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Antisense oligonucleotides (ASO) are short synthetic DNA molecules designed to inhibit translation of aAbstract
targeted gene to protein via interaction with messenger RNA. More recently, small interfering (si)RNA have
been developed as potent tools to specifically inhibit gene expression. ASO directed against signaling molecules,
cytokine receptors, and transcription factors involved in allergic immune and inflammatory responses, have been
applied in experimental models of asthma and demonstrate potential as therapeutics. Several ASO-based drugs
directed against oncogenes have been developed for therapy of lung cancer, and some have recently reached
clinical trials. ASO and siRNA to respiratory syncytial virus infection have demonstrated good potential to treat
this condition, particularly in combination with an antiviral drug. Although ASO-based therapeutics are
promising for lung diseases, issues of specificity, identification of correct molecular targets, delivery and carrier
systems, as well as potential adverse effects must be carefully evaluated before clinical application.

The original idea to use antisense oligonucleotides (ASO) to 1. Principles of Antisense Oligonucleotides (ASO),
Mechanisms of Action, and Related Issuesspecifically inhibit gene expression was proposed over 25 years

ago.[1] Advantages of ASO as a therapeutic tool were immediately
ASO are short synthetic DNA molecules, designed to interact

obvious. In contrast to traditional drugs designed to inhibit dis-
by Watson-Crick base-pairing with mRNA encoding a target

ease-related proteins already synthesized, ASO prevent translation
protein. When single-stranded DNA complementary to a target

of a protein by interaction with its messenger (m)RNA. However,
mRNA is introduced into a cell, it binds the mRNA and prevents

it took almost 20 years to develop this concept into the first (and translation of the protein. While this approach appears straightfor-
currently only) ASO-based drug in clinical use. Fomivirsen (Vi- ward, initial attempts to introduce ASO into cells were unsuccess-
travene®)1, a cytomegalovirus (CMV)-directed ASO, is used topi- ful because: (i) oligonucleotides are large molecules that are
cally to treat CMV retinitis, a severe complication of AIDS.[2]

highly negatively charged and do not penetrate cell membranes
Presently, more than 30 ASO-based drugs are in different phases well; and (ii) oligonucleotides are easily degraded by endo- and
of clinical trials, and hundreds are in development and in pre- exonucleases before they can bind corresponding mRNA.
clinical studies.[3] Despite the attraction of the antisense concept, Thus, critical issues in the development of ASO-based therapy
there remain several important issues relating to clinical applica- of respiratory diseases include:
tion of ASO. This review will discuss these problems, summarize 1. target selection and ASO specificity;

published data on ASO strategies in respiratory diseases, and 2. ASO stability;

emphasize recent developments and future prospects. 3. delivery of ASO to target organ/cells.

1 The use of trade names is for product identification purposes only and does not imply endorsement.
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To overcome the problem of oligonucleotide degradation and recruitment. Despite new generations of ASO, these disadvantages
to ensure efficient cellular delivery, several chemical modifica- can be significant[3] and thus phosphorothioate-modified ASO are
tions of ASO have been developed. The most commonly used and still commonly used.
best studied is the phosphorothioate backbone modification (figure

1.3 Small Interfering RNA1).

Since its discovery in 1998,[13] the natural phenomenon of RNA
1.1 ASO Mechanisms of Action

interference (RNAi) has been intensively studied. There is much
enthusiasm about its potential to be a new, powerful therapeuticDespite intensive studies, mechanisms of ASO action on
tool to specifically inhibit gene expression.[14] RNAi is a part of themRNA are still incompletely understood. Current concepts sug-
innate antiviral defense in lower eukaryotes. It is induced bygest that the major mechanism of action of phosphorothioate ASO
double-stranded (ds)RNA that is processed to 21–23 nucleotideis activation of endonuclease RNAse H when ASO binds to
siRNA (figure 3). RNAi results in degradation of homologousmRNA.[4] This results in mRNA degradation and prevents transla-
endogenous mRNA complementary to the antisense strand oftion of a specific protein. ASO binding to mRNA can also prevent
siRNA. Although transfection of mammalian cells with dsRNAassembly of the ribosomal complex (e.g. via steric blocking) or
induces a strong interferon (IFN)-like response eventually leadinginhibit RNA splicing[5] (figure 2).
to apoptosis, treatment with siRNA initiates RNAi without caus-
ing cell death.[15,16] siRNA has promise for therapy of genetic1.2 Different ASO Structures and Modifications:
diseases, since siRNA can target single nucleotide polymorph-Stability Issues
isms, and thus specifically target selected oncogenes.[14]

