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Abstract: Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup
of patients whose optimal clinical management and best possible access to care remain a challenge
and whose survival rates lag behind that of children diagnosed with histologically similar tumors.
A better understanding of tumor biology that differentiates children (PEDS-) from AYA-RMS could
provide critical information and drive new initiatives to improve their final outcome. We investigated
the functional role of miRNAs implicated in AYA-RMS development, as they have the potential
to lead to discovery of new targets pathways for a more tailored treatment in these age groups
of young RMS patients. MiR-223 and miR-486 were observed de-regulated in nine RMS tissues
compared to their normal counterparts, yet only miR-223 replacement impaired proliferation and
aggressiveness of AYA-RMS cell lines, while inducing apoptosis and determining cell cycle arrest.
Interestingly, IGF1R resulted in the direct target of miR-223 in AYA-RMS cells, as demonstrated
by IGF1R silencing. Our results highlight an exclusive functional role of miR-223 in AYA-RMS
development and aggressiveness.

Keywords: microRNA; rhabdomyosarcoma; adolescent and young adult; aggressiveness; tumor
growth; pediatric cancer

1. Introduction

Rhabdomyosarcoma (RMS) is the most frequent pediatric soft tissue sarcoma; it occurs
mainly in children (0–10 years; PEDS), with a second distinct peak in adolescence and young
adulthood (15–29 years; AYA) [1–3]. Although the overall RMS survival has improved
considerably over the years thanks to the adoption of multimodal treatments tailored on
the risk factors, work still needs to be done to understand the molecular basis of RMS.
Particular interest is focused in identifying biomarkers, pathways and mechanisms that
may lead to better treatment options for patients with high-risk disease.

Indeed, for RMS patients, age has emerged as an unfavorable factor significantly influ-
encing survival: in the EUROCARE-5 study, the 5-year overall survival rate was observed
as 66.6% in children (0–14 years), while dropping to a 37.86% in AYAs (15–39 years) [1–4].
Often, when the tumor occurs in AYAs, it displays more aggressive clinical characteristics
than when it presents in children. For all these reasons, AYAs with cancer form a subgroup
of patients whose optimal clinical management and best possible access to care remain
a challenge, justifying specific initiatives to improve AYA-RMS outcomes [4].
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There are substantial differences that distinguish AYAs from pediatric patients, varying
from hormonal unbalances, muscle development and physical changes. It remains to be
ascertained whether the discrepancies observed in outcomes are related to biological tumor
variables, patient’s determinants or different treatment approaches adopted in pediatric versus
AYA patients [4–6]. As Ferrari et al. address the treatment issues, suggesting that AYA patients
should be treated in an integrated pediatric-adult multidisciplinary setting, increasing the
likelihood of inclusion in clinical trials, and ameliorating family and social support [5], tumor
and host biology still remain important challenges to explore. In the past years, our studies
were dedicated to investigating potential biological and molecular differences that could
discriminate and stratify the two RMS age groups, resulting in the identification of several
differentially expressed miRNAs implicated in AYAs [7] but not in pediatric RMSs.

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally mod-
ulate gene expression through the translational repression or the degradation of their
targets [8,9]. Since a single miRNA is able to bind several genes, they exert important roles
in several biological processes such as proliferation, migration and metabolism [10,11].
MiRNAs have been shown to be involved in one or more cellular mechanisms as key
regulators of muscle cell development both in normal and pathological conditions [12,13].
Indeed they play important roles in RMS pathogenesis: their deregulation has been impli-
cated in the development, progression and metastatic processes, demonstrating to function
as potential biomarkers [14]. Exploiting the possibility of these molecules as innovative
therapeutic agents in combination with miRNAs mimic or inhibitor with liposomes or
nanoparticles, still deserves further investigation for the clinical management of RMS [15].

With this in mind, we here explore the functional role of previously detected differentially
expressed miRNAs in AYA-RMS [7], as they could modulate potential genes implicated in the
proliferation, invasion and aggressiveness of AYA-RMS. All evidence produced could unveil
essential molecular differences among the two age groups of RMS, delineated by different
overall survival, that could ultimately improve the clinical management of AYA-RMS.

