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Abstract 
Background.   Distinguishing true tumor progression (TP) from treatment-induced abnormalities (eg, pseudo-
progression (PP) after radiotherapy) on conventional MRI scans remains challenging in patients with a glioblas-
toma. We aimed to establish brain MRI phenotypes of glioblastomas early after treatment by combined analysis of 
structural and perfusion tumor characteristics and assessed the relation with recurrence rate and overall survival 
time.
Methods.   Structural and perfusion MR images of 67 patients at 3 months post-radiotherapy were visually scored 
by a neuroradiologist. In total 23 parameters were predefined and used for hierarchical clustering analysis. 
Progression status was assessed based on the clinical course of each patient 9 months after radiotherapy (or latest 
available). Multivariable Cox regression models were used to determine the association between the phenotypes, 
recurrence rate, and overall survival.
Results:   We established 4 subgroups with significantly different tumor MRI characteristics, representing distinct 
MRI phenotypes of glioblastomas: TP and PP rates did not differ significantly between subgroups. Regression anal-
ysis showed that patients in subgroup 1 (characterized by having mostly small and ellipsoid nodular enhancing 
lesions with some hyper-perfusion) had a significant association with increased mortality at 9 months (HR: 2.6 (CI: 
1.1–6.3); P = .03) with a median survival time of 13 months (compared to 22 months of subgroup 2).
Conclusions.   Our study suggests that distinct MRI phenotypes of glioblastomas at 3 months post-radiotherapy 
can be indicative of overall survival, but does not aid in differentiating TP from PP. The early prognostic information 
our method provides might in the future be informative for prognostication of glioblastoma patients.

Key Points

•	 Distinct MRI phenotypes of glioblastomas at 3 months post-radiotherapy are significantly 
associated with overall survival.

•	 The same MRI phenotypes at 3 months post-radiotherapy do not seem to aid in 
differentiating between true- and pseudo-progression at 9 months after radiotherapy.

MRI phenotypes of glioblastomas early after treatment 
are suggestive of overall patient survival  
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Glioblastoma is the most common and severe type of 
primary malignant brain tumor.1 Current multimodal 
treatment after surgical resection includes radiotherapy 
and concomitant and adjuvant chemotherapy with 
temozolomide.2 Despite this treatment, a high local recur-
rence rate is observed during the disease course (90%).3 
MRI is the cornerstone for brain tumor surveillance and 
aids clinicians in guiding management decisions. However, 
a challenge is that high-dose radiotherapy may cause 
treatment-induced abnormalities in the early stages after 
treatment (ie, pseudo-progression (PP)), which can look 
similar to tumor progression on conventional MRI scans.2,4 
Therefore, distinguishing between true tumor progression 
(TP) and PP early after treatment can be challenging. Early 
differentiation could aid clinicians in accurately identifying 
patients who require an alternative treatment strategy to 
delay further disease progression, and at the same time 
spare responding patients the burden of additional tumor-
targeted treatment.

Structural MRI markers have shown some added value 
for identifying TP, specifically when assessing the size and 
the morphology of the enhancing lesion on post-contrast 
3DT1 images.5–8 Furthermore, several studies have shown 
that perfusion MRI (with dynamic susceptibility contrast 
[DSC] and/or arterial spin labeling [ASL]) has added value 
in distinguishing between TP and PP in glioblastomas.9–15 
However, despite perfusion MRI techniques being prom-
ising in differentiating between TP and PP, individual MRI 
markers showed at best only a modest association with 
tumor progression and overall survival. This indicates the 
need to combine MRI markers to get a more reliable early 
assessment of TP in glioblastomas15.

More recently, a number of studies have focused on the 
use of radiomics in glioblastomas to analyze MRI markers 
in a combined way. One previous study found that struc-
tural MRI markers (gray-level texture markers) were as-
sociated with TP.16 Few previous studies have specifically 
applied radiomics models on perfusion MRI with the aim 
of developing models that could accurately predict TP.17–19 
Moreover, radiomics approaches such as deep learning 
models rely on MRI markers of higher order that are not 
directly clinically translatable, and it is not always com-
pletely clear how these markers drive the algorithms deci-
sion-making (ie, which combination of MRI markers). With 
this in mind, we set out to explore an alternative approach, 
which includes grouping of patients with glioblastoma 
based on clinically scored structural and both ASL and 
DSC perfusion MRI markers.20,21 We subsequently studied 
how these subgroups progressed over time. We have pre-
viously developed a method that was able to identify brain 
MRI phenotypes based on hierarchical clustering, which 
resulted in clinically meaningful sub-categories in other 

disease conditions. For example, we identified brain MRI 
phenotypes related to predisposition to postoperative 
delirium (in preoperative patients) and brain MRI pheno-
types related to an increased risk of stroke and mortality 
(in patients with manifest arterial disease).22 To date, it is 
unknown what specific MRI phenotypes exist in patients 
with a glioblastoma.

