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ABSTRACT: In this study, we prepared antifog hard coatings by
heating a mixture of carboxy-functionalized polyhedral oligomeric
silsesquioxane (POSS-C) and oligo(ethylene glycol)s (OEGs,
HO(CH2CH2O)nH, n = 1−6) in N,N-dimethylformamide,
applying the mixture onto a glass substrate, and subsequently
removing the solvent via heating. In addition, we evaluated the
water resistance, hardness, and antifogging performance of the
coatings. In particular, the coating produced at a 2:1 functional
group ratio of POSS-C to tetraethylene glycol (OEG, n = 4)
coating exhibited high surface hardness (6H), as determined using
pencil scratch testing. The coating remained clear after exposure to
the vapor of warm water at 40 °C at a height of 2 cm for 10 s,
demonstrating its antifogging property. Furthermore, no dissolu-
tion or cracking was observed when the POSS-C/OEG coating (n = 4, COOH/OH = 2:1) was immersed in water at room
temperature for 1 h, confirming its water resistance. The Fourier transform infrared/attenuated total reflectance results showed the
formation of ester bonds, indicating the construction of a network structure that enhanced the water resistance and hardness of the
coating.

■ INTRODUCTION
Fogging occurs when light is diffusely scattered by small water
droplets formed via the condensation of water vapor on cool
surfaces upon rapid changes in environmental factors, such as
temperature, humidity, and air circulation. Antifogging
technologies have been widely utilized in automobile wind-
shields, eyeglasses/goggles, bathroom mirrors, solar panels, and
analytical/medical devices.

Various antifogging materials have been developed based on
rendering surface hydrophobicity (water repellency) to
minimize water droplet adhesion or inducing hydrophilicity
to promote the formation of a thin continuous water layer.1−3

Coating the substrate surface with hydrophobic materials
typically involves lowering the surface free energy using low-
energy materials.4−7 However, the generation of intricate
surface morphologies over a wide range is challenging.
Moreover, poor adhesion to the substrate and the opacity of
the coating further restrict the applicability of such coatings for
antifogging purposes.

Therefore, surface coating using hydrophilic/water-absorb-
ing materials has become the mainstream approach for the
preparation of antifogging materials. Hydrophilic/water-
absorbing materials can be classified into two categories:
inorganic materials, such as titanium dioxide and silica,8−16 and
hydrophilic organic polymers. Titanium dioxide exhibits

superhydrophilicity upon UV irradiation, making it suitable
for antifog coatings. Silica-based coatings prepared under high-
temperature conditions provide hydrophilic surfaces, enabling
antifogging properties. However, the reliance on UV
irradiation and high-temperature treatment limits indoor use
and hinders applications on resin substrates. Meanwhile,
hydrophilic organic polymer coatings can be utilized as
versatile antifog coatings owing to their excellent formabil-
ity.17−31 They incorporate hydrophilic groups, such as hydroxy,
carboxy, ammonium, and sulfo groups. For example,
polyacrylate coatings with various hydrophilic groups exhibit
antifogging properties.32 Nonetheless, their hardnesses are
generally lower than those of inorganic materials. Con-
sequently, the transparency and antifogging properties
gradually deteriorate because of scratching and abrasion.
Therefore, the development of antifog hard coatings utilizing
organic−inorganic hybrid materials is highly desired.33−38 For
instance, organic−inorganic hybrid coatings obtained by
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incorporating 3-trimethoxysilylpropyl methacrylate into silica
and subsequently performing the radical polymerization of
acrylate monomers have been reported.39

Recently, antifog hard coatings utilizing silsesquioxane (SQ)
have been increasingly employed. Based on the number of
organic substituents (R) and oxygen atoms bonded to the
silicon atom, siloxanes are classified into M (3 organic
substituents and 1 oxygen atom), D (2 organic substituents
and 2 oxygen atoms), T (1 organic substituent and 3 oxygen
atoms), and Q units (only oxygen atoms). SQ comprises only
T unit, and its unit composition is denoted as RSiO1.5.

