj

� �
¼ ln

x1j

gðxjÞ
; . . . ; ln

xDj

gðxjÞ

� �
: (5)

Again, we could replace the parts xgj directly by the observed counts

ygj [and g(x j) by g(y j)] without changing the expression.

Likewise, other transformations exist that use the geometric

mean of a feature subset as the reference. For example, the ALDEx2

package introduces the inter-quartile log-ratio (iqlr) transformation,

which includes only features that fall within the inter-quartile range

of total variance in the geometric mean calculation (Fernandes et al.,

2013; Fernandes et al., 2014). Another, more complex, transforma-

tion, called the isometric log-ratio (ilr) transformation (Egozcue

et al., 2003), also exists and is used in geological studies (Buccianti,

2013) and at least one analysis of RNA-Seq data (Topa and

Honkela, 2016). The ilr transforms the data with respect to an

orthonormal coordinate system that is constructed from sequential

binary partitions of features (Boogaart and Tolosana-Delgado,

2013b). Its default application to standard problems has been

criticized by Aitchison on the basis that it lacks interpretability

(Aitchison, 2008). Applications where the basis construction follows

a microbiome phylogeny seem an interesting possibility, however

(Washburne et al., 2017).

4.3 The log-ratio ‘normalization’
In some instances, the log-ratio transformation is technically equiva-

lent to a normalization. For example, let us consider the case where

we know about our data the identity of a feature with a fixed abun-

dance in absolute space across all samples. We could then use a log-

ratio procedure to ‘sacrifice’ this feature in order to ‘back-calculate’

the absolute abundances. This is akin to using the alr transformation

as a kind of normalization. However, because a single unchanged
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reference is rarely available or knowable [although synthetic RNA

spike-ins may represent one way forward (Jiang et al., 2011)], we

could try to approximate an unchanged reference from the data. For

this, one might use the geometric mean of a feature subset, thereby

using a clr (or iqlr) transformation as if it were a normalization. We

refer the reader to the Supplementary Material for a detailed discus-

sion on how alr and clr transformations are formally similar to effec-

tive library size normalizations.

Although log-ratio ‘normalizations’ differ from log-ratio trans-

formations only in the interpretation of their results, transforma-

tions alone are still useful even when they do not normalize the data.

This is because they provide a way to move from the simplex into

real space (Aitchison et al., 2000), rendering Euclidean distances

meaningful. Importantly, clr- and ilr-transformed data impart four

key properties to analyses: scale invariance (i.e. multiplying a com-

position by a constant k will not change the results), perturbation

invariance (i.e. converting a composition between equivalent units

will not change the results), permutation invariance (i.e. changing

the order of the components within a composition will not change

the results) and sub-compositional dominance (i.e. using a subset of

a complete composition carries less information than using the

whole) (Boogaart and Tolosana-Delgado, 2013b). Yet, the interpre-

tation of transformation-based analyses remains complicated

because the analyst must consider their results with respect to the

chosen reference, or otherwise translate the results back into compo-

sitional terms.

4.4 Measures of distance
Euclidean distances do not make sense for (unnormalized and

untransformed) compositional data (Aitchison et al., 2000). In con-

trast, the Aitchison distance does, providing a measure of distance

between two D-dimensional compositions, xi and xj (Aitchison

et al., 2000):

d xi;xj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
g¼1

ln
xgi

g xið Þ
� ln

xgj

g xj

� �
" #2

vuut (6)

Although the Aitchison distance is simply the Euclidean distance

between clr-transformed compositions, this distance (unlike

Euclidean distance) has scale invariance, perturbation invariance,

permutation invariance and sub-compositional dominance. Few

other distance measures satisfy all four of these properties, including

none of the metrics routinely used in hierarchical clustering (Martı́n-

Fernández et al., 1998) (a routine part of RNA-Seq analysis). The

property of sub-compositional dominance is especially important:

even if the log-ratio transformation does not normalize the data, the

addition of more sequence data will never make two samples appear

less distant. This follows logically: as the amount of information

grows, the distance between samples should not shrink. However,

since the clr transformation is formally similar to an effective library

size normalization (see the Supplementary Material for more

details), we can expect the Euclidean distance of normalized counts

to compare directly with the Aitchison distance. Measures of dissim-

ilarity based on sample-wise correlation coefficients are often used

for clustering, and can be used for compositional data too.