We hypothesize that MRI phenotypes of glioblastomas 
based on both structural and perfusion tumor characteris-
tics early after treatment could help in the risk assessment 
of glioblastoma recurrence rate and overall survival time. 
We therefore aimed to establish brain MRI phenotypes of 
glioblastomas early after treatment by combined analysis 
of radiological scores of structural and perfusion tumor 
characteristics and to assess the relation of these pheno-
types with tumor recurrence rate and overall survival time.

Materials and Methods

Patient Population

Patient clinical data were retrospectively retrieved from 
the clinical archive of the Leiden University Medical 
Center between the period of January 2015 and February 
2022 following local IRB regulations. The study popula-
tion consisted of adult patients with a histologically con-
firmed grade IV glioblastoma IDH wild-type or diffuse 
astrocytoma IDH-mutant, following the most recent WHO 
guidelines at the time of diagnosis. Consecutive patients 
who received post-operative treatment consisting of radi-
otherapy (in combination with concomitant and adjuvant 
chemotherapy), with at least a 3-month post-radiotherapy 
follow-up MRI scan with both ASL and DSC scans, and con-
firmation of TP or PP were included.

Tumor Progression and Survival Assessment

The diagnosis of TP or PP was based on the patients’ med-
ical charts including clinical and radiological findings dis-
cussed in the multidisciplinary team meetings at either 
3, 6, and/or 9 months after radiotherapy. The diagnosis 
at each of the time points was scored on a 5-point Likert 
scale: (1) definite PP; (2) probable PP; (3) no preference; (4) 
probable TP; and (5) definite TP. The conversion to a binary 
scale was done by assessing scores 1 and 2 as tumor pro-
gression and 4 and 5 as no progression. In this way, the bi-
nary score agrees with clinical practice, that is, if there was 
doubt about the progression status (score of 3), treatment 
was continued (and assumed there was no progression). 
Updated molecular and pathological findings were leading 

Importance of the Study

Determining brain MRI phenotypes of glioblastomas 
early after treatment can help in showing which com-
bination of MRI markers is driving a lower survival 
chance 9 months after treatment. These distinct MRI 

phenotypes of glioblastomas could in the future guide 
complex clinical decision-making based on patient 
prognosis early after treatment assessment.
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regarding the diagnosis in case of a re-resection. At the 
latest timepoint available (maximum of 9 months after ra-
diotherapy), patients were only considered to have tumor 
progression if this was suggested by the clinical and radi-
ological assessment, if the anti-tumor treatment regimen 
was changed, or if the patient was deceased.

Patient survival was calculated as the time between the 
start of tumor-targeted therapy (ie, the day of tumor sur-
gical resection or biopsy) and the date of death.

Type of Surgical Resection

All patients underwent surgery for either maximally safe 
tumor removal (ie, total or partial resection of the enhancing 
part of the tumor) or a biopsy to obtain a histopathological 
diagnosis. Patients were considered to have had a total re-
section of the enhancing parts if no enhancing lesion was 
observed on the directly postoperative MRI scan (performed 
within 48 h after tumor resection). In contrast, if residual 
tumor enhancement was found on the directly postopera-
tive MRI scan, it was considered a partial resection.

MRI Scans

Patients were scanned at approximately 3 months post-
radiotherapy on a 3T MR scanner (Philips Ingenia or Achieva, 
Philips Healthcare, Best, The Netherlands). The MRI scans 
acquired followed the routine clinical guidelines for all 
scans collected, thus all imaging acquisition parameters 
reported are based on standard clinical practice. These in-
cluded a post-gadolinium contrast-enhanced 3DT1 scan 
with 3D-TFE readout and T2-FLAIR scan, acquired with the 
following parameters: 3DT1: TR = 9.91 ms, TE = 4.67 ms, res-
olution = 1 × 1 × 1mm, field of view (FOV) = 220 × 175 × 156 
mm, 0.3 ml per kg bodyweight of gadolinium-based contrast 
agent (gadoterate meglumine) and T2-FLAIR: TR = 11 000 ms, 
TE = 125 ms, resolution = 0.4 × 0.4 × 5.5 mm, FOV = 220 × 175 
mm. During the period of data collection, changes to the ASL 
protocol were made, including transitioning from a 2D to 3D 
pCASL having changed the label duration (LD) and post-label 
duration (PLD). For 2D pCASL, LD = 1650 ms and PLD = 1525 
ms (first slice) and 2120 ms (last slice). Whereas for the 3D 
pCASL both LD and PLD were 1800 ms. The remainder of 
parameters included resolution (2D/3D) = 3 × 3 mm/4 × 4 mm, 
slice thickness (2D/3D) = 7 mm/6 mm, FOV = 240 × 240 mm. 
Finally, the DSC scans were acquired with a SE-EPI sequence 
with the following parameters, TE = 75 ms, TR = 1600 ms, res-
olution = 2.6 × 2.3 × 5 mm, FOV = 240 × 210 mm; a third of the 
contrast agent was injected as pre-bolus.

