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Abstract

Collective decision making and especially leadership in groups are among the most studied topics in natural, social, and
political sciences. Previous studies have shown that some individuals are more likely to be leaders because of their social
power or the pertinent information they possess. One challenge for all group members, however, is to satisfy their needs. In
many situations, we do not yet know how individuals within groups distribute leadership decisions between themselves in
order to satisfy time-varying individual requirements. To gain insight into this problem, we build a dynamic model where
group members have to satisfy different needs but are not aware of each other’s needs. Data about needs of animals come
from real data observed in macaques. Several studies showed that a collective movement may be initiated by a single
individual. This individual may be the dominant one, the oldest one, but also the one having the highest physiological
needs. In our model, the individual with the lowest reserve initiates movements and decides for all its conspecifics. This
simple rule leads to a viable decision-making system where all individuals may lead the group at one moment and thus suit
their requirements. However, a single individual becomes the leader in 38% to 95% of cases and the leadership is unequally
(according to an exponential law) distributed according to the heterogeneity of needs in the group. The results showed that
this non-linearity emerges when one group member reaches physiological requirements, mainly the nutrient ones –
protein, energy and water depending on weight - superior to those of its conspecifics. This amplification may explain why
some leaders could appear in animal groups without any despotism, complex signalling, or developed cognitive ability.
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Introduction
Social animals have to coordinate their activities in order to

maintain the advantages of group living [1–3]. This coordination

constitutes one of the major challenges of any animal society,

including human beings, and arouses the interest of scientists,

sociologists, and politicians [4–9]. Whatever the group size or the

level of communication – global or local [8,9] – several categories of

group decision making have been described: a leadership process

where one individual will propose or impose a decision that other

group members will follow [10–15], and a voting process in which

each individual indicates a direction, for instance, and after which

the group will move in the direction of the majority [4,16–18]. A

group leader is usually defined as the individual initiating group

movements but also as the individual coordinating individual during

the group progression, and then mainly at the front of the

progression [4,8–13]. In different species of animals, leadership is

not necessarily homogeneously distributed among group members

[8–15]. Some individuals are more likely to become leaders thanks

to specific internal or social traits increasing their probability of

initiating a movement [10–12]. Studies of elephants [19], ravens

[20], or fishes [21] have reported that some individuals may have a

greater knowledge about their environment – which is the best site

to eat or to drink – and these individuals have been observed leading

the group more often than their conspecifics. In other species,

individuals having a high social status, in terms of dominance or

affiliation, also have a greater likelihood of being leaders. Probably

the best known examples come from wolves and gorillas [10,22]

where the dominant male or couple is described as always deciding

for the entire group. In Tonkean macaques, however, the most

affiliated individuals – who are not necessarily the most dominant

ones – seem to have a greater influence than their conspecifics in

collective decision making [23].

However, one of the major factors influencing leadership should

be the different physiological requirements of group members [10–

12]. Such heterogeneity implies conflicts of interests between

individuals that must be resolved in order to maintain group

cohesion. Leaving the leadership to highly motivated individuals

seems to be one compromise. Indeed, the moving decision seems

to be taken by those with highest needs in fishes, zebras, and

primates [8,9,14,24]. Nevertheless, we still lack data on the way

leaders emerge and the viability of the decision-making system

concerning the entire group’s satisfaction. Using a modelling

approach, Rands et al. [12,25] and Conradt et al. [26] showed

that individuals with the highest nutrient requirements can be

more prone to lead the group if there is an advantage to foraging

together. Their studies were however restricted to pairs of
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individuals or to situations in which individuals faced two mutually

exclusive target destinations only.