Interestingly, the problems arising for feature-wise correlations do

not occur for sample-wise correlations because any normalization or

transformation factors implicitly cancel. However, such measures

lack sub-compositional dominance, and can thus cause misleading

results.

4.5 Measures of association
Like the Aitchison distance, there also exists a compositionally valid

measure of association: the log-ratio variance (VLR) measures the

agreement between two feature vectors across N compositions. Let

us denote the vector of the feature g using an upper index,

xg ¼ xg1; . . . ;xgN

� �
. VLR computes the variance of the logarithm of

one variable as divided by a second variable. As such, a dataset with

D compositional variables contains D2 associations (albeit with

symmetry). Unlike Aitchison distance, however, the VLR does not

require a log-ratio transformation whatsoever; in fact, if using log-

ratio transformed data, the reference denominators would cancel

out. Note that, while distances occur between compositions

(i.e. between samples), associations occur between variables (i.e.

between transcripts):

VLR xg; xh
� �

¼ var ln
xg1

xh1
; . . . ; ln

xgN

xhN

� �
: (7)

Again, replacing the parts by the raw counts ygi would not alter the

expression. We can gain an intuition of the VLR by considering its

formula. Recall that the relationship between compositional varia-

bles is one of relative importance: for a two-dimensional feature

pair, the coordinates (2, 4) and (4, 8) have equivalent meaning.

Therefore, it follows that the features with indices g and h are asso-

ciated if
xgi

xhi
remains constant across all samples. Hence, we measure

the variance of the (log-) ratios, such that VLR ranges from 0; inf½ �
where 0 indicates a perfect association. (Taking the log enables sym-

metry with the reciprocal values.) Unfortunately, VLR lacks an

intuitive scale, making non-zero values difficult to interpret (Lovell

et al., 2015).

Importantly, the VLR is sub-compositionally coherent: the

removal of a third feature xf from the data matrix would have no

bearing on the variance of the (log-) ratios
xgi

xhi
. Yet, the VLR suffers

from a key limitation: it is unscaled with respect to the variances of

the log components (Lovell et al., 2015). In other words, the magni-

tude of VLR depends partially on the variances of its constituent

parts (i.e. var log xgð Þ and var log xh
� �

). It was claimed that this

makes it difficult to compare VLR across pairs (e.g. comparing
xgi

xhi

with xhi

xfi
) (Lovell et al., 2015). Still, unlike correlation, the VLR does

not produce spurious results for compositional data, and in fact,

provides the same result for both relative data and the absolute

counter-part, all without requiring normalization or transformation.

4.6 Principal component analysis
Just as there are problems regarding between-sample distances and

between-feature correlations, it follows that Principal Component

Analysis (PCA) should not get applied directly to (unnormalized

and untransformed) compositional data. Although RNA-Seq soft-

ware packages will typically apply PCA (or, alternatively, multi-

dimensional scaling) to normalized counts, analysts could instead

apply PCA to clr-transformed data (resulting in an additional center-

ing of the rows after log-transformation) (Aitchison and Greenacre,

2002). However, analysts must take care when interpreting the

resultant PCA: covariances and correlations between features now

exist with respect to the geometric mean reference. As such, when

plotting features as arrows in the new coordinate space, the angles

between them (i.e. the correlations) will usually change when sub-

sets of the data are analyzed. However, the distances between fea-

ture pairs (i.e. the links between the arrow heads) remain invariable

with respect to sub-compositions: these correspond to their log-ratio

variance (Aitchison and Greenacre, 2002). Meanwhile, the usual

PCA plot (with samples as points in a new coordinate space) projects
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the distances between samples using the Aitchison distance (which

has the desired property of sub-compositional dominance).

In combining these into a joint visualization of features and sam-

ples, the resultant log-ratio biplot (i.e. the ‘relative variation biplot’)

reveals associations between samples and features, and can also be

used to infer power law relationships between features in an explor-

atory analysis (Aitchison and Greenacre, 2002). Such biplots are

reminiscent of the visualizations obtained by Correspondence

Analysis (CA). In fact, CA can indeed be used to approximate rela-

tive variation biplots provided the data are raised to a (small) power

(Greenacre, 2009), the optimal size of which can be obtained by

analyzing sub-compositional incoherence (Greenacre, 2011). Using

CA with power transformation has the advantage that zeros in the

data are handled naturally by the technique.