2. Results
2.1. MiR-223 Affects Proliferation and Aggressiveness of AYA-RMS Cell Lines

Assessment of expression of the previously identified 8 miRNAs (miR-223, miR-362,
miR-431, miR-486, miR-500, miR-501-3p, miR-502, miR-660) [7] in non-neoplastic and
paired tumor tissues from PEDS- and AYA-RMS patients, was a starting point to investigate
the role of this miRNAs in RMS. The clinical characteristics are listed in Table 1.

Interestingly, RMS tumor samples revealed lower expression levels of miR-223 and miR-
486 compared to their non neoplastic counterpart (Figure 1A). Thus, to explore the possibility
of an anti-tumor activity of down-regulated miRNAs in RMS, we forced in vitro expression of
miR-223 (mim-223) and miR-486 (mim-486) in two RMS (RH30 and RD) cell lines, evaluating
their proliferation using a luciferase-based assay, whereas a non-targeting miRNA sequence
(SCR) and untreated (NT) RMS cells were used as negative controls. Notably, we observed that
mim-223 induced a significant reduction in cell proliferation in RH30 (AYA-RMS) cells while
no differences were observed in RD (PEDS-RMS) cells (Supplementary Figure S1A).

Based on these results, we further investigated the anti-tumoral activity of miR-223
analyzing the proliferative, migratory, invasive and apoptotic properties in RMS. The
inhibitory role of miR-223 in cancer proliferation was confirmed also in other primary cell
lines of AYA-RMS (RMS-SL and RMS-C) and PEDS-RMS (RMS-GJ). Similarly, proliferation
impairment of miR-223 mimic was observed uniquely in treated AYA-RMS cells (RMS-C)
(Figure 1B; Supplementary Figure S1B). To further comprehend implications of miR-223
in RMS aggressiveness and cancer progression, migration and invasion assays were set
up utilizing RMS cell lines after miR-223 transfection. Figure 1C,D illustrate how miR-223
mimic decreased migratory and invasive capabilities of all the tested RMS cells, compared
to their control SCR or untreated (NT) cells. All together these observations emphasize the
role of miR-223 in the modulation of RMS cells’ proliferation, migration and invasion with
a stronger effect in AYA-RMS cells compared to PEDS-RMS cells.



Int. J. Mol. Sci. 2022, 23, 13989 3 of 13Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 1. Mir-223 replacement inhibited RMS proliferation and migration. (A) Histogram showing
miRNAs expression levels in RMS cancers compared to distant normal tissues (n = 9). * p < 0.05 vs.
normal tissues. (B) Graph shows cell proliferation of miR-223 over-expressing cells compared to
SCR and untreated (NT) control cells (n = 5). (C,D) Representative images and graphs showing of
migrated and invaded cells, respectively. MiR-223 reduced migratory (C) and invasive (D) capacity
of adolescent RMS cells in Transwell assay (n = 5). Migration and invasion data are expressed as
number of migrated mir-223 over-expressing cells vs. the number of SCR and untreated (NT) control
cells. All data are expressed as mean ± standard error of the mean (SEM). ** p < 0.01, * p < 0.05,
*** p < 0.001 vs. SCR or NT cells.
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Table 1. Clinical characteristics of RMS patients.

RMS
(n = 9)

Gender
Male 6 (66.7%)

Female 3 (33.3%)
Age (years) 19.3 + 10.3
PEDS (0–14) 2
AYA (>15) 7
Hystology

ARMS 3 (33.3%)
FOXO1/PAX3 1

Fusion negative 2
ERMS 6 (55.6%)

Fusion negative 6
IRS grade

I 3 (33.3%)
III 6 (66.7%)

Site of onset
Testicle 4
Prostate 1
Limbs 3
Trunk 1

ARMS: alveolar rhabdomyosarcoma; ERMS: embryonal rhabdomyosarcoma; IRS: intergroup rhabdomyosar-
coma Study.