40

Representative SQ structures include a ladder-like structure,
fully condensed cage structure, incompletely condensed cage
structure, and double-decker structure. Fully condensed cage
oligomers are referred to as polyhedral oligomeric SQs
(POSSs), which find extensive applications across various
fields.41−43 Furthermore, various side chain functional groups
exist for SQs. In particular, our research group developed
ladder-like polySQs with ammonium,44,45 carboxy,46 sulfo,47

and phosphonic acid48 groups, and POSQs with ammo-
nium,49−55 carboxy,56,57 and imidazolium58−61 groups. In
addition to these regularly structured SQs, polySQs that
possess hydrophilic functional groups can be used to prepare
antifog hard coatings owing to the combination of the rigid
framework derived from T structures of siloxane bonds and
hydrophilic side chains.

For example, coatings based on polySQs obtained via the
hydrolytic polycondensation (sol−gel reaction) of silane
coupling agents bearing amino or glycidyl groups have been
investigated.62−64 In addition, we have developed antifog hard
coatings based on polyamides obtained via the polycondensa-
tion of POSS possessing amino and carboxy groups on side
chains. This preparation involved the use of a condensation
agent, 1-(3-(dimethylamino)propyl)-3-ethylcarbodiimide hy-
drochloride (EDC) and N-hydroxysuccinimide (NHS), and
heating at 80 °C in dehydrated dimethyl sulfoxide (DMSO)
for 12 h.65 Although this coating exhibited excellent
antifogging properties and hardness, it tends to delaminate
upon water immersion. The development of coatings with
superior antifogging performance, hardness, and water
resistance holds significant potential to realize their practical
applications.

In this study, we developed water-resistant antifog hard
coatings by combining carboxy-functionalized POSS (POSS-
C) with mechanical robustness and hydrophilicity and
oligo(ethylene glycol)s (OEGs) with film-formability, slight
flexibility, and hydrophilicity.

■ EXPERIMENTAL SECTION
Materials. 2-Cyanoethyltriethoxysilane (CETES, 98%),

ethylene glycol (99.5%), diethylene glycol (99.5%), triethylene
glycol (99%), tetraethylene glycol (95%), pentaethylene glycol
(95%), and hexaethylene glycol (98%) were purchased from
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
Trifluoromethanesulfonic acid (HOTf, 99%) was obtained
from Kanto Chemical Co., Inc. (Tokyo, Japan). Sodium
hydroxide (NaOH, 97%) and polyethylene glycol with an
average molecular weight of 1000 (PEG1000) were purchased
from Nacalai Tesque Inc. (Kyoto, Japan). Ethanol (99%) was
purchased from Nippon Alcohol Hanbai Co., Ltd. (Tokyo,
Japan). Amylene-stabilized chloroform (99%), N,N-dimethyl-
formamide (DMF, 99.5%), acetonitrile (99.5%), acetone
(99%), and hydrochloric acid (HCl, 35−37%) were purchased

from FUJIFILM Wako Pure Chemical Co., Ltd. (Osaka,
Japan). All reagents and solvents were used without further
purification.

Preparation of Carboxy-Functionalized Rod-like
PolySQ and POSS-C. Carboxy-functionalized rod-like
polySQ was prepared as a precursor for POSS-C as described
previously, with minor adjustments.46 After adding a 2.0 mol
L−1 NaOH aqueous solution (60 mL, 120 mmol) to CETES
(8.871 g, 40 mmol) while stirring at room temperature, the
resulting solution was continuously stirred for 15 h.
Subsequently, the mixture was heated at ca. 50 °C in an
open system until the solvent completely evaporated. After the
crude product was maintained at 100 °C in an oven for 2 h, 1.0
mol L−1 HCl aqueous solution (120 mL, 120 mmol) was
added at room temperature (ca. 25 °C). This solution was
further heated at ca. 50 °C in an open system until the solvent
completely evaporated (ca. 6 h). Water (25 mL) was added to
the resulting solid product, and the mixture was promptly
stirred using a spatula for 1 min. Immediate suction filtration
was performed to eliminate sodium chloride generated from
the reaction of NaOH and HCl. In this operation, it is
important to stir and filter quickly as prolonged stirring causes
all the products to dissolve in water. This operation was
repeated three times. The resulting solid was dried under
reduced pressure at room temperature, yielding a white
powdered product (5.304 g, quantitative yield).