Radiological Scoring of the Brain MRI Scans

An independent neuroradiologist scored the structural 
brain scans, that is, the contrast-enhanced 3D T1 and the 
T2-FLAIR scans of the 3 months postradiotherapy visit (and 
in doubt consulted a second experienced neuroradiologist 
for consensus), to determine (1) whether the tumor con-
trast enhancing lesions were either nodular or patchy 
on the contrast-enhanced 3D T1, (2) the presence of T2 
hyperintense areas surrounding the enhancing lesion on the 

T2-FLAIR, and (3) the size of the tumor contrast enhancing 
and T2 hyperintense area in 3 orthogonal directions. The T2 
hyperintense area was defined as the confluent hyperintense 
signal surrounding the contrast enhancing lesion, excluding 
any resection cavities. The measurements in 3 orthogonal 
directions were used to estimate the tumor volume for the 
contrast enhancing lesions and T2 hyperintense areas indi-
vidually, as well as to calculate the shape as the eccentricity 
factor (EF). The volume was calculated using an ellipse for-
mula, as this has been shown to correlate well with the ab-
solute tumor volume, using the following formula23:

4
3
πD1D2D3

where D1, D2, and D3 correspond to the sagittal, cor-
onal, and axial measurements, respectively. The resulting 
volume was afterward converted to milliliters for the final 
volume calculation. The EF was calculated according to the 
following formula:

EF =

√
1−
Å
PPD
MD

ã2

where MD is the maximal diameter (highest value in all 3 
directions) and PPD is the largest perpendicular diameter, 
that is, the largest diameter in the other 2 directions.24

Tumor lesion perfusion was scored qualitatively using 
the contrast-enhanced 3DT1 and the T2-FLAIR as anatom-
ical references. On the DSC relative cerebral blood volume 
(rCBV) maps were scored as either increased (hyper-
perfusion), decreased (hypo-perfusion), or no change (iso-
perfusion) compared to contralateral normal tissue. The 
ASL was scored as hyper-perfusion or iso-perfusion com-
pared to the contralateral side, since hypoperfusion on ASL 
scans is especially difficult to identify.25 Perfusion scores 
for both contrast enhancing lesions and T2 hyperintense 
areas were separately determined. For the clustering anal-
ysis, if there was more than one lesion in a patient, the 
most aggressive tumor contrast enhancing lesion and re-
lated T2 hyperintense area were included per patient. The 
lesion with the largest volume, increased perfusion and 
most nodularity was considered to be the most aggres-
sive. In total, 23 radiological tumor markers were included 
(see the Supplementary Methods). These markers were 
rigorously selected to be the most representative to avoid 
overfitting and selection bias of the model.

Statistical Analysis

Hierarchical clustering analysis.—To identify different 
brain MRI phenotypes at 3 months post-radiotherapy, hier-
archical clustering was performed on the available patient 
data consisting of the radiological structural and perfusion 
tumor characteristics. The visually scored markers were in-
cluded in the model as either binary, categorical, or con-
tinuous variables. Continuous markers that did not have 
a normal distribution, including the volume and eccen-
tricity, were normalized by multiplying by 100 and natural 
log-transforming, and thereafter normalized into z-scores. 
The normalization step allowed all markers to be equally 
scaled and then weighted by the analysis model.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
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Hierarchical clustering was performed using the Ward’s 
method, Nbclust,26 factoextra,27 cluster,28 and dendextend29 
in R version 4.1.2 (R Core-Team 2021). Initially, the model 
considers each patient as an individual cluster after which 
it tries to iteratively merge the 2 closest clusters while 
equally weighing each marker (ie, merge the clusters that 
share the highest number of markers in common; the ag-
glomerative approach). In this way, the clustering analysis 
is performed in a hierarchical manner. Each time sub-
clusters are merged into one cluster, the distance between 
the remaining clusters is subsequently updated in the 
model, and the next iteration starts. Ultimately, when all 
clusters have been merged only one cluster will remain. To 
determine the optimal number of clusters from the hierar-
chical clustering analysis, we used the heatmap and Dunn 
index. The Dunn index calculates the ratio of the smallest 
distance between markers within each cluster over the 
maximum distance between the clusters.