5 Compositional methods for sequence data

5.1 Methods for differential abundance
The ALDEx2 package, available for the R programming language,

uses compositional data analysis principles to measure differential

expression between two or more groups (Fernandes et al., 2013,

2014). Unlike conventional approaches to differential expression,

ALDEx2 uses log-ratio transformation instead of effective library

size normalization. The algorithm has five main parts. First,

ALDEx2 uses the input data to create randomized instances based

on the compositionally valid Dirichlet distribution (Fernandes et al.,

2013, 2014). This renders the data free of zeros. Second, each of

these so-called Monte Carlo (MC) instances undergoes log-ratio

transformation, most usually clr or iqlr transformation (Fernandes

et al., 2013, 2014). Third, conventional statistical tests (i.e. Welch’s

t and Wilcoxon tests for two groups; glm and Kruskal-Wallis for

two or more groups) get applied to each MC instance to generate p-

values (p) and Benjamini-Hochberg adjusted p-values (BH) for each

transcript (Fernandes et al., 2013, 2014). Fourth, these p-values get

averaged across all MC instances to yield expected p-values

(Fernandes et al., 2013, 2014). Fifth, one considers any transcript

with an expected BH< a as statistically significant (Fernandes et al.,

2013, 2014).

Although popular among meta-genomics researchers for analyz-

ing the differential abundance of operational taxonomic units

(OTUs) (e.g. Urbaniak et al., 2016), the ALDEx2 package has not

received wide-spread adoption in the analysis of RNA-Seq data. In

part, this may have to do with our observation that ALDEx2

requires a large number of samples (Quinn et al., 2017a). This

requirement may stem from its use of non-parametric testing, as sug-

gested by the reduced power of other non-parametric differential

expression methods (Seyednasrollah et al., 2015; Williams et al.,

2017), for example NOISeq (Tarazona et al., 2015). However, com-

peting software packages like limma (Smyth, 2004) and edgeR

(Robinson et al., 2010) also benefit from moderated t-tests that

‘share information between genes’ to reduce per-transcript variance

estimates and increase statistical power.

Still, even in the setting of large sample sizes, ALDEx2 has one

major limitation: its usefulness depends largely on interpreting the

log-ratio transformation as a normalization. If the log-ratio transfor-

mation does not sufficiently approximate an unchanged reference,

the statistical tests will yield results that are hard to interpret.

Another tool developed for analyzing the differential abundance of

OTUs suffers from a similar limitation: ANCOM (Mandal et al.,

2015) uses presumed invariant features to guide the log-ratio trans-

formation. The tendency to interpret differential abundance results

as if they were derived from log-ratio ‘normalizations’ highlights the

importance of pursuing numeric and experimental techniques that

can establish an unchanged reference. It also highlights the benefit

of seeking novel methods that do not require using log-ratio trans-

formations as a kind of normalization.

5.2 Methods for association
The SparCC package, available for the R programming language,

replaces Pearson’s correlation coefficient with an estimation of cor-

relation based on its relationship to the VLR (and other terms)

(Friedman and Alm, 2012). The algorithm works by iteratively cal-

culating a ‘basis correlation’ under the assumption that the majority

of pairs do not correlate (i.e. a sparse network) (Friedman and Alm,

2012). Another algorithm, SPIEC-EASI, makes the same assumption

that the underlying network is sparse, but bases its method on the

inverse covariance matrix of clr-transformed data (Kurtz et al.,

2015). The propr package (Quinn et al., 2017b), available for the R

programming language, implements proportionality as introduced

in Lovell et al. (2015) and expounded in Erb and Notredame

(2016). Proportionality provides an alternative measure of associa-

tion that is valid for relative data. One could think of proportional-

ity as a modification to the VLR that uses information about the

variability of individual features (gained by a log-ratio transforma-

tion) to give the VLR scale. It can be defined for the g-th and h-th

features (e.g. transcripts) of a log-ratio transformed data matrix,

and thus also depends on the reference used for transformation.

Unlike SparCC and SPIEC-EASI, proportionality does not assume

an underlying sparse network.