POSS-C was prepared with slight adjustments to the method
reported in the literature.57 First, 0.50 mol L−1 HOTf aqueous
solution (100 mL, 50 mmol) was added to carboxy-
functionalized rod-like polySQ (4.171 g, 33.33 mmol unit).
Subsequently, the solution was heated at ca. 60 °C for 20 min,
and the resulting solution was stirred at room temperature for
2 h. Then, the solution was heated at ca. 50 °C in an open
system until the solvent completely evaporated (ca. 5.5 h). At
this stage, the solution remained in a liquid state owing to the
presence of HOTf. The resulting liquid was subsequently held
in an oven at 100 °C for 2 h. After cooling to room
temperature, acetone (8.4 mL) was added. This solution was
poured into a mixed solvent of acetone and chloroform (1:9 v/
v, 416 mL) and stirred at room temperature for ca. 15 h. The
insoluble part was separated by filtration and washed with
acetonitrile (ca. 25 mL, 5 times). Then, the insoluble part was
dissolved in acetone (ca. 25 mL), and the acetone-soluble part
was separated using filtration. Finally, acetone was evaporated,
and the resulting solid product was dried under reduced
pressure at room temperature, yielding a white powdered
product (0.707 g, yield 17%). The structure of POSS-C was
confirmed by 1H and 29Si NMR spectra (Figures S1 and S2).
In this study, a mixture of octamer, decamer, and dodecamer
POSS in a molar ratio of 10:75:15 was used for the coating
preparation as described below (Scheme 1).

Preparation of POSS-C/OEG Coatings. The glass
substrate (48 mm × 28 mm, thickness: 1.3 mm) was
ultrasonically cleaned in ethanol (ca. 3 min) and hydrophilized
using plasma equipment (Plasma Modifier PM100, Yamato
Scientific Co., Ltd., Tokyo, Japan). This plasma treatment of
the glass substrate was performed by flowing oxygen at a flow
rate of 100 mL min−1 for 30 s and then irradiating the plasma
for 3 min. To ensure a consistent coating area for the applied
solution on the glass substrate, a Teflon seal was affixed to the
glass substrate, resulting in an area of 840 mm2 (30 mm × 28
mm). The weights and molar quantities of POSS-C and OEG
in the reaction described below are provided as an example of
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the reaction involving tetraethylene glycol (OEG, n = 4).
POSS-C [0.0125 g, 0.1 mmol based on repeating units
(carboxy groups)] and tetraethylene glycol (0.0051 g, 0.025
mmol, 0.05 mmol based on hydroxy groups) were dissolved in
DMF (0.3 mL). The mixture was stirred at 80 °C for 1 h,
resulting in a homogeneous solution. This solution was then
applied onto the glass substrate 840 mm2 (30 mm × 28 mm).
The coated substrate was heated in an open system on a hot
plate (setting temperature: 50 °C) for 1 h to remove DMF.
Subsequently, the substrate was treated in an oven at 150 °C
for 30 min to prepare POSS-C/OEG coatings (n = 4, COOH/
OH = 2:1). COOH/OH = 2:1 means the molar ratio of
carboxy groups in POSS-C to hydroxy groups in OEG. Other
POSS-C/OEG coatings were also prepared similarly, where “n”
represents the degree of polymerization of OEG, and
“COOH/OH” indicates the molar ratio of carboxy groups in
POSS-C to hydroxy groups in OEG.