Here, we use a state-dependent dynamic model [27,28] to

determine how nutrient and social requirements can determine the

synchronization of a group of n individuals, their activity budget,

and the emergence of leaders. This kind of models allows us to

understand how simple rules based on nutrient requirements and

social factors explain synchronization between group members

[27] but also segregation as shown in ungulates [28], where each

individual has some requirements to satisfy (nutrient require-

ments such as protein, energy and water but also other social

requirements and resting). We assume that if there is an advan-

tage to being in a group, then the group members should

synchronize their activities in order to stay cohesive. We assume

that individuals do not know the requirements of their conspecifics

(and further show that such ability may not be necessary for

effective group coordination). Each individual requirement

combines a reserve and a motivation that we call probability to

lead. When the reserve decreases, the probability increases. At one

moment, the individual with the lowest reserve – among its own

needs and in comparison to other individuals – will have the

highest probability to lead (these individual probabilities are

compared at each time step) and will decide for the entire group

on changing activity in order to fulfil its respective reserve

[8,9,12,25,26]. In the next step, when the need of the previous

leader is satisfied, a new leader will emerge and decide for the

whole group. We applied this condition in our model in order to

assess if this simple hypothesis ‘‘leading according to needs and

deciding for all the group’’ is viable and if so, how the leadership

will be distributed among group members less or more

heterogeneous in their needs.

Results

We first tested a group of two individuals, A and B, with two

needs, x1 and x2. We set three conditions: 1) needs are equal

(a1 = a2 = b1 = b2), 2) needs of each individual are different but

their sums are equal between individuals (a1.a2; b1.b2;

a1+a2 = b1+b2) and 3) the sum of needs for individual A are

always superior to the one of individual B (a1+a2.b1+b2). Values

of needs for each tested group of each condition are detailed in

table 1. We tested 10 groups for each condition. Results show

that the decision system is viable, no individual dies, i.e., no

individual has needs not met (reserves go to 0), whatever the

tested condition. When sums of needs are equal between

individuals (conditions 1 and 2), the leadership (proportion of

decisions, i.e., initiations per individual) is equally distributed

between the two individuals (Fig. 1A), even if, at each time step,

one individual is the leader and the other one is the follower

according to the reserves’ difference. This result is similar to the

one of the paper of Rands et al. [25] where individuals are

identical. However, when the sum of needs is superior for one

individual (Fig. 1B), this one becomes the leader of the pairs of

individuals and the other individual becomes a follower almost all

the time (Kolmogorov-Smirnov test, P,0.0001). The leadership

difference between individuals increases with their relative

difference of needs in a logarithmic way (curve estimation test:

R2 = 0.96, P,0.00001; Fig. 1C). This result is similar to the one

of Rands and colleagues [12]: leaders emerge when individual

reserves differ.

In a second step, we used data coming from animals in order to

validate our model and to study emergence of leaders in larger

groups.. According to needs of macaques, animals were divided

into five categories: adult males, adult cycling females, lactating

females, subadults, and juveniles. An individual has five require-

ments to satisfy: water, protein, energy, resting, and socializing

[29–34]. The nutrient requirements of an individual (water,

protein and energy) depend on its body mass whilst social and

resting needs did not [31–34]. We chose to include social activity

in the model because many social species spend time maintaining

their relationships and group cohesion [31–35]. Group composi-

tion (table 2) and individual characteristics (table 3) are based on

data on macaques and are detailed in the method section. We

tested 10 groups of 5, 10 and 20 individuals with same needs

(individuals of the same category and with the same body mass)

and 10 ones with different needs (individuals of both different

categories and different body masses).

Simulations showed that the system – leadership by those in

need – is sustainable in groups of 5, 10 and 20 individuals. All

individual requirements are satisfied at the end of simulations,

whatever the group composition. Moreover, the group activity

Author Summary

Making decisions together to reach a consensus is one of
the most important challenges of any society. In some
communities, however, some leaders have more weight in
the decisions than the other individuals. Similar rules exist
in animal societies. Studies on animal groups have shown
that some individuals are more likely to be leaders because
of their social power or the pertinent information they
possess. This leader may be the dominant one, the oldest
one, but also the one having the highest physiological
need. However, how may other group members have their
needs satisfied if always the same individual decides? To
gain insight into this problem, we build an agent-based
model where group members have to satisfy different
needs but the individual with the lowest reserve decides
when and where to move for all its conspecifics. This
simple rule leads to a viable decision-making system that
satisfies all individuals and suits their requirements.
However, a single individual, the one with the highest
needs, becomes the leader in 38% to 95% of cases
according to the heterogeneity of needs in the group.

Table 1. Values of daily requirements (a1, a2, b1, b2) for each
individual, A and B, in each condition (1 to 3) and each group
(1 to 10).