The phosphorothioate backbone modification represents a re- Recent studies demonstrated that siRNA could selectively si-
placement of a non-bridging oxygen by a sulfur atom at each lence a disease-associated allele bearing a single mismatch.[17,18]

phosphorus[6] (figure 1). This modification, commonly referred to However, clinical application of siRNA is still problematic be-
as the ‘first-generation’, greatly increases resistance to nucleases. cause we do not fully understand mechanisms of RNAi action in
However, it can render undesired biological activity to some ASO, higher eukaryotes. For example, exogenously applied siRNA may
unrelated to their antisense properties (see section 1.7). interfere with endogenous RNAi pathways and induce potentially

Several other antisense formulations, such as methyl-oligonuc- dangerous off-target effects.[19,20] In addition, it is more difficult to
leotides, morpholino, peptide nucleic acids, locked nucleic acids, ensure efficient delivery and cellular uptake of siRNA compared
ribozymes, and more recently, small interfering (si)RNA, have with ASO, because double-stranded siRNA do not bind plasma
been developed.[7-12] Some have improved stability against nucle- proteins and rapidly degrade in tissue environments.[19] Although
ases and increased binding affinity to mRNA, however, they can published reports of siRNA use in in vivo in models of lung disease
have drawbacks such as low cell penetrance and lack of RNAse H are limited to respiratory syncytial virus (RSV) and parainfluenza

virus (PIV) infections,[21,22] siRNA-based approaches to inhibit
oncogene expression, pro-inflammatory molecules or pro-fibrotic
targets in lung disease are in development.

1.4 Target Selection and Specificity of ASO

Correct target selection is critical in development of ASO-
based therapy of respiratory diseases. The targeted molecule must
be important in disease pathogenesis and, as ASO can be extreme-
ly potent, it is essential to ensure both lung and disease specificity/
selectivity of the target to avoid potential adverse effects.

Once a clinically relevant target protein has been selected,
specificity of the ASO is a critical issue; it must inhibit expression
of the target gene, but not other genes with similar sequences, i.e.
the targeted mRNA sequence should not have homology to other
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Fig. 1. Phosphorothioate backbone modification of oligonucleotides that
inhibits nuclease degradation of antisense.
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Fig. 2. Major mechanisms of action of antisense oligonucleotides (ASO). (a) Activation of endonuclease RNAse H, leading to messenger (m)RNA
degradation. (b) Inhibition of the ribosomal complex formation via steric blocking. (c) Inhibition of mRNA splicing.

genes. In design of ASO, the genome should be carefully checked properties of DNA.[29,30] These properties can provide an addition-
for possible hybridization of the ASO to sequences in non-targeted al therapeutic effect, for example, in cancer. However, systemic
genes. Sequences common to several molecules of the same release of high levels of pro-inflammatory cytokines tumor necro-
family or domains expressed in many genes must be avoided. Self- sis factor (TNF), interleukin (IL)-12 and IFNγ, as well as activa-
complementary regions, four or more contiguous guanine resi- tion of natural killer (NK) cells following application of DNA-
dues, or regions rich in guanines may form complexes with ASO cationic lipid complexes can induce adverse effects.[29] A novel
or secondary structures that prevent efficient Watson-Crick hy- cationic cardiolipin analog-based liposome appeared to be less
bridization to targeted mRNA and should be avoided.[23] The toxic and more effective for transfection of DNA and siRNA both
presence of immunostimulatory cytosine-guanine phosphate- in vitro and in vivo, compared with a commercially available
linked dinucleotide (CpG) motifs within ASO is normally undesir- DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)-based li-
able as they can stimulate Toll-like receptor (TLR) 9 on several posome.[31]