At least three measures of proportionality exist. The first, /,

ranges from 0; inf½ � with 0 indicating perfect proportionality (Lovell

et al., 2015). Its definition adjusts the VLR (in the numerator) by the

variance of one of the log-ratio transformed features in that pair (in

the denominator). The use of only one feature variance in the adjust-

ment makes / asymmetric. The second, /s, also ranges from 0; inf½ �
with 0 indicating perfect proportionality, but has a natural symme-

try (Quinn et al., 2017b). Its definition adjusts the VLR by the var-

iance of the log-product of the two features. The third, qp, like

correlation, takes on values from [–1, 1], where a value of 1 indi-

cates perfect proportionality (Erb and Notredame, 2016). Its defini-

tion adjusts the VLR by the sum of the variances of the log-ratio

transformed features in that pair (as subtracted from the value 1).

Thus, qp is also symmetric.

Unlike Pearson’s correlation coefficient, proportionality coeffi-

cients tend not to produce spurious results (Quinn et al., 2017b).

Instead, proportionality serves as a robust measure of association

when analyzing relative data (Lovell et al., 2015). Although propor-

tionality gives VLR scale, it is limited in that its interpretation still

depends partly on using transformation as a kind of normalization

(i.e. for the calculation of individual feature variances) (Erb and

Notredame, 2016). Still, its interpretability, along with its observed

resilience to spurious results, makes it a good choice for inferring co-

expression (Lovell et al., 2015) or co-abundance (Bian et al., 2017)

from sequencing data.

6 Challenges to compositional analyses

6.1 Challenges unique to count compositions
Compositional data analysis, because it relies on log-

transformations, does not work when the data contain zeros. Yet,

count compositional data are notably prone to zeros, those of which

could signify either that a component is absent from a sample or
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otherwise only present at a quantity below the detection limit

(Boogaart and Tolosana-Delgado, 2013c). For NGS abundance

data, the difference between a zero and a one might be stochastic.

How best to handle zeros remains a topic of ongoing research.

However, it is common to replace zeros with a number less than the

detection limit (Boogaart and Tolosana-Delgado, 2013c). Other

replacement strategies would include adding a fixed value to all

components, replacing zeros with the value one, or omitting zero-

laden components altogether. A more principled (yet computation-

ally expensive) way of replacing zeros is the Dirichlet sampling

procedure implemented in ALDEx2 (as described above). Note that

the simple addition of a pseudo-count to all components does not

preserve the ratios between them, which can be amended by modify-

ing the non-zero components in a multiplicative way (Martı́n-

Fernández and Thió-Henestrosa, 2006).

Moreover, while count compositional data carry relative infor-

mation, they differ from true compositional data in that they contain

integer values only. Restricting the data to integer space can intro-

duce problems with an analysis because the sampling variation

becomes more noticeable as the measurements approach zero

(Quinn et al., 2017b). In other words, the difference between 1 and

2 counts is not exactly the same as the difference between 1000 and

20 000 counts (Quinn et al., 2017b). While it is not mathematically

necessary to remove low counts, analysts should proceed carefully in

their presence.

6.2 Challenges unique to sequencing data
In the second section, we discussed how between-sample biases ren-

der NGS abundances incomparable between samples, thus necessi-

tating normalization or transformation. However, we did not

address two important sources of within-sample biases for sequenc-

ing data. The first is read length bias, in which more reads map to

longer transcripts (Soneson and Delorenzi, 2013). The second is GC

content bias, in which more reads map to high GC regions (Dohm

et al., 2008). Such biases distort the ratios between features and are

thus relevant to compositional analysis as well. Yet, because within-

sample biases are usually assumed to have the same proportional

impact across all samples, they are usually ignored (Soneson and

Delorenzi, 2013). For the same reason, one might also ignore these

biases when interpreting NGS abundance data as compositions (as

long as we are only interested in between-sample effects). However,

if a sample were to contain, for example, a polymorphic or epige-

netic change which alters the size or GC content of a transcript, the

compositional nature of sequencing data could cause a skew in the

observed abundances for all other transcripts (for reasons suggested

by Supplementary Figs S1 and S2). More work is needed to under-

stand the extent to which within-sample biases impacts composi-

tional data analysis in practice.

6.3 Limitations of transformation-based analysis
Formal transformation-based approaches often suffer from a lack of

interpretability or otherwise get interpreted erroneously. For exam-

ple, when using the centered log-ratio (clr) transformation, one may

be tempted to interpret the transformed data as if they referred to

single features (e.g. transcripts); however, the transformed data

actually refer to the ratios of the transcripts to their geometric mean.