Group 1 2 3 4 5 6 7 8 9 10

Condition 1 a1 500 600 700 800 900 1100 1200 1300 1400 1500

a2 500 600 700 800 900 1100 1200 1300 1400 1500

b1 500 600 700 800 900 1100 1200 1300 1400 1500

b2 500 600 700 800 900 1100 1200 1300 1400 1500

Condition 2 a1 500 600 700 800 900 1100 1200 1300 1400 1500

a2 1500 1400 1300 1200 1100 900 800 700 600 500

b1 1500 1400 1300 1200 1100 900 800 700 600 500

b2 500 600 700 800 900 1100 1200 1300 1400 1500

Condition 3 a1 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

a2 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

b1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

b2 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

doi:10.1371/journal.pcbi.1000917.t001

Non-Linear Emergence of Leaders
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budget is fairly similar to the activity budget of wild primate

groups (27.361.7% of time devoted to moving, 33.861.7% to

foraging, 21.760.7% to resting, and 17.263.1% to socializing).

All individuals could become leaders but the distribution of the

leadership proportion is not the same according to the

requirements’ heterogeneity (equal or different needs; Kruskal-

Wallis test, P,0.001). In groups with similar needs, the

proportion of leadership differs weakly between individuals and

is about 10% per individual. The relation between leader-

ship proportion and rank (i.e., individuals were ranked from the

most frequent leader to the less frequent one) is linear (linear

curve estimation test: R2 = 0.92, F1,8 = 93.05, P,0.00001,

y = 20.0006x+0.1339). The leadership is about 14% for the

individual that decides the most and 7.6% for the individual that

decide the least (Fig. 2A). This result corresponds to the equi-

probability of being leader per individual (proportion divided by

the number of individuals per group). On the other hand, the

leadership is not equally distributed in heterogeneous groups. The

relation between the proportion of leadership and individuals is

exponential (exponential curve estimation test: R2 = 0.83,

F1,8 = 38.07, P = 0.0002, y = 3.5727e24.602x, Fig. 2B), with one

individual being responsible for 38% to 95% of decisions per group,

while some individuals decide only in 0.0003% to 0.0007% of cases

per group. We obtained the same relationship with groups of 5

(exponential curve estimation test; R2 = 0.97, F1,3 = 12.81,

P,0.00001, y = 0.9825x23.207, Fig. 3A) and 20 individuals (expo-

Table 2. Mean, minimum, and maximum number of
individuals per category for n = 10 individuals per group.

Mean±SD Minimum Maximum

Adult male 1.660.7 1 3

Adult cycling female 3.161.3 2 6

Lactating female 1.761.3 0 4

Subadults 1.961.3 0 4

Juveniles 1.860.9 0 3

doi:10.1371/journal.pcbi.1000917.t002

Figure 1. Leadership ratio according to the condition for groups of 2 individuals. Condition 1 (a.): needs are equal (a1 = a2 = b1 = b2).
Condition 2(a.): needs of each individual are different but their sums are equal between individuals (a1.a2; b1.b2; a1+a2 = b1+b2). For these two
conditions, the leadership is equally distributed between individuals (Kolmogorov-Smirnov test, P.0.972). Condition 3(b., c.): the sum of needs for
one individual is superior to the one of individual. For Condition 3, the ratio (a1+a2)/(b1+b2) ranged from 1 (Group 1) to 1.45 (Group 10). For this
condition, one individual becomes the leader when its needs are superior to the ones of its conspecifics. Fig. 1c represents the difference of
leadership according to the relative difference of needs between A and B.
doi:10.1371/journal.pcbi.1000917.g001

Non-Linear Emergence of Leaders
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Table 3. Mean individual weight and requirements for each category and each need.

Requirement

weight (kg) protein (g.day21) energy (KJ.day-1) water (ml.day21) social time (minutes.day21) resting time (minutes.day21)

Adult males 15.1861.34 38.5563.40 53136889 1269.086212.34 100650.41 87.50655.71

Females 9.6262.39 24.4466.07 31916792 762.246189.20 112.73619.89 50.91633.52

Lactating females 9.8561.04 30.0662.63 605961191 1447.236284.50 86.67630.688 106.67637.41

Subadults 4.4360.66 11.2761.67 14716219 351.40652.35 170.53630.09 30628.72

Juveniles 3.3361.43 8.4663.63 11056474 264.006113.32 176.67614.14 80.83633.80

doi:10.1371/journal.pcbi.1000917.t003

Figure 2. Mean leadership proportion or ratio (solid line) according to individuals with (a) equal needs and (b) different needs in
groups of 10 individuals. Individuals are ranked from the individual with the highest leadership proportion to the one with the lowest leadership
proportion. The upper and lower dotted lines indicate respectively the maximum and minimum leadership proportions for each rank. The leadership
proportion is different between individuals whatever the condition.
doi:10.1371/journal.pcbi.1000917.g002

Non-Linear Emergence of Leaders
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nential curve estimation test; R2 = 0.96, F1,18 = 498.95, P,0.00001,

y = 11.48x24.86, Fig. 3B).