cell types.[24] However, in some instances they may be included In recent years, new carriers such as polyethylenimine (PEI)
because of additional beneficial effects on the immune system. In

have been developed with enhanced efficiency of ASO delivery to
vitro controls for ASO specificity, such as nonsense or mis-

target cells in vitro and in vivo.[32] Despite enhanced delivery to
matched oligonucleotide sequences, are important as they assess

airway epithelial cells, PEI has toxicity and can be detrimental to
specificity of hybridization to the selected targeted sequence.

lung function.[33] A new strategy using chitosan-DNA nanospheres

for intranasal delivery of DNA recently showed advantages over
1.5 Delivery Issues

lipid cationic carriers.[34-36] These nanospheres can protect DNA

from nuclease degradation, and multiple compounds can be incor-To ensure delivery of ASO to target cells, cationic liposomes
porated into nanospheres to achieve additional effects.[37] How-are often used in complexes with ASO that can be internalized by
ever, this delivery system has never been assessed for antisensepinocytosis/endocytosis.[25-27] Liposome delivery systems have
treatment and requires further study.been extensively used for intravenous and local application of

ASO to the airways. Upon systemic application for cancer therapy, Given carrier-related adverse effects, an attractive method for
ASO-liposome complexes preferentially enter tumor tissues be- ASO delivery to the lung involves the use of a natural surfactant
cause of increased permeability of blood vessels in tumors.[28] with cationic properties.[38] Several studies on local ASO applica-

tion to the airways have relied on surfactant rather than usingHowever, the role of cationic lipids in ASO delivery is not
artificial carrier systems.[39-42] In a recent study, a single instilla-limited by their carrier function. Complexes of DNA oligonucleo-
tion of siRNA mixed with surfactant and elastase decreased ex-tides with cationic lipids can greatly enhance immunostimulatory

© 2006 Adis Data Information BV. All rights reserved. Biodrugs 2006; 20 (1)
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nebulized into an enclosed chamber on each of three consecutive
days prior to allergen challenge (the precise dose each rat received
was not determined). This exposure suppressed antigen-induced
airway inflammation during the following 48 hours.[47] These
examples demonstrate that the effective ASO dose and duration of
its effect depend on the target characteristics, in addition to the
importance of an efficient delivery system. Quantity and half-life
of both target mRNA and encoded protein are critical determinants
of ASO pharmacokinetics and pharmacodynamics in in vivo appli-
cations.

1.7 Toxicity Issues: Sources of Adverse Effects of

Antisense Therapy

Adverse effects of ASO therapy (table I) can result from
hybridization of ASO to nonspecific sequences in mRNA, rather
than the targeted sequence. Assessing expression of the targeted
gene at both mRNA and protein levels following ASO treatment is
important to confirm the specificity of the ASO effect.

Upon DNA-RNA duplex formation, the endonuclease RNAse
H is recruited to degrade the RNA in the duplex. As a result of this
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Fig. 3. Hypothetical model of RNA interference. (a) When introduced into a
cell, double-stranded (ds)RNA is cleaved into small interfering (si)RNAs by
a Dicer nuclease in an adenosine triphosphate (ATP)-dependent process.
(b) Duplex siRNAs are recruited by several intracellular proteins, forming
the RNA-induced silencing complex (RISC). (c) Unwinding of duplex
siRNA occurs in an ATP-dependent manner. (d) The antisense strand of
the siRNA binds to the messenger (m)RNA. (e) Activation of nuclease
activity leads to degradation of the target mRNA. ADP = adenosine
diphosphate; P = phosphate.

recruitment, there may be nonspecific activation of RNAse H,
resulting in ‘irrelevant cleavage’ and effects on expression of otherpression of a targeted protein in mouse lungs by 50–70% during 7
genes.[48]

days of examination.[43]