Measurements. The UV−vis spectra were measured using
a JASCO V-630 spectrophotometer (JASCO Corporation,
Tokyo, Japan). The surface morphology of the coatings was
observed via scanning electron microscopy (SEM) using the
FEI Quanta 250 instrument (FEI Company Japan Ltd., Tokyo,
Japan). The chemical compositions of the coatings were

analyzed using energy-dispersive X-ray spectroscopy (EDX)
embedded into the FEI Quanta 250 device. The Fourier
transform infrared/attenuated total reflectance (FTIR/ATR)
spectra were recorded using an IRSprit-T (SHIMADZU
CORPORATION, Kyoto, Japan). The pencil hardness was
measured using a pencil scratch tester (TP GIKEN Co., Osaka,
Japan) at an angle of 45° under a loading of 750 g. The pencil
used was made by Mitsubishi Pencil Co., Ltd. (Tokyo, Japan).
The lead of the pencils was ground perpendicularly to make an
angle of 90° before each pencil hardness measurement. The
water contact angles of the coatings were evaluated using a
water-drop contact-angle meter (SImage Entry 6, Excimer,
Inc., Kanagawa, Japan). The amount of water droplet was 3.6
μL, and the contact angle of the water droplet was measured
with a charge-coupled device camera using the half angle
method. The antifogging performance of the coatings was
evaluated by placing the coating surface facing down at a
distance of 2 cm from warm water at 40 °C and exposing it to
water vapor. The water resistance of the coatings was evaluated
by immersing them in water at room temperature for 1 h,
wiping off water droplets on the surface, and observing the
state of the coatings.

■ RESULTS AND DISCUSSION
Preparation of POSS-C/OEG Coatings. The preparation

of the water-resistant antifog hard coatings, POSS-C/OEG
coatings, was performed as follows. A DMF solution of POSS-
C and OEG was heated and stirred under a closed system and
then applied on glass substrates. Subsequently, the coated
substrates were heated for 1 h in an open system to remove
DMF. The coatings were further heated in an oven at 150 °C
for 30 min to promote esterification (Scheme 1). All coatings
prepared in this study were colorless and transparent (Figure
S3). As a representative example, UV−vis measurement was
performed on the POSS-C/OEG coating (n = 4, COOH/OH
= 2:1), which showed over 98% transmittance in the visible
wavelength region (Figure S4). From the SEM image of this
coating, a smooth surface at the micrometer scale was observed
(Figure S5a), and a peak corresponding to silicon atom was
detected in the EDX pattern (Figure S5b), indicating the
presence of POSS-C components on the surface.

Water Resistance of POSS-C/OEG Coatings. To
evaluate water resistance, the coated glass substrates were
immersed in water at room temperature for 1 h and then taken
out to observe the appearance of the coatings. POSS-C/OEG
coatings (n = 1, COOH/OH = 5:1, 2:1, and 1:1) and POSS-
C/OEG coatings (n = 2, COOH/OH = 5:1 and 2:1) were
dissolved upon immersion in water (runs 1−5 in Table 1),
suggesting the absence of the cross-linked network structure.
This was verified by the FTIR/ATR results (Figures 1a,b, 2a,b,
and 3a), which showed the absence of absorption peaks at ca.
1730 cm−1 attributed to ester bonds. When the coatings were
prepared on glass substrates using ethylene glycol and
diethylene glycol alone, respectively, and heated in an oven
at 150 °C, they disappeared in ca. 5−10 min. This implies that
ethylene glycol and diethylene glycol evaporated before the
formation of ester bonds with POSS-C, resulting in a coating
of POSS-C alone that dissolved in water.