We compared this unequally distributed leadership to the

requirements of individuals in order to understand how so many

differences can emerge in heterogeneous groups. We calculated the

relative difference in requirements (corresponding to the highest

probability to lead) between each leader and other individuals. The

relationship between the leadership and this difference in

requirements follows a sigmoid curve (y~1{
1

1z
x

s

� �n

0
B@

1
CA with a

threshold S of 1.37 and a minimal n value of 30; curve estimation

test: R2 = 0.71, F1,108 = 269.72, P,0.00001; Fig. 4A). The n value

represents the sensitivity of the process. The higher the n value is, the

more sensitive the process is (quick and sudden transition between

the two states). In our context, this means that one individual

becomes the most frequent and prominent leader of a group as soon

as one of its requirements exceed about 137% of those of one of

its conspecifics. This transition between equally distributed

leadership and one exclusive leader is highly non-linear, given the

n value we observed. The same sigmoid law is observed between the

proportion of leadership and the body mass of individuals (sigmoid

curve estimation test: R2 = 0.66, F1,108 = 205.73, P,0.00001;

Fig. 4B). When the mass of an individual is more than 170%

(S = 1.7, n = 30) of those of its conspecifics, this individual is the

main group leader. Except for lactating females, requirements and

then leadership are related to body mass in about 60% of cases. The

rest of the decisions concern resting and socializing and are not

related to mass. We obtain similar results for groups of 5 (sigmoid

curve estimation test: R2 = 0.71, F1,53 = 111.52, P,0.00001,

y~0:96{
0:96

1z
x

1:33

� �30

0
B@

1
CA, Fig. 5A) and 20 individuals (sigmoid

curve estimation test: R2 = 0.16, F1,218 = 42.13, P,0.00001,

y~0:96{
0:96

1z
x

1:40

� �30

0
B@

1
CA, Fig. 5B). For 8 out of 10 groups of

20 individuals, 4.662.2 group members were never leader. They

were satisfied by following their conspecifics.

Discussion

Leading by those highest in need resembles the results obtained by

Rands et al. [25], where the individual with the lower reserve

spontaneously becomes the leader. Moreover, a recent study by

Conradt et al. [26] showed that a small minority of individuals with

strong needs are more prone to lead the group than a larger majority of

individuals with few needs. However, it is the first time that a threshold

[2,18,36] has been demonstrated concerning the emergence of

leadership. The decision-making system implies high differences in

leadership proportion whilst relatively small differences are observed in

the requirements of individuals. The threshold we obtained in this

study is probably dependent on 1) the group structure of primates (one

or a small number of males compared to the other categories) [35] and

2) to the physiology of primates [31–34]. Indeed, in primates, and

especially in macaques, a sexual dimorphism exists and males may

reach a mass 150 to 200% superior to the one of females.

Several authors suggested that dominant individuals are the

only leaders in several species [9–12,14,22,23]. The dominance is

however strongly correlated to the body mass and then to the

nutrient requirements of animals [10]. This indirect effect of

dominance on leadership, through the needs and then the

probability to initiate a movement, needs to be taken into account

in subsequent studies testing dominance effects. For instance, two

field studies in baboons showed that the main leader – the

individual initiating most of movements – was the dominant male.

However this male is also certainly the biggest individual in the

group. In the study of Stueckle and Zinner [36], the four males of

the group, bigger than females, are the ones initiating the most of

movements (Fig. 6). Moreover, the distribution of leadership also

follows an exponential as the one in the study model. We may

suggest that the slope of this exponential distribution of leadership

will be less or more important according to the group composition.

This slope would be around 0 when the group is homogeneous

and increases with group heterogeneity.