A potential source of non-sequence-specific effects of ASO is
the backbone modification of oligonucleotides. Phosphorothioate-1.6 ASO Pharmacokinetics
modified oligonucleotides bind to a family of heparin-binding

The pharmacokinetics and toxicology of phosphorothioate proteins including some growth factors and their receptors, ex-
modified ASO have been intensively studied.[44,45] Effective doses tracellular matrix proteins and adhesion molecules.[49,50] This
of ASO for in vivo application depend both on the efficiency of the mechanism at least partially explains some adverse effects of
delivery system and mode of administration (systemic versus systemic ASO application such as thrombocytopenia and hypoten-
local). Following systemic application, phosphorothioate oligo- sion.[51,52] This protein binding is due to the polyanionic nature of
nucleotides bind to plasma proteins, ensuring their prolonged oligonucleotides, which is also responsible for their ability to
effect.[44] Various ASO doses for systemic (intravenous or subcu- activate complement.[44] As outlined in section 1.4, immunostimu-
taneous) application in humans were carefully evaluated in several latory CpG motifs in ASO sequences can also be an important
anti-cancer therapy trials, and no significant toxicity was observed source of adverse effects related to systemic cytokine release, such
at clinically relevant doses.[3] as fatigue, fever, and flu-like syndrome.[53] siRNA can also exert

non-target-related biological effects, in particular, induction ofThe pharmacokinetic properties of aerosolized ASO were stud-
pro-inflammatory cytokines. Such effects are related to the abilityied in several animal models; following ASO delivery to the lung,
of dsRNA to bind TLRs present on immune cells and inducelimited systemic distribution was detected.[46] Local delivery of
cellular activation,[54] and must be carefully assessed for eachASO to the airways allows administration of lower doses com-
sequence used.pared with intravenous therapy of lung diseases. In a study of

phosphorothioate ASO to the type 1 adenosine receptor Local delivery of ASO offers advantages over systemic (intra-
(ADORA1), a single effective inhaled dose was 50 μg/kg and venous) application because it allows lower doses to be used and
duration of the effect in the lung was 6.8 days.[46] In our studies, thus minimizes systemic toxicity. An important consideration in
250 μg/rat/day of ASO to spleen tyrosine kinase (SYK) was using ASO in the airways is that adenosine can be released as an

© 2006 Adis Data Information BV. All rights reserved. Biodrugs 2006; 20 (1)
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oligonucleotide degradation product.[46] It can activate adenosine was constructed as a stem-loop structure, containing three
receptors that induce bronchoconstriction. Adenosine receptors phosphorothioate modifications,[62] and delivered by aerosoliza-
are up-regulated in certain clinical conditions, particularly asth- tion in vivo using SYK ASO-liposome complexes combining
ma,[55,56] and they themselves have been targeted in studies of ASO cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane,
treatment of experimental asthma (see section 2.1.2). DOTAP) with a neutral carrier lipid (dioleoylphosphatidyl-etha-

Another source of potential adverse effects is related to ASO nol-amine, DOPE). Treatment of rats with nebulized SYK ASO-
delivery systems. As discussed in section 1.5, enhanced immunos- liposome complexes inhibited SYK mRNA and protein expression
timulatory properties of ASO applied in cationic liposome com- in alveolar macrophages.[63]

plexes may release pro-inflammatory cytokines,[29,30] or cationic We studied the effects of aerosolized SYK ASO-liposome
liposomes may affect cellular functions directly, e.g. by inhibiting complexes in two models: (i) an infectious model of airway
TNF-induced endothelial vascular cell adhesion molecule-1 ex- inflammation induced by the helminth Nippostrongylus brasilien-
pression.[57] Cytotoxicity of cationic liposomes is dose-dependent

sis; and (ii) IgE-mediated allergic inflammation induced by
and requires careful evaluation when liposomes are used.[58]

ovalbumin in sensitized Brown Norway rats, a model of allergic
asthma. SYK ASO significantly inhibited inflammatory cell infil-