Differences between the subgroups with a different 
MRI phenotype of glioblastomas.—Descriptive statis-
tics were used to describe the patient population. Clinical 
characteristics between the subgroups identified with the 
hierarchical cluster analysis were compared as follows: 
for categorical and binary variables, a chi-square test was 
used; continuous variables were compared using a one-
way ANOVA or Kruskal-Wallis test, depending on the dis-
tribution of the tested variable. In order to assess how the 
subgroups differed from each other considering the dif-
ferent variables, Bonferroni post hoc analyses were per-
formed for continuous variables and Bonferroni chi-square 
residual analyses for categorical variables.

Differences between the overall survival time of the 
subgroups.—A log-rank test was performed to determine 
whether the median overall survival times were signifi-
cantly different between the different subgroups. For this, 
we compared the median overall survival times among 
subgroups 1, 3, and 4 and compared to the reference one, 
subgroup 2.

Association between different MRI phenotypes of 
glioblastomas and progression and survival.—First, a 
multivariable logistic regression analysis was performed 
to assess the association between MRI phenotype sub-
groups and TP. The model was corrected for age, KPS score, 
and surgical resection type. Whereas the first 2 variables 
were continuous, surgical resection type was categorized 
into 3 different groups (ie, biopsy, partial resection, and 
total resection).

Secondly, an adjusted Cox proportional hazard model 
was used to determine the association between the MRI 
phenotype subgroups and overall survival time. The model 
was corrected for age, KPS score, and surgical resection 
type. For sensitivity analysis, an unadjusted multivariable 
Cox proportional hazard model was performed to assess 
the influence of correcting for clinical variables on our re-
sults and thus to get more insight into the data. The sub-
group chosen as a reference for the regression analysis 
had the least aggressive MRI markers (ie, subgroup 2). This 
subgroup with the least aggressive radiological markers 
was identified by an experienced neuroradiologist who 

assessed the structural and perfusion radiological markers 
of all subgroups (eg, hyper-perfusion and increased nod-
ular enhancement were considered aggressive markers).

The threshold for significance was P ≤ .05. All statis-
tical analyses were performed using IBM SPSS version 25 
(Chicago-IL).

Results

Patient Population

In total, 67 patients with a glioblastoma were eligible ac-
cording to our inclusion criteria and were included in the 
analysis (Table 1). The majority (72%) had an isocitrate 
dehydrogenase (IDH)-wild-type tumor and most (61%) 
patients were male, with a mean age of 60 years (SD 13 
years). Most patients (79%) had undergone total or partial 
resection, radiotherapy as well as concomitant and adju-
vant chemotherapy, and a small group of patients were 
only treated with radiotherapy (21%). See Table 1 for all 
sociodemographic and clinical variables.

Representative examples of the scored MRI markers can 
be found in Figure 1, which includes perfusion markers 
characterized in ASL and rCBV maps as well as structural 
markers such as enhancing lesion patterns on contrast-
enhanced 3DT1 and T2 hyperintense areas on T2-FLAIR.

Table 1.   Baseline clinical characteristics of the patients with a 
glioblastoma. 

Total number of patients included 67

Age (mean ± SD) 60 ± 13

Female 26 (39%)

Male 41 (61%)

IDH status

 � Wild-type: glioblastoma 48 (72%)

 � Mutant: diffuse astrocytoma grade IV 5 (7%)

 � Unknown/ not determined* 14 (21%)

MGMT status

 � Methylated 18 (27%)

 � Unmethylated 49 (73%)

KPS median (range) 90 (60–100)

Surgery type

 � Total resection 31 (46%)

 � Partial resection 22 (33%)

 � Biopsy 14 (21%)

Radiotherapy (total dose)

 � 40 Gy 10 (15%)

 � 45 Gy 10 (15%)

 � 60 Gy 47 (70%)

Temozolomide chemotherapy 53 (79%)

*Cases diagnosed prior to WHO 2016 classification. IDH: Isocitrate de-
hydrogenase; MGMT: O6-methylguanine-DNA methyltransferase; KPS: 
Karnofsky Performance Scale.
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Identification of Subgroups With a Different MRI 
Phenotype of Glioblastomas