In the POSS-C/OEG coating (n = 2, COOH/OH = 1:1),
POSS-C/OEG coatings (n = 3, COOH/OH = 5:1, 2:1, and
1:1), and POSS-C/OEG coating (n = 4, COOH/OH = 5:1),
numerous fine cracks were observed (runs 6−10 in Table 1).
In the FTIR spectra, although the absorption peaks attributed

Scheme 1. Preparation of Antifog Hard Coatings with Water
Resistance (POSS-C/OEG (n = 1−6) Coatings)
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to the ester bond (ca. 1730 cm−1) were not clearly observed
(Figures 1c,d, 2c, and 3b,c), their partial insolubility led to the
expectation of the presence of partial cross-linking between the
carboxy groups in POSS-C and the hydroxy groups in OEG.
However, some un-cross-linked components dissolved as
soluble components, leading to vacant spaces and the
emergence of cracks due to contraction during drying. When
the coating was prepared via triethylene glycol alone using the
same procedure and heated in an oven at 150 °C, it
disappeared in ca. 15 min, suggesting the partial evaporation
of triethylene glycol during the coating preparation process and
the subsequent insufficient cross-linking.

Meanwhile, POSS-C/OEG coatings (n = 4, COOH/OH =
2:1 and 1:1), POSS-C/OEG coatings (n = 5, COOH/OH =
5:1, 2:1, and 1:1), and POSS-C/OEG coatings (n = 6,
COOH/OH = 5:1, 2:1, and 1:1) did not dissolve or crack
(runs 11−18 in Table 1). Based on the FTIR/ATR results,
absorption peaks at ca. 1730 cm−1 attributed to ester bonds
were observed in the coatings that did not dissolve or crack, in
addition to the absorption peaks at ca. 1700 cm−1 due to
carboxy groups dimerized through hydrogen bonding (Figures
1e,f, 2d−f, and 3d−f). These results suggest the construction of
a three-dimensional cross-linked network structure.

Table 1. Summary of Water Resistance, Surface Hardness, Antifogging Performance, and Water Contact Angle of POSS-C/
OEG Coatings

run coating
feed molar ratioa

COOH/OH water resistanceb
surface

hardnessc
time to keep antifoggingd

(s)
water contact

angle

1 POSS-C/OEG (n = 1) 5:1 dissolved 4H 20 80°
2 POSS-C/OEG (n = 1) 2:1 dissolved 4H 14 76°
3 POSS-C/OEG (n = 1) 1:1 dissolved 5H 13 76°
4 POSS-C/OEG (n = 2) 5:1 dissolved 5H 5 76°
5 POSS-C/OEG (n = 2) 2:1 dissolved 4H 15 76°
6 POSS-C/OEG (n = 2) 1:1 cracked 6H 8 93°
7 POSS-C/OEG (n = 3) 5:1 cracked 6H 10 82°
8 POSS-C/OEG (n = 3) 2:1 cracked 6H 5 83°
9 POSS-C/OEG (n = 3) 1:1 cracked 7H 5 83°
10 POSS-C/OEG (n = 4) 5:1 cracked 5H 17 83°
11 POSS-C/OEG (n = 4) 2:1 not dissolved not cracked 6H 10 79°
12 POSS-C/OEG (n = 4) 1:1 not dissolved not cracked 3H 9 67°
13 POSS-C/OEG (n = 5) 5:1 not dissolved not cracked 3H 6 98°
14 POSS-C/OEG (n = 5) 2:1 not dissolved not cracked HB 8 80°
15 POSS-C/OEG (n = 5) 1:1 not dissolved not cracked less than 2B 12 78°
16 POSS-C/OEG (n = 6) 5:1 not dissolved not cracked less than 2B 6 72°
17 POSS-C/OEG (n = 6) 2:1 not dissolved not cracked less than 2B 9 73°
18 POSS-C/OEG (n = 6) 1:1 not dissolved not cracked less than 2B 40 40°
19 POSS-C dissolved 5H 40 73°
20 PEG1000 dissolved less than 2B 120 5°

aFeed molar ratio of the COOH group in POSS-C to the OH group in OEG. bThe coated glass substrate was immersed in water at room
temperature for 1 h and then taken out to observe the appearance of the coating. cThe surface hardness of coatings was evaluated using pencil
scratch testing. dThe evaluation of antifogging properties was performed by placing the coated glass substrate with the coated side facing down 2
cm above warm water at 40 °C to for water vapor exposure and observing the antifogging behavior.