2. Antisense Treatment of Lung Disease
tration in the airways, lung eosinophilia and the rise in TNF in
broncho-alveolar lavage induced by antigenic challenge. SYK
ASO also suppressed antigen-induced tracheal contraction.[47,63]2.1 Experimental Asthma
We have also aerosolized siRNA to SYK in rat ovalbumin-in-

As asthma is a complex heterogeneous disease, a major chal- duced asthma and obtained promising down-regulation of inflam-
lenge is to identify appropriate molecular targets for ASO, and to mation (unpublished observations). Thus, aerosolized SYK ASO
identify delivery systems that target the lung, and minimize sys- inhibited many central components of allergic asthma and inflam-
temic distribution and related adverse effects. There are several mation.
examples of such approaches in experimental models.

Although SYK is a promising molecular target for ASO therapy
2.1.1 Tyrosine Kinase Targets of asthma and other inflammatory conditions such as acute lung

injury, more studies are needed to assess potential risks related toThe tyrosine kinase SYK mediates early signaling events im-
SYK inhibition. For example, recent studies implicated SYK as aportant in the pathophysiology of allergic asthma and initiated by
tumor suppressor gene in breast and gastric cancer.[64-66] Addition-cross-linking high affinity receptors for IgE (FcεRI) on mast cells

and basophils.[59-61] A 60 bp ASO directed against the SYK gene ally, we established that SYK is abundantly expressed in lung

Table I. Adverse effects of antisense therapy

Type of effect Mechanisms Results

Sequence-specific Hybridization of ASO to off-target sequences Expression of other genes is affected

Activation of RNAse H related to other genes Expression of other genes is affected

Four contiguous guanine residues (‘guanine Non-specific biological effects
quartets’) form higher-order structures

Immunostimulatory CpG motifs Immunoactivation, systemic cytokine release,
hepatotoxicity

Non-sequence specific

phosphorothioate backbone modification Binding to heparin-binding proteins Thrombocytopenia

polyanionic nature of ASO Binding of various proteins Complement activation

adenosine Activation of adenosine receptors Bronchoconstriction

Related to the delivery system Cationic liposomes enhance immunostimulatory Systemic cytokine release
properties of ASO

Cationic liposomes affect cellular function Various effects due to interactions with plasma
proteins and cellular receptors

ASO = antisense oligonucleotides; CpG = cytosine-guanine phosphate-linked dinucleotide.
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epithelial cells and is involved in their production of pro-in- scription factor GATA-3, essential for development of Th2 re-
flammatory molecules.[67] Thus, while SYK ASO may have ad- sponses,[77] also reduced lung inflammation and AHR.[41] In a
vantages as a short-term local therapy of severe lung conditions, recent study, the signal transducer and activator of transcription
e.g. acute respiratory distress syndrome, long-term application of (STAT)-1 was targeted using intranasal application of decoy oli-
SYK ASO raises potential safety issues that must be further gonucleotides in a mouse model of ovalbumin-induced asthma.
assessed. This study demonstrated inhibition of antigen-induced airway

inflammation and hyperreactivity.[78]Another signaling molecule that is a potential target for ASO
therapy of asthma is LYN, a Src-family kinase.[68] LYN phospho- To directly target bronchial smooth muscle contraction in asth-
rylation occurs as an immediate result of conformational changes ma, ASO to ADORA1 was developed and administered in aerosol
in cytoplasmic domains of FcεRI after allergen-mediated cross- form to rabbits. There was a significant reduction in both broncho-
linking. LYN then interacts with SYK and induces its activa- constriction and airway inflammation.[39] This ASO-based therapy
tion.[69,70] In eosinophils, LYN is associated with IL-5 receptor α is currently in a phase II clinical trial.[79]

subunit (IL5RA) and is important for IL-5-induced differentiation
from bone marrow stem cells.[71] In vitro studies demonstrated that 2.1.3 Alternative Approaches
ASO directed against LYN blocked eosinophil differentiation