2.2. MiR-223 Induces Apoptosis and Determines Cell Cycle Arrest

Given that miR-223 is a regulator of apoptotic genes [16,17], to understand whether
the observed proliferation inhibition is due to an increase in apoptosis and/or cell cycle
arrest, fluorescence-activated single cell sorting (FACS) analysis was performed for RMS
cells after mim-223 treatment (Supplementary Figure S1C). Notably, a significant increase
in apoptosis was observed in mim-223 treated AYA-RMS cells compared to SCR and NT
cells, while no effect was observed in PEDS-RMS cells (Figure 2A and Supplementary
Figure S1D). As lipofectamine transfection did not affect the overall results, we will not
include experiments with untreated cells from this point on. To confirm the activation
of the apoptotic signaling pathway by miR-223, the levels of Cleaved Caspase 3 were
analyzed by Western Blot (WB). Higher levels of Cleaved Caspase 3 were detected in
mim-223 treated cells compared to SCR (Figure 2B), supporting the activation of apoptotic
cascade after miR-223 transfection. Moreover, to address a possible cell cycle arrest issue
associated with the reduction in proliferation of RMS cells, cell cycle progression analysis
by FACS was performed. Strikingly, an impaired cell cycle progression of AYA-RMS cell
lines in mim-223-treated cells was detected, as indicated by an increased percentage of cells
arrested in G0/G1 phase coupled with a decrease in cells in the G2/M phase (Figure 2C
and Supplementary Figure S1E). Indeed, RT-PCR analysis for cyclins and cyclin-dependent
kinases confirmed that miR-223 transfection in RH30 and RMS-SL (AYA-RMS) reduced the
expression of the cyclin CCDN1, required to progress towards G1/S phase transition, thus
reinforcing our FACS data (Figure 2D and Supplementary Figure S1F).
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Figure 2. MiR-223 induced apoptosis and cell cycle arrest in adolescent RMS cells. A) Apoptosis 
was measured by flow cytometry as annexin V+ cells compared to SCR and untreated (NT) cells (n = 
5 for each cell lines). B) Representative western blot bands and quantification of Cleaved Caspase 3 
in RMS-mim-223 cell lines compared to their SCR controls (n = 3 for each cell lines). C) Histograms 

Figure 2. MiR-223 induced apoptosis and cell cycle arrest in adolescent RMS cells. (A) Apoptosis was
measured by flow cytometry as annexin V+ cells compared to SCR and untreated (NT) cells (n = 5 for
each cell lines). (B) Representative western blot bands and quantification of Cleaved Caspase 3 in
RMS-mim-223 cell lines compared to their SCR controls (n = 3 for each cell lines). (C) Histograms
show the percentage of miR-223 over-expressing cells in the different phases of cell cycle compared
to SCR cells (n = 4 for each cell lines) (D) mRNA levels of CyclinD1 and CDK4 after over-expression
of miR-223 (n = 5 for each cell lines). All data are expressed as mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. SCR or NT cells.
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2.3. IGF1R Is a Direct Target of miR-223 in RMS Cells

In order to identify the direct target of miR-223, we focused on our previously pub-
lished results that reported an interaction network consisting of target genes downregulated
by miR-223 [7]. Among all possible target genes, Insulin Growth Factor 1 Receptor (IGF1R)
was indicated as a potential miR-223 target and, indeed, IGF1R expressed the 3′ UTR
sequence, fitting the most for miR-223 pairing (Figure 3A). So, to validate the inhibition of
IGF1R by miR-223 in our RMS cell lines, WB analysis were set up on mim-223 and SCR
treated cells. Notably, IGF1R protein downregulation upon mim-223 administration was
observed only in RH30 and RMS-SL cells, suggesting that the modulation of IGF1R by
miR-223 is effective only in AYA-RMS cells (Figure 3B). Importantly, to evaluate whether
the observed inhibition of tumorigenic properties in AYA-RMS cell lines by mim-223 could
be caused by the downmodulation of its target IGF1R, the proliferation, migration and in-
vasion properties of RMS cells were assessed after IGF1R silencing using a short interfering
RNA (siRNA). Notably, a significant reduction in cell proliferation, migration and invasion
capabilities of RH30 and RMS-SL (AYA-RMS) cells was observed after siRNA (si-IGF1R)
transfection compared to si-SCR controls (Figure 3C–E). Moreover, the role of IGF1R in
the apoptotic signaling and cell cycle progression was determined by FACS analysis upon
si-IGF1R treatment (Supplementary Figure S2A). Strikingly, si-IGF1R significantly increased
the percentage of apoptotic events (Annexin V+/PI−) only in AYA-RMS cells compared to
the si-SCR (Figure 3F). Cell cycle analysis revealed a slight overall increase in the percentage
of cells in G0/G1 phase in (Figure 3G) and the concomitant reduction in cells in S and
G2/M phases (Supplementary Figure S2B) in AYA-RMS si-IGF1R treated cells compared
to si-SCR.