Figure 1. FTIR/ATR spectra of POSS-C/OEG coatings [(a) n = 1,
(b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5, and (f) n = 6] (the feed
molar ratio of the COOH group in POSS-C to the OH group in OEG
was 5:1) and (g) POSS-C coating.

Figure 2. FTIR/ATR spectra of POSS-C/OEG coatings [(a) n = 1,
(b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5, and (f) n = 6] (the feed
molar ratio of the COOH group in POSS-C to the OH group in OEG
was 2:1).
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Hardness of POSS-C/OEG Coatings. The surface hard-
ness of the POSS-C/OEG coatings was evaluated using a
pencil scratch testing. The pencil hardness of POSS-C/OEG
coatings (n = 1−4) prepared using OEG with lower molecular
weights ranged from 3H to 7H, demonstrating a considerably
high surface hardness (runs 1−12 in Table 1). Conversely, the
pencil hardness of POSS-C/OEG coatings (n = 5 and 6) was
found to be less than 2B to 3H, revealing a decrease in surface
hardness with increasing molecular weight of OEG (runs 14−
18 in Table 1). This is due to the higher proportion of organic
components within the coating as the molecular weight of
OEG increased. Among these coatings, only the POSS-C/
OEG coating (n = 4, COOH/OH = 2:1) exhibited a lack of
dissolution or cracking in the water resistance tests and
demonstrated high surface hardness (6H) in the pencil scratch
test (run 11 in Table 1).

The POSS-C/OEG coating (n = 4, COOH/OH = 1:1) and
POSS-C/OEG coating (n = 5, COOH/OH = 5:1) also
showed reasonably good performance in the evaluation of
water resistance and surface hardness (runs 12 and 13 in Table
1); however, their surface hardness (3H) was lower than that
of the POSS-C/OEG coating (n = 4, COOH/OH = 2:1)
(6H). We assume that the POSS-C/OEG coating (n = 4,
COOH/OH = 1:1) has a higher proportion of organic
components compared to the POSS-C/OEG coating (n = 4,
COOH/OH = 2:1) because of the higher molar ratio of OEG,
resulting in decreased surface hardness. Meanwhile, for the
POSS-C/OEG coating (n = 5, COOH/OH = 5:1), OEG with
a higher molecular weight leads to the lower surface hardness
as described above.

Antifogging Property of POSS-C/OEG Coatings. The
evaluation of antifogging properties was performed by placing
the coated glass substrate with the coated side facing down 2
cm above warm water (40 °C) for water vapor exposure and
observing the antifogging behavior (Figure S6). Figure 4 shows
the antifogging behavior of all coatings performed in this study.
In particular, the POSS-C/OEG coating (n = 4, COOH/OH =
2:1) maintained its antifogging state for 10 s after exposure to
water vapor (Figure 4k and run 11 in Table 1), which, along

with excellent water resistance and surface hardness (6H),
proved its potential as an antifog hard coating.

Water Contact Angles of POSS-C/OEG Coatings. The
water contact angles of the POSS-C/OEG coatings were
measured to comprehend their antifogging mechanism (Figure
5a−r). For comparison, the coatings of POSS-C and PEG1000
were prepared using the same method (Figure 5s,t). Because
the OEGs used as the starting materials were liquid, the
coatings could not be produced using them alone. As an
alternative, PEG1000 was chosen as a compound containing
ether bonds for comparison.