All these ASO were applied as phosphorothioate-modified
from stem cells.[71] Although LYN ASO has never been applied in

oligonucleotides in liposome delivery systems or as naked DNA.
experimental models of asthma, the importance of LYN for eosi-

However, alternative approaches have recently been developed,
nophil differentiation in vivo was confirmed in LYN knockout

including an adenoviral-mediated expression of ASO to Gob-5
mice.[71]

(CLCA1) mRNA, a Ca2+-dependent chloride channel,[80] in the
bronchial epithelium in ovalbumin-sensitized mice. This approach

2.1.2 Other Targets in Inflammatory Cell Activation
decreased AHR and mucus production.[81] Using recombinant

Recent studies of allergic asthma attempted to inhibit intracell-
adenovirus for ASO delivery to target cells offers some advan-

ular pathways involved in inflammatory cell activation. Inhaled
tages over other methods, such as selectivity to airway epithelium

ASO to p38α mitogen-activated protein kinase (MAPK14) down-
and prolonged expression of transfected genes (>1 week following

regulated ovalbumin-induced pulmonary eosinophilia, mucus
instillation).[82,83] However, adenovirus-mediated gene delivery

hypersecretion, and airway hyper-responsiveness (AHR) in a mu-
induces immune responses to adenovirus that preclude repeated

rine model of asthma.[72] ASO to the p65 subunit of the transcrip-
applications[84] and there are several safety concerns such as the

tion factor NF-κB (RELA) that regulates expression of pro-in-
potential for oncogenic transformation.

flammatory genes[73] applied intravenously significantly inhibited
Importantly, in animal models of asthma, ASO to various targetallergic responses in a mouse model.[74] Despite this proof of

molecules were applied prior to antigenic challenge. Whether orprinciple study, systemic application of ASO to NF-κB does not
not ASO-mediated targeting of molecules involved in asthmaseem to be feasible for treatment of asthma given crucial involve-
pathogenesis will also be efficient during ongoing allergic inflam-ment of this transcription factor in regulation of immune re-
mation requires further studies.sponses.

Recently, a ribozyme targeting the human IL-4 receptor α chainGiven the important role of T helper type 2 (Th2) cytokines and
(IL4R, also known as IL4RA) was developed.[85] This approachtheir receptors in allergic asthma, they have been targeted by ASO
offers some advantages over ‘traditional’ antisense because mech-therapy. For example, ASO to IL-5, applied intravenously in a
anisms of action of ribozymes rely on activation of RNAse P,murine model of asthma, inhibited eosinophilia and AHR.[75]

which is ubiquitously present in cells. The construct can recycleAllakhverdi and colleagues[42] used intratracheal injection of ASO
after inducing the complementary mRNA cleavage, and thereforeto the common β chain of IL-3, IL-5, and granulocyte-macrophage
appears to act more efficiently than DNA-based antisense.[86]colony-stimulating factor (GM-CSF) receptors and demonstrated
Another recent study used siRNA to silence gene expression ofsignificant reduction of eosinophilia and AHR in a rat model of
STAT6, a transcriptional regulator of Th2 cytokines. In vitro-asthma; this is moving forward to clinical testing. Intranasal
applied siRNA down-regulated STAT6 protein expression, as wellapplication of ASO to stem cell factor (KIT ligand [KITLG]),
as IL-4-dependent eotaxin production in human bronchial epi-essential for the development of mast cells,[76] decreased lung
thelial cells.[87]inflammation in a murine model of asthma.[40] ASO to the tran-

© 2006 Adis Data Information BV. All rights reserved. Biodrugs 2006; 20 (1)
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Studies of the genetics of asthma have identified several poten- vestigation with regard to efficiency, effectiveness and potential
tial asthma susceptibility genes, such as inflammatory media- adverse effects.
tors,[88] a disintegrin and metalloprotease domain 33 (AD- When infused intravenously, ASO preparations showed moder-
AM33)[89] and G protein-coupled receptor for asthma susceptibil- ate dose-dependent systemic toxicity such as thrombocytopenia,
ity (GPRA),[90] which may be new targets for antisense therapy. flu-like syndrome, hypotension and asthenia.[51] In some clinical
Although biochemical mechanisms linking many of these candi- trials, ASO-based therapeutics were combined with chemothera-
date genes to asthma pathogenesis are poorly understood,[90] ASO peutic agents,[96] a strategy that also needs extensive study. Unfor-
strategies may help to elucidate such pathways. tunately, there are no published reports on local application of

ASO in lung cancer.