The hierarchical clustering analysis resulted in the 
heatmap displayed in Figure 2. Establishing the op-
timal number of subgroups was a multistep process. 
First, we considered that with our number of patients 
included, the number of subgroups should be relatively 

low. Second, we inspected the heatmap (Figure 2) and 
found a good between-subgroup separation with 4 sub-
groups. Lastly, we considered the Dunn index, which 
also showed a relatively high value in 4 subgroups. The 
number of subgroups of patients with a different MRI 
phenotype of glioblastomas was therefore determined 
at 4 (with n = 12, 13, 17, and 25 patients in the subgroups 
respectively).
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Figure 1.  Examples of some of the MRI markers scored by a neuroradiologist. (A) Perfusion MRI markers retrieved from corresponding images, 
namely ASL and DSC-rCBV maps. On the upper and lower row examples of patients with increased and no change/decreased perfusion, for ASL 
and DSC respectively. In (B) contrast enhanced (CE) 3DT1 and T2-FLAIR MRI scans from which the structural markers were assessed; it shows 
examples of nodular and patchy contrast-enhancing areas, as well as T2 hyperintense areas. The scans on each row correspond to one patient.
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Figure 2.  Heatmap results of the hierarchical clustering analysis. The subgroups (subgroup 1 (n = 12), subgroup 2 (n = 13), subgroup 3 (n = 17), 
and subgroup 4 (n = 25)) are represented in different colors on the left side of the figure. Each row represents one patient and each column repre-
sents one MRI marker. In total 23 MRI markers were included. The normalized values were included, where blue represents a low value and red 
a high value of the MRI marker.
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Differences Between the Subgroups with a 
Different MRI Phenotype of Glioblastomas

A summary of the clinical characteristics of these patient 
subgroups can be found in Supplementary Table S1. There 
were no significant differences between subgroups re-
garding KPS score, radiotherapy dose received, gender, IDH 
status, MGMT promotor methylation status, and receiving 
combined chemoradiotherapy (all P > 0.05). However, 
there was a significant difference in age and type of sur-
gery between the 4 subgroups (P = .013 and P = 0.001 re-
spectively). From the Bonferroni post hoc analyses it was 
evident that the overall significant difference in age was 
particularly observed because patients in subgroup 3 were 
significantly older than in subgroup 1 (68 vs 54 years, re-
spectively, P = .02). For surgery type, subgroup 1 had signif-
icantly more total resections compared to subgroup 3 (75% 
vs 12%, respectively, P = .003) and subgroup 4 (75% vs 12%, 
respectively, P = 0.001), explaining the overall significant 
difference. Supplementary Table S2 shows the distribution 
of the MRI markers present in each subgroup. Regarding 
tumor location, the temporal tumor region was the only lo-
cation that differed significantly between the subgroups, 
with more patients having a temporal lesion in subgroup 1 
(50% vs 15%, 0%, and 32% in groups 2, 3, and 4, P = .02). As 
expected, the majority of all other MRI markers were signifi-
cantly different between the resulting subgroups (all P < .05; 
Supplementary Table S2). The structural MRI markers that 
differed significantly between subgroups include the pres-
ence of a patchy enhancing lesions, the number of nod-
ular and enhancing lesions, as well as the volume and 
eccentricity from both enhancing and T2 hyperintense 
tumor lesions (P < .05; Supplementary Table S2). Moreover, 
the perfusion markers differed significantly between 

subgroups, such as the DSC-rCBV for both nodular and 
patchy enhancing lesions, and the ASL-CBF of the nodular 
and patchy enhancing lesions and of the T2 hyperintense 
tumor areas (P < .05; Supplementary Table S2).

Overall, subgroup 1 was characterized by relatively few, 
small, and mostly nodular enhancing lesions with a more 
ellipsoid shape and some lesions showing hyper-perfusion. 
Subgroup 2 was characterized by relatively few, small le-
sions with mostly patchy enhancing lesions, with a more el-
lipsoid shape and almost no lesions with hyper-perfusion. 
Subgroup 3 had the most lesions and also had the highest 
volume and highest amount of lesions with hyper-perfusion. 
Lastly, subgroup 4 was characterized by a relatively mod-
erate amount of nodular and patchy enhancing lesions with 
a relatively high volume, ellipsoid shape, and moderate 
amount of lesions with hyper-perfusion. A summary of the 
most relevant MRI markers of the MRI phenotypes of glio-
blastomas can be found in Figure 3

Differences Between the Overall Survival Time of 
the Subgroups

A significant difference was found between the overall 
survival times of the reference subgroup (subgroup 2) 
and subgroup 3 (P = .009), but not between the refer-
ence subgroup and subgroup 1 (P = .166) and 4 (P = .191; 
Supplementary Table S5, Supplementary Figure S3).

Association Between Different MRI Phenotypes 
of Glioblastomas and Progression and Survival

Out of the 67 patients, 49 showed a final diagnosis of TP 
at 9 months follow-up. Per subgroup this translated in 

Volume of
Enhancing

Lesions

Lesion
types

Subgroup 1

Subgroup 2

Subgroup 3

Subgroup 4

Legend Circle Ellipsoid

Legend for the anatomical features: Yes in dark gray & No in light gray. No lesion in light gray, one lesion in yellow, two lesions in
orange and three lesions in red.