The non-linear differences in leadership among group members

eventually emerge from two simple rules: individuals need to

remain cohesive and the individual with the lowest reserve at one

moment decides for the group [2,3,24–26]. Mechanisms of

coordination and cohesion do not need complex signalling or

Figure 3. Mean leadership proportion or ratio (solid line) according to individual in groups of (a) 5 and (b) 20 individuals having
different needs. Individuals are ranking from the individual with the higher leadership proportion to the one with the lower leadership proportion.
The up and down dotted lines indicate respectively the maximum and minimum leadership proportions for each rank.
doi:10.1371/journal.pcbi.1000917.g003

Non-Linear Emergence of Leaders
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complex cognitive ability [2,3,13,24]. The emergence of a unique

leader may also occur when decisions are not necessarily imposed

on other group members but because other individuals do not

express the necessity to move or to make a decision. An individual

becomes a leader because its conspecifics decide to follow it [8,9].

This outcome may make important contributions to our

understanding of decision making in animal and human societies.

Materials and Methods

Models’parameters
The model was developed in Netlogo 3.15 [37]. The model and

model’s procedures can be found in the supplementary material

‘‘Dataset S1’’. One time-step in the simulation represents one

minute. We defined the probability to lead a for the requirement

A and the individual i as:

P(a)i~(daily requirement in A - reserve in A)=

(daily requirement in A)

The probability to lead for the individual i is:

Pi~ max P(a)i,:::,P(n)ið Þ

In this way, the probability to lead can vary between 1 (highest

Figure 4. Relation between the leadership proportion and (a) the difference in needs and (b) the difference in mass for each
individual and the other group members in groups of 10 individuals. These functions are both sigmoid. N = 110. Each point represents
characteristics of one individual in each group (ten groups with different needs and one with equal needs are represented).
doi:10.1371/journal.pcbi.1000917.g004

Non-Linear Emergence of Leaders
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probability to lead, weakest reserve) and 0 (weakest probability to

lead, highest reserve). Each reserve is bounded by a maximum

above which each group member cannot gain further reserves and

a minimum at which each group member is assumed to die if it is

reached. At each timestep (equal to one minute), each reserve of

each individual decreases (i.e., expenditure) depending on the

individual category and the current activity. This reserve decrease

will increase the individual probability to lead. In order to fulfil this

reserve, the individual should have to carry out the corresponding

activity (i.e., intake). This gain may be done by becoming a leader

or by following the leader. We implement optimal foraging

decisions in the model: when an individual decides to forage, it will

forage until its reserve has been fulfilled. After the end of each

activity period, the individual with the highest probability to lead

Pi becomes the new leader. Individuals have a walking speed of

0.4m.s21.

The group environment is two-dimensional environment of

96696 connected cells. Each cell represent one meter. Each cell

has four immediate neighbours and the sides of the arena were

joined to form a torus. The number of areas where animals fulfil

their reserves is two for the first model with two individuals having

two needs and four for the model from 5 to 20 individuals having

Figure 5. Relation between the leadership proportion and the differences in need in groups of (a) 5 and (b) 20 individuals. These
functions are both sigmoid. Each point represents characteristics of one individual in each group (ten groups with different needs and one with equal
needs are represented).
doi:10.1371/journal.pcbi.1000917.g005

Figure 6. Number of initiations per individual in a group of baboons studied by Stueckle and Zinner [36]. Black squares represent
females, white squares represent males. The distribution of initiations follows an exponential curve as (black line) determined by the study model
(curve estimation test: R2 = 0.99, P,0.00001, y = 22.73e20.219x).
doi:10.1371/journal.pcbi.1000917.g006

Non-Linear Emergence of Leaders
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five needs (see details below). At the start of a simulation,

individuals are at the same distance of each area (i.e., at the middle

of the torus). According to the distribution of areas inside the torus,

groups have a travel distance between two areas ranging from a

minimum of 25 meters to a maximum of 75 meters. This range

fits with travel distances in primate species of similar body mass

and similar group size [4,38–41]. Positions of areas were fixed in

our model but this does not affect results since variability among

needs – what is the highest need and the weakest one – is much

more important between individuals and groups. This means that

the areas corresponding for instance to the two highest needs for

an individual are not always the closest ones. There is no

intragroup competition in this model: all individuals can occupy

the same area. We run 1000 simulations for each group. A

simulation stops when one reserve of one individual reaches 0 or

after 90 days.