2.2 Lung Cancer
2.3 Infectious Diseases

In lung cancer, many oncogenes have been identified and
An antisense strategy intended to specifically cleave genomic

studied as targets for antisense therapy. Several ASO-based drugs
RNA of RSV has recently been developed.[115] Application of

have reached phase II–III trials, and it is anticipated that some will
ASO with 2′-5′ linked tetra-adenylates was shown to recruit the

soon be approved for clinical use (see Stahel and Zangemeister-
cellular nuclease RNAseL and successfully inhibit RSV replica-

Wittke[91] for review). In particular, the anti-apoptotic protein
tion.[116] Importantly, a combination of subtherapeutic doses of

BCL-2 is a promising target for ASO therapy in non-small cell
ASO with the antiviral drug ribavirin demonstrated a potent inhib-

lung cancer.[92,93] ASO directed against the BCL2 gene induces
itory effect.[116] A recent study described use of siRNA to RSV in

apoptosis of cancer cells and potentiates effects of chemother-
vivo. Mice treated intranasally with siRNA nanoparticles to RSV

apy.[91,94,95]

protein NS1 before or after infection with RSV showed substan-
Other molecular targets for ASO therapy of lung cancer include

tially decreased virus titers in the lung and decreased inflammation
signal transduction molecules: protein kinase C-α (PRKCA),[96]

and airway hyper-reactivity compared with control animals.[21]

the regulatory subunit R1-α of protein kinase A (PRKAR1A),[97]
Inhibition of both RSV and PIV following intranasal instillation of

RAF kinase (RAF1),[98] and the protein encoded by the HRAS
siRNA in the mouse was also demonstrated.[22] In addition, recent

oncogene.[99] Numerous pre-clinical studies are focused on targets
in vitro studies showed the ability of siRNA to inhibit replication

in regulation of apoptosis, cell cycle progression, angiogenesis and
of the newly discovered coronavirus SARS-CoV, the causative

metastasis, such as the apoptosis suppressor survivin
agent of severe acute respiratory syndrome (SARS).[117] This is the

(BIRC5);[100,101] the cytochrome c oxidase assembly protein
beginning of a potentially important research area, with opportuni-

COX17;[102] several growth factor receptors and receptor tyrosine
ties to develop innovative ASO therapies for infectious diseases of

kinases, as well as transcription factors.[103-107] ASO-based drugs
the lung (table II).

in clinical trials in lung cancer are short oligonucleotide sequences
(18-26-mer) with phosphorothioate backbone modifications. Re- 3. Conclusions
cently, a locked nucleic acid-modified oligonucleotide with bis-
pecific activity against BCL-2 and BCL-xL, another anti-apoptotic ASO are promising therapeutic tools for various respiratory
BCL protein, was developed and showed enhanced anti-tumor diseases ranging from infection to asthma, lung cancer, fibrosis
activity in cancer cells.[108] and acute respiratory distress syndrome. A major advantage of

ASO over conventional drugs is their capacity to specificallySince human cancer cell lines preserve their RNAi machinery,
block synthesis of a disease-associated protein, thus preventinguse of siRNA to silence oncogenes involved in cancer pathogene-
participation in pathogenesis.sis has been suggested.[109] Indeed, siRNA against S-phase kinase-

associated protein 2 (SKP2), a molecule involved in cell cycle ASO can be highly potent and specific and therefore it is
regulation that is over-expressed in various cancers including essential that correct molecular targets be identified for therapy.
small-cell lung carcinoma, was applied using lentiviral or ade- Applying ASO in complex heterogeneous diseases such as asthma
noviral vectors. This strategy significantly inhibited tumor growth presents a major challenge, since this condition involves several
in vitro and in vivo.[110] Although there are several in vitro studies pathways, numerous genes, and poorly understood gene-environ-
using siRNA to various target molecules potentially important in ment interactions. Some approaches to specifically target critical
tumorigenesis,[111-114] siRNA-based strategies require further in- molecules in asthma have been successful, and development of
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Table II. Clinically relevant targets of antisense-based therapy in respiratory diseases