Legend for the perfusion scans: hyperperfusion in red, isoperfusion in white & hypoperfusion in blue.

LargeSmall

Eccentricity of
Enhancing

Lesions

Eccentricity
of T2

Hyperintense
Lesions

Structural markers

Lesion dimensions Lesion enhancing pattern DSC perfusion ASL perfusion

Perfusion markers

Presence of
Nodular

Enhancing
Lesions

Presence of
Patchy

Enhancing
Lesions

Number of
Nodular

Enhancing
Lesions

Number of
Patchy

Enhancing
Lesions

Perfusion in
Nodular

Enhancing
Lesions

Perfusion in
Patchy

Enhancing
Lesions

Perfusion in
T2

Hyperintense
Lesions

Perfusion in T2
Hyperintense

Lesions

Perfusion in
Patchy

Enhancing
Lesions

Perfusion in
Nodular

Enhancing
Lesions

Volume of T2
Hyperintense

Lesions
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http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
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8/12 (67%) patients having TP in subgroup 1, 9/13 (69%) in 
subgroup 2, 14/17 (82%) in subgroup 3, and 18/25 (72%) 
in subgroup 4. From the multivariable logistic regression 
analysis, we found that subgroups 1 (HR: 1.3 (95% CI: 0.2–
6.8); P = .772), 3 (HR: 1.7 (95% CI: 0.3–10.4); P = .570) and 4 
(HR: 1.6 (95% CI: 0.3–8.4); P = .551) were not significantly 
associated with TP, compared to the reference subgroup 2 
(Supplementary Table S6).

In total, 65 out of the 67 (97%) patients had passed away 
by the time the database was locked. The median survival 
in months per subgroup (with respective inter-quartile 
ranges) was: subgroup 1 = 13 (10–21) months, subgroup 
2 = 22 (15–29) months, subgroup 3 = 11 (7–14) months, and 
subgroup 4 = 10 (8–18) months. Figure 4 shows the results 
of the survival analyses where subgroup 2 was taken as 
the reference group. Our results show that subgroup 1 
(HR: 2.6 (95% CI: 1.1–6.3); P = .03) is significantly associ-
ated with mortality (Figure 5, Supplementary Figure 2), but 
not subgroups 3 and 4, when correcting for clinical vari-
ables (model 2). On the other hand, our secondary analysis 

included in the uncorrected logistic regression analysis, 
showed that subgroup 3 had a significant association with 
mortality (HR: 2.4 [95% CI: 1.1–5.0; P = .03]), but not sub-
groups 1 and 4.

Discussion

We identified distinct brain MRI phenotypes of glioblast-
omas in patients early after radiotherapy (at 3 months). 
Based on these brain MRI phenotypes we were able to de-
fine 4 distinct subgroups that also differed in their overall 
median survival times, but showed no differences in TP 
and PP rates.

In our current study, to establish different brain MRI 
phenotypes of glioblastomas, our clustering model hierar-
chically stratified the different patients based on the simi-
larities between radiological MRI markers. Furthermore, 
we independently assessed the clinical outcomes. This 

Hazard ratios for overall survival per subgroup

Reference

Subgroup 1

Subgroup 3

Subgroup 4

2 4
Hazard Ratio (95% Cl)

6

Figure 4.  Forrest plot of the hazard ratios (95%-CI) per subgroup for survival. Illustrated results of the Cox proportional hazards survival analysis 
are shown (adjusted for age, KPS, and surgery type). Subgroup 2 has been set as a reference and marked with the striped line. Hazard ratios are 
shown with a 95% CI.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad133#supplementary-data
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approach, contrary to most traditional machine learning 
models, is seen as a form of unsupervised learning. One 
of the advantages of our method includes the possibility of 
independently establishing new MRI marker combinations 
that in machine learning methods could otherwise not be 
determined.

The radiological MRI markers utilized in our study were 
based on radiological scoring of structural and perfusion 
images, and when combined, resulted in phenotypes of 
glioblastomas. Most of the MRI markers differed signif-
icantly between the 4 subgroups, and we identified sub-
group 1 to have a significant association with mortality 
at 9 months. This subgroup’s MRI phenotype of glioblast-
omas was characterized by relatively few, small, and 
mostly nodular-enhancing lesions with a more ellipsoid 
shape and some lesions showing hyper-perfusion, es-
pecially on ASL images, and the T2 hyperintense area on 
the DSC scans showed mainly hypo-perfusion. Some in-
dividual MRI markers that drive the model and that could 
influence the lower chance of overall survival in subgroup 
1 can be identified. For example, the morphology of the 
nodular enhancing lesions are thought to reflect a more 
malignant phenotype.30 Furthermore, the more ellipsoid 
shape of the lesions in subgroup 1 could indicate a more 
aggressive pattern of tumor infiltration in the neighboring 
healthy brain tissue.31 Given the complexity of glioblast-
omas, and the uncertainty of what exact combination of 
MRI markers drives its severe prognosis, MRI phenotypes 
of glioblastomas can give more prognostically meaningful 
information and maybe in the future could help in treat-
ment decisions.