To demonstrate that the anti-tumoral effect of miR-223 is due to IGF-1R modulation
we over-expressed miR-223 in IGF1R silenced cells. As shown in Figure 3 no additional
effect of miR-223 was observed in IGF1R knockdown RMS cells compared to si-IGF-1R in
terms of proliferation, migration, invasion and apoptosis (Figure 3).

2.4. MiR-223 Improved Chemotherapy Efficacy in RMS Cells

To test a possible efficacy of miR-223 replacement for RMS treatment purposes, we
evaluated in vitro the potential additive effect of this miRNA in combination with Vin-
cristine, a standard chemotherapeutic agent for RMS clinical management. To this aim,
RMS cells were treated using mim-223 and Vincristine (1 µM) alone or in combination, and
proliferation rate and apoptosis were evaluated (Supplementary Figure S3). As shown in
Figure 4A,B, we noted that mim-223 in combination with Vincristine (1 µM) effectively
reduced the viability of RMS cells increasing early and late apoptotic cells compared to Vin-
cristine alone treatment. Only RMS-SL cells were not sensitive to the effect of the treatment
in line with their chemoresistant features. These results suggested that a combinatorial
treatment using miR-223 replacement plus Vincristine could be effective in the treatment of
AYA-RMS tumors.
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Figure 3. IGF1R is a direct target of miR-223. (A) Predicted IGF1R 3′UTR-binding site for miR-223.
The figures show alignment of the miR-223 seed sequence with IGF-1R 3′UTR. (B) Results of IGF1R
analysis by Western blot (n = 3) and representative Western blot bands. (C) Proliferation of RMS
cell lines trasfected with siRNA of IGF1R with or without addition of miR-223 mimics compared to
controls (n = 4). IGF1R silencing and miR-223 replacement inhibited the migratory (D) and invasive
(E) of RMS cells (n = 3 for each cell lines). (F) Apoptosis was measured by flow cytometry as annexin
V+ cells compared to cell transfected with si-SCR control (n = 5 for each cell lines) (G) Percentage of
RMS cells transfected with si-IGF1R and si-IGF1R + mim-223 in G0/G1 cell cycle’s phase (n = 5 for
each cell lines). All data are expressed as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. cells
transfected with si-SCR control.
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Figure 4. Combination of miR-223 replacement and Vincristine reduced RMS proliferation. (A) MiR-
223 over-expression reduced adolescent RMS-proliferation alone and in combination with Vincristine
(1 µM) compared to controls (n = 5). (B) Analysis of apoptotic cells treated with miR-223 in combina-
tion with Vincristine (n = 3). All data are expressed as mean ± SEM. * p < 0.05 vs. cells transfected
with control.

3. Discussion

Despite being an aggressive tumor with high tendency to metastasize, RMS is quite
responsive to conventional chemotherapy. Over the past decade, improvements in RMS
survival rates of more than 70% for patients with localized disease were achieved but
new treatment options are still required for patients with metastatic disease or aggressive
molecular features such as somatic mutations in MYOD1. Thus, RMS has a worse prognosis
in AYAs than in children; some experiences suggest that if it is treated with a pediatric-like
therapeutic regimen, an improved AYA outcome is possible [5]. Yet, several other features
of the host and of the tumor, including biological, may possibly have a significant impact
and may be responsible for AYA’s worse survival. Our recent studies, mainly focusing the
identification of age-related molecular differences in RMS, revealed differentially expressed
miRNAs and modulated pathways implicated in AYAs but not in pediatric RMS patients.