The water contact angles of the POSS-C and PEG1000
coatings were 73 and 5°, respectively (Figure 5s,t, and runs 19
and 20 in Table 1). In contrast, the POSS-C/OEG coating (n
= 4, COOH/OH = 2:1) exhibited a water contact angle of 79°
(Figure 5k and run 11 in Table 1), surpassing those of the
POSS-C and PEG1000 coatings. Presumably, the POSS-C/
OEG coating (n = 4, COOH/OH = 2:1) with a network
structure formed by ester bonds possesses small pores,
resulting in a slight a lotus leaf effect, which leads to a higher
water contact angle compared to the coatings of POSS-C or
PEG1000 alone. Alternatively, when the POSS-C/OEG
coating (n = 4, COOH/OH = 2:1) with small pores is
exposed to water vapor, water molecules enter the pores as

Figure 3. FTIR/ATR spectra of POSS-C/OEG coatings [(a) n = 1,
(b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5, and (f) n = 6] (the feed
molar ratio of the COOH group in POSS-C to the OH group in OEG
was 1:1).

Figure 4. Antifogging behavior of POSS-C/OEG coatings [n = 1,
COOH/OH = (a) 5:1, (b) 2:1, and (c) 1:1], POSS-C/OEG coatings
[n = 2, COOH/OH = (d) 5:1, (e) 2:1, and (f) 1:1], POSS-C/OEG
coatings [n = 3, COOH/OH = (g) 5:1, (h) 2:1, and (i) 1:1], POSS-
C/OEG coatings [n = 4, COOH/OH = (j) 5:1, (k) 2:1, and (l) 1:1],
POSS-C/OEG coatings [n = 5, COOH/OH = (m) 5:1, (n) 2:1, and
(o) 1:1], POSS-C/OEG coatings [n = 6, COOH/OH = (p) 5:1, (q)
2:1, and (r) 1:1], (s) POSS-C coating, and (t) PEG1000 coating upon
exposure to water vapor.
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vapor. Then, they cool down, and the resulting water fills the
pores of the coating uniformly, suppressing light scattering.

Mechanism of Water-Resistant Antifog Hard Coating
Formation. First, the antifogging mechanism during water
vapor exposure is discussed. It is believed that the carboxy
groups in POSS-C and the ether chains in OEG, which are
hydrophilic components, contribute to the antifogging proper-
ties of the coatings. Furthermore, small pores exist within the
POSS-C/OEG coating (n = 4, COOH/OH = 2:1) with a
network structure. When exposed to water vapor, water
molecules enter these pores, where they cool down, and the

resulting water fills the pores of the coating uniformly. This is
expected to suppress light scattering, ultimately resulting in the
manifestation of antifogging properties.

Next, we describe the mechanism of the observed hard-
coating property through pencil scratch testing. The surface
hardness of the coating composed solely of POSS-C was
determined to be 5H. Based on this observation, it is
considered that the robust hardness (6H) of the developed
POSS-C/OEG coating (n = 4, COOH/OH = 2:1) stems from
the sturdy framework inherent to POSS-C. In addition, the
construction of a network structure upon the formation of
ester bonds contributes to the enhanced hardness. Moreover,
this network structure provides insolubility to the coating;
thus, it can be regarded as the mechanism underlying water
resistance.

■ CONCLUSIONS
In this study, a water-resistant antifog hard coating, POSS-C/
OEG coating (n = 4, COOH/OH = 2:1), was obtained by
mixing POSS-C and tetraethylene glycol in a 2:1 feed molar
ratio based on their functional groups (COOH and OH
groups) and heating the mixture in DMF, followed by its
application onto a glass substrate and evaporating the solvent
via heating. When the POSS-C/OEG coating (n = 4, COOH/
OH = 2:1) was exposed to water vapor at a height of 2 cm
above warm water at 40 °C, the coated surface remained clear
for ca. 10 s, and it demonstrated a surface hardness of 6H.
Even after immersion in water at room temperature for 1 h, the
coating did not dissolve or crack, exhibiting excellent water
resistance. The antifog hard coatings developed in this study
may evolve into applications for antifogging in resin window
glass, which is expected in future automobile lightweighting
efforts, due to their significantly high surface hardness.
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