Previous machine learning approaches have studied di-
agnostic performance using radiomics markers in brain 
gliomas.20,21 For instance, a previous study utilized higher-
order texture and gray-level intensity markers from ASL 
and DSC perfusion-weighted images and compared their 
quantitative patterns between high-grade and low-grade 
gliomas to assess diagnostic performance.20 Radiomics in 
ASL and DSC were shown to be valuable, providing quanti-
tative patterns to classify low and high-grade gliomas with 
an area under the curve of 0.888 and 0.962, respectively.20 
Similarly, another previous study also investigated if, 
among others, gray-level intensity and texture markers re-
trieved from DSC perfusion images, could identify glioma 
grades and IDH status. This study demonstrated stratifica-
tion of glioma grades and IDH mutation status based on the 
DSC perfusion markers in a radiomics model performed 
correctly in 71% and 53% of the cases, respectively.21 Both 
of these previous studies showed that a machine learning 
approach with MRI perfusion markers showed the poten-
tial to reliably classify gliomas grades and molecular geno-
types. In traditional machine learning approaches, markers 
of interest were pre-determined and coupled to a known 
outcome for predictive modeling, where the markers of 
interest are mostly abstract and of higher-order, not di-
rectly representing clinical MRI markers. However, the 
main disadvantage of these machine learning approaches 
is that it is not always clear which exact marker (or com-
bination of markers) is associated with a certain clinical 
outcome. Contrarily, in the current study we did not train 
a model to predict a certain outcome. Rather, we are util-
izing MRI markers that are more representative of clinical 

radiological markers, and group the patients according to 
how similar these markers are. After this grouping, post 
hoc analyses are performed to gain insight into which com-
bination of these markers (MRI phenotypes of glioblast-
omas) are underlying specific clinical outcomes. Utilizing 
phenotypes (ie, a combination of markers) instead of 
single markers can be more advantageous because it al-
lows identification of which group of characteristics could 
be prognostically more meaningful in a disease with a 
complex biology. In this way, our approach is unique and 
also allows for a more comprehensive link between pheno-
type and outcome, as was also shown in previous studies 
of our group in other diseases.22,32

Regarding recurrence and overall survival outcomes 
of the 4 subgroups with a distinct MRI phenotype of glio-
blastomas, we observed different overall median survival 
times and TP cases. Subgroup 2 had the longest overall 
median survival time (22 months) and 69% of TP inci-
dences. We found subgroup 1 to have a significant asso-
ciation with mortality at 9 months, while the percentage 
of TP cases (67%) was similar. These results were some-
what unexpected. The discrepancy between TP cases and 
overall survival time at 9 months follow-up could be ex-
plained by the large overall survival time range, a possible 
effect of a few outlier cases, and the small sample size 
for each subgroup. Moreover, subgroup 1 was shown to 
have a significant association with mortality at 9 months 
follow-up when correcting for confounding variables, in-
cluding age.33 This suggests that such a significant associ-
ation observed in subgroup 1 is most likely a reflection of 
the tumor phenotype, not influenced by the age of the pa-
tients. When the model was not corrected for clinical vari-
ables, we found that only subgroup 3, with a considerably 
older median age (68 ± 11), had a significant association 
with mortality at 9 months. When comparing the median 
survival times, also not corrected for clinical confounders, 
a significant difference was also found for subgroup 3, as 
well as no significant difference for subgroups 1 and 4. 
The fact that clinical confounders are not weighted in most 
likely explains the non-significant findings, since both sub-
groups 1 and 4 have relatively short median survival times 
(compared to subgroup 2). An additional explanation for 
subgroup 4 could part from the crossing survival curves, 
which is probably due to a few outliers with longer sur-
vival times. Furthermore, we observed that patients with 
worse survival time in subgroups 3 and 4 (overall survival 
time of 11 and 10 months, respectively) not only had the 
lowest percentages of total resections (subgroup 3 and 
4 = 12%) but also had the highest tumor volumes (sub-
group 3 = enhancing lesion: 247.54 ml; T2 lesion: 1321.70 ml 
and subgroup 4 = enhancing lesion: 374.45 ml; T2 lesion: 
1375.43 ml). This makes us believe that the subgroups not 
only reflect different tumor phenotypes but also the differ-
ences in surgical treatment. It is known that resection type 
is an important prognostic factor for survival, but does not 
correlate with the occurrence of TP or PP (similar to what 
we have observed in the present study).