As such, an analyst must interpret results with regard to their

dependence on this mean. Moreover, because the geometric mean

can change with the removal of features, the transformed data are

incoherent with respect to sub-compositions.

When log-ratio transformations are used for scaled measures

of association (i.e. proportionality), the resulting covariations

depend on the implicitly chosen reference. Therefore, they will not

give the same results for absolute and relative data (unless both

data were identically transformed). The formal relationship of

results when applying qp with and without transformation is

investigated elsewhere (Erb and Notredame, 2016). Although

lacking a natural scale, the log-ratio variance (VLR) has an

advantage in that it provides identical results for both absolute

and relative data, without requiring normalization or

transformation.

6.4 The merits of ratio-based analysis
Aitchison’s preferred summary of the covariance structure of a com-

positional dataset was a matrix containing the log-ratio variances

for all feature pairs (i.e. the relative variation matrix) (Aitchison,

1986). Although this matrix formally contains a lot of redundant

information, an analyst who is familiar with the features might still

find this kind of representation useful. Recently, the focus on ratios

has been called the ‘pragmatic’ approach to compositional data

analysis (Greenacre, 2017), and offers some benefits. For one, trans-

formation (i.e. the restriction to ratios with the same denominator)

is not needed. Instead, the ratios can be dealt with directly as if they

were unconstrained (i.e. absolute) data (Thomas and Aitchison,

2006). Moreover, ratios may carry a clear meaning to the analyst

interpreting them. Recently, Greenacre proposed a formal procedure

to select a non-redundant subset of feature pairs that contains the

entire variability of the data (Greenacre, 2017).

Such ratio-based analyses are also applicable to NGS abundance

data. For example, Erb et al. proposed a method to identify the dif-

ferential expression of gene ratios, a technique comprising part of

what is termed differential proportionality analysis (Erb et al.,

2017). When comparing gene ratios across two groups, this method

selects ratios in which only a small portion of the total log-ratio var-

iance (i.e. VLR) is explained by the sum of the within-group log-

ratio variances (Erb et al., 2017). These selected gene ratios tend to

show differences in the group means of those ratios, analogous to

how genes selected by differential expression analysis show differen-

ces between their means (Erb et al., 2017). Reinforcing the analogy

further, Erb et al. have shown how it is possible to use the limma

package to apply an empirical Bayes model with underlying count-

based precision weights (Law et al., 2014; Smyth, 2004) to gene

ratios, thus quantifying ‘second order’ expression effects while still

avoiding normalization (Erb et al., 2017).

In addition to measuring differences in the means of gene ratios

between groups, ratio-based methods (such as those used in differen-

tial proportionality analysis) can also help identify differences in the

coordination of gene pairs. Such ‘differential coordination analysis’

would otherwise depend on correlation (Yu and Bai, 2011), and

therefore fall susceptible to spurious results. Instead, we can harness

the advantages of the VLR to define a sub-compositionally coherent

measure that tests for changes in the magnitude (i.e. slope of associa-

tion) or strength (i.e. coefficient of association) of co-regulated gene

pairs. Moreover, ratio-based analyses could work as normalization-

free feature selection methods for data science applications (such as

clustering and classification). Such techniques would especially suit

large datasets aggregated from multiple sequencing centers, plat-

forms or modalities, where heterogeneity and batch effects are not

easily normalized.
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7 Summary

All NGS abundance data are compositional because sequencers sam-

ple only a portion of the total input material. However, RNA-Seq

data might have compositional properties regardless owing to con-

straints on the cellular capacity for mRNA production. Whatever

the reason, compositional data cannot undergo conventional analy-

sis directly, at least without prior normalization or transformation.

Otherwise, measures of differential expression, correlation, distance

and principal components become unreliable.

In the analysis of RNA-Seq data, effective library size normaliza-

tion is used to recast the data in absolute terms prior to analysis.

However, successful normalization requires meeting certain (often

untestable) assumptions. Alternatively, log-ratio transformations

provide a way to interrogate the data using familiar methods, but

analysts must interpret their results with respect to the chosen refer-

ence. Sometimes, log-ratio transformations can be used to normalize

the data, but this requires an approximation of an unchanged refer-

ence. Instead, shifting focus to the analysis of ratios yields methods

that avoid normalization and transformation entirely. These ratio-

based methods may represent an important future direction in the

compositional analysis of relative NGS abundance data, although

more work is needed to determine how they compare to other popu-

lar methods.
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