Molecular target Gene name Disease Mechanisms of action References

Spleen tyrosine kinase SYK Asthma Inhibition of intracellular signaling in allergic 47,62,63
inflammation

Src-family kinase LYN LYN Asthma Inhibition of intracellular signaling in allergic 71
inflammation and eosinophil differentiation

p38 mitogen-activated MAPK14 Asthma Inhibition of intracellular signaling in allergic 72
protein kinase inflammation

IL-5 IL5 Asthma Inhibition of eosinophil-dependent 75
component of asthma

Common β chain of IL-3, CSF2RB Asthma Down-regulation of effects of Th2 cytokines 42
IL-5 and GM-CSF
receptors

IL-4 receptor α chain IL4RA Asthma Inhibition of development of Th2 responses 85

Stem cell factor (KIT KITLG Asthma Inhibition of mast cell development 40
ligand)

Transcription factor GATA3 Asthma Inhibition of development of Th2 responses 41
GATA-3

Transcription factor STAT1 Asthma Down-regulation of CD40 expression, 78
STAT-1 important in Th2 responses

Transcription factor STAT6 Asthma Down-regulation of Th2 responses 87
STAT-6

Type 1 adenosine receptor ADORA1 Asthma Regulation of bronchial smooth muscle 39,79
contraction and inhibition of inflammation

Ca2+-dependent chloride CLCA1 Asthma Down-regulation of airway hyper- 81
channel Gob-5 responsiveness and mucus production

Anti-apoptotic proteins: BCL2, BCL2L1, Lung cancer Apoptosis of cancer cells 91-95,100,101,108
BCL-2, BCL-xL, Survivin BIRC5

Signal transduction Examples: PRKAR1A, Lung cancer Inhibition of intracellular signaling involved 96-99,102-107,110
molecules, growth factor RAF1, PRKCA, in cancer development. Regulation of
receptors, receptor HRAS, COX17, SKP2 apoptosis, cell cycle progression,
tyrosine kinases, angiogenesis, metastasis
transcription factors

Viral proteins: RSV protein Infectious diseases Anti-viral effect: inhibition of replication 21,22,115-117
NS1, PIV, SARS-CoV

GM-CSF = granulocyte-macrophage colony-stimulating factor; IL = interleukin; PIV = parainfluenza virus; RSV = respiratory syncytial virus; SARS-CoV =
severe acute respiratory virus-associated coronavirus; Th2 = T helper type 2.

ASO-based drugs for clinical application can be anticipated in the systemic application because it can minimize therapeutic doses

and thus reduce systemic adverse effects.near future. The genetics of asthma is a rapidly developing field

and important discoveries of susceptibility genes will be impor- There are several critical challenges in the development of

ASO-based therapeutics. In addition to selection of the correcttant. Such genes, when targeted by antisense therapy, may provide
target protein, specificity of the ASO effect is essential and inhibi-an important contribution to the treatment of this common disease.
tion of other genes must be avoided. Both sequence-specific (e.g.

ASO therapy also has the potential to become a powerful tool
CpG-mediated) and sequence-nonspecific (phosphorothioate-me-

against lung cancer. Successes are anticipated based on intensive
diated) adverse effects should be carefully assessed. New formula-

molecular studies and discovery of causal oncogenes in lung tions of ASO, such as siRNA, are promising for therapeutic
cancer. Based on published observations, targeted delivery of application, but require more studies on mechanisms of action and

safety. New methodology for delivery of ASO to selected targetASO to the lung is feasible and has significant advantages over
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