In clinical practice, it is relevant to understand which 
demographic and disease-specific characteristics play a 
role in prognosis of the patient’s disease. Since glioblast-
omas are known to recur, early assessment of tumor char-
acteristics could better indicate patient prognosis on a 
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more personal level early after treatment. Contrary to tra-
ditional machine learning approaches, rather than helping 
predict an outcome, our study helps to understand which 
combination of radiological MRI markers are the imaging 
correlates of clinical outcomes, such as overall survival.34 
The early prognostic information our method provides 
might in the future be beneficial for prognosis of patients 
with a glioblastoma. More specifically, when assessing a 
patient’s perfusion and structural tumor characteristics at 
3 months, stratifying patients according to their MRI phe-
notype of glioblastomas could inform clinicians early on 
after treatment about the patient’s outcome at 9 months. 
In order to further investigate the clinical impact, a larger 
study would need to be conducted, but our method shows 
promising results to justify and power such a study.

The strengths of our study include the well-characterized 
radiological MRI markers of glioblastomas, including DSC 
as well as ASL perfusion markers in combination with the 
extensive follow-up availability of both clinical and MRI 
data.35 This allowed us to determine the clinical outcome 
of all patients considering both survival and progression. 
Furthermore, since ASL is not widely implemented in clin-
ical imaging guidelines of glioblastomas, this dataset is 
unique for this patient population.36

Our study also has some limitations. A first limitation is 
that our sample size was limited to 67 patients. A reason 
for this was that glioblastoma patients who were certain 
to have died from non-tumor related causes or did not 
have structural and perfusion MR data available because 
of MRI contraindications were not included in our study. 
One of the evident consequences of our sample size is vis-
ible in the survival time ranges within subgroups. Our hi-
erarchical clustering analysis approach could differentiate 
subgroups with primarily different radiological markers. 
These subgroups also showed to have different overall 
survival times. However, utilizing this approach for dis-
criminating subgroups solely based on overall survival 
time is challenging. It could be interesting in the future to 
include a larger sample size and re-evaluate these findings. 
Although our selection procedure narrowed our patient 
population, it allowed us to be certain that the clinical out-
come was related to their tumor diagnosis. Despite the rel-
atively limited sample size, we were able to find clinically 
meaningful associations. A second limitation of our study 
is that the IDH status for some patients was unknown since 
some of the patients were diagnosed prior to 2016. This 
withheld us from including this variable in the survival and 
progression analyses, which would have been of added 
value since patients with an IDH mutation are known to 
have an overall better prognosis.37 A third limitation is that 
over the years of data collection, the parameters of the ASL 
MRI acquisition changed. However, these changes were 
only minimal (applied to only one patient) and were not 
expected to have affected the visual perfusion scoring by 
the neuroradiologist in a significant way. Since the data 
used was retrospectively collected, the ASL acquisition 
parameters were set according to clinical standards, only 
including one PLD. Although including more PLD could 
make the images less sensitive to ATT artifacts, this is not 
yet the standard in clinical practice. The goal of our study 
was to also investigate how perfusion markers in such a 
hierarchical clustering model could be used to establish 

glioblastoma phenotypes. We strived to utilize the max-
imum number of markers representative of clinical prac-
tice, without being redundant. However, a larger number 
of markers or a different selection of markers, which would 
also be representative of other biological processes in the 
tumor, could provide more complete phenotypes of this 
disease. This could also lead to overlapping markers and 
therefore pruning the model to these overlapping markers. 
It would be interesting to see the results of future studies 
which would, for instance, also include metabolic informa-
tion derived from MR spectroscopy or chemical exchange 
saturation transfer. Lastly, the ratings of the MRI scans 
were performed by one experienced neuroradiologist who 
consulted a second experienced neuroradiologist when in 
doubt to obtain consensus. Using only limited raters could 
be perceived as a limitation. However, we chose to invest 
in the quality of the raters instead of the quantity of the 
raters to achieve high-quality data.

In conclusion, we were able to establish 4 subgroups 
based on distinct brain MRI phenotypes of glioblast-
omas at 3 months post-radiotherapy. Our study suggests 
that these distinct MRI phenotypes of glioblastomas can 
be indicative of overall survival. The early prognostic in-
formation our method provides might be informative for 
prognosis in patients with a glioblastoma.
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