Model with two individuals having two needs
The two individuals have two needs and thus two daily

requirements. Values of these requirements for each condition

and each individual are described in table 1. We tested ten different

groups for each condition. Expenditures of each reserve are

0.0760.035 units.min21. Intakes are 10 units.min21. The environ-

ment is composed of two areas, one for each requirement.

Individuals have to move to the respective area to fulfil each reserve.

Model with five to 20 individuals with five needs
According to data in macaques, the daily protein requirement is

estimated to 2.54g.day21.kg21, daily energy requirement to

351.7Kcal.day21.kg21, and daily water requirement to

0.24ml.KJ21, except for lactating females for which these

requirements are higher than the ones of non lactating females

(about 125% for proteins and 200% for energy and water of

requirements of non lactating females) [31–34]. Social and resting

times are not dependent on body mass. Individual expenditure per

need and activity is described in table 4. Details about individual

intake rate per need are in table 5.

The environment is composed of four areas: one area for

foraging for proteins, one area for foraging for energy, one

waterhole, and one resting site [42]. When individuals need

energy, proteins, or water, they have to move toward the

respective areas. Until the group is in a specific activity among

the five ones (eating proteins, eating energy, drinking water,

resting or socializing), each individual gains a certain amount of

the requirement according to its category (table 5). Concerning

resting, individuals need to go to the resting site for the night (at

the 720th time-step and for 720 time-steps), but during the day

they can rest in any area. The same rule applies to socializing.

Concerning resting and socializing activity, we fixed a minimal

period of 5 minutes for doing these activities.

Statistics
Differences in leadership between individuals were tested using

a Kolmogorov-Smirnov test for groups of 2 individuals and a

Kruskall-Wallis test for groups from 5 to 20 individuals. The

relations between the proportion of leadership and differences in

needs or mass were determined through a curve estimation test.

We compared observed curves to exponential, linear and sigmoid

ones. Only theoretical curves best fitting with observed data are

indicate in results. Analyses were performed in SPSS 10.00. a was

set at 0.05. Means were 6 S.E.M.

Supporting Information

Dataset S1 This file contains the model used for this publication

and its related files. The file ‘‘modele beta min.nlogo’’ is the model

used for this publication. Algorithms can be seen in the

‘‘procedures’’ window. ‘‘attributes.txt’’ file is used to implement

individual characteristics in the model. Row 1 corresponds to the

identity of agents. Row 2 represents the body mass. Row 3 is the

daily protein requirement. Row 4 is the daily energy requirement.

Table 4. Individual expenditure per activity for each need.

Expenditure

protein (g.min21.kg21) energy (KJ.min21.kg21) water (ml.min21.kg21) social time (min.min21) resting time (min.min21)

Foraging 0.002760.0013 0.2960.15 0.0760.035 social time requirement/720 resting time requirement/720

Walking 0.2460.10 0.057560.023

Socializing 0.2960.15 0.0760.035

Resting 0.1060.05 0.02560.012

doi:10.1371/journal.pcbi.1000917.t004

Table 5. Mean individual intake rate categories for each need.

Intake

protein (g.min21) energy (KJ.min21) water (ml.min21) social time (min.min21) resting time (min.min21)

Males 0.21760.108 41.9623.1 50625 1.060.5 1.060.5

Females 0.21760.108 38.9618.7

Lactating females 0.21760.108 38.2620.2

Subadults 0.20260.101 28.4615.2

Juveniles 0.12660.63 23.7611.2

doi:10.1371/journal.pcbi.1000917.t005
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Row 5 is the protein intake rate. Row 6 is the energy intake rate.

Row 7 is the daily water requirement. Row 8 is the daily social

time requirement. Row 9 is the daily resting time requirement.

Row 10 is the category of individuals (male, female, etc.).

‘‘Links.txt’’ file is used to implement social relationships of

individuals in the model. This variable is not used and analyzed

in this study. ‘‘activitybudget.doc’’ file is used to score group

activity budget per day. ‘‘highestvalue.doc file’’ is used to score

which individual has the highest motivation at the end of the day

and what is this motivation. ‘‘idleaderfrequency.doc’’ is used to

score the frequency of leadership per individual during all the

simulation.

Found at: doi:10.1371/journal.pcbi.1000917.s001 (0.35 MB ZIP)
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