In particular for miRNAs, their role in RMS development and aggressiveness has been
previously described [15,18]. Indeed, mir-378 was reported to modulate the phenotype
of RMS cells through IGF1R regulation [19], whereas miR-206 over-expression reduced
tumor growth in vivo by inhibiting c-MET [20]. Interestingly, miR-223 was also described
in the development of cancer: down-regulated in tumors compared to normal tissues
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and correlated with a worse prognosis [21]. We here demonstrated a miR-223 expression
decrease in RMS tissues compared to their normal counterpart, suggesting a potential role
of miR-223 as a functional player for RMS and the opportunity to exploit this molecule as
potential novel new therapeutic target in this tumor.

Taking into account the functional role of miR-223 in cancer, it was demonstrated
that it modulates cell proliferation, migration, invasion and EMT of breast cancer cells
through the Hippo/Yap pathway [22] or inhibits lung cancer growth both in vitro and
in vivo [21]. Moreover, this miRNA in osteosarcoma has an active role in the control
of cell cycle proliferation and the development of metastasis [23,24]. We here provided
evidence that miR-223 replacement affects the proliferation of AYA-RMS cells and not the
PEDS-RMS cells, through the blockade of cell cycle and a massive induction of apoptosis,
demonstrating an exclusive association to age in RMS. In addition, miR-223 replacement
could potentially inhibit the metastatic potential of RMS, as demonstrated by the reduction
in migratory/invasive ability of RMS cells after miR-223 over-expression.

The pathway involving IGFR1 receptor is crucial for RMS and several compounds
targeting this pathway have been tested in clinical trial (ClinicalTrials.gov Identifier:
NCT03041701) [25]. Even if the precise role of IGF in RMS is still unclear, several studies re-
vealed that IGF stimulates cancer growth in vitro and the blockade of this pathway resulted
in tumor suppression in vivo. So the blockade of IGF1R signaling may have a potential
as a therapeutic strategy for the treatment of RMS [26]. Interestingly, we observed that
miR-223 inhibited IGF1R expression and reduced cancer growth and migration. Moreover,
the combination of standard chemotherapy and IGF1R blockade through miR-223 could
represent an innovative strategy for the treatment of RMS, and should be further explored.

In conclusion, we demonstrated that miR-223 is less expressed in RMS tissues, results
that seem to be in contradiction with our previously published work where miR-223 was
identified as up-regulated in AYA-RMS compared to PEDS-RMS [7]. These discrepant
results may be due to differences of expression levels of miR-223 in cells that make up the
tumor microenvironment. Indeed, miR-223 is known to be highly expressed in cells of the
immune system, highlighting an interesting implication and involvement in inflammation,
cancer and tumor microenvironment. Particularly, miR-223 could act as a signal in the
crosstalk between tumor and immune cells in the tumor microenvironment, mediating im-
mune evasion mechanisms by tumors [27,28]. Nonetheless, we also observed a significant
increase in immune infiltrate in AYA-RMS compared to PEDS-RMS, possibly justifying the
high level of expression detected. Certainly, future studies will be focused in evaluating
the contribution of miR-223 both in the context of the AYA immune system and, ultimately,
as a potential target for the treatment of RMS.

4. Materials and Methods
4.1. RMS Clinical Specimen and Cell Lines

All RMS Tissue specimens were obtained according to the Internal Review and the
Ethics Boards of the Fondazione IRCCS Istituto Nazionale dei Tumori in Milan (CE N. INT
132–16 Em. 02). In particular, for generation of primary cell lines, fresh surgical specimens
were obtained in collaboration with the surgical department, while a retrospective RMS
series of 9 Formalin Fixed Paraffin Embedded (FFPE) tumor tissue (and their corresponding
non neoplastic area) of primary, non-pre-treated, surgical or bioptic specimen of 2 PEDS-
and 7 AYA-RMS were selected and retrieved from the archives of the Department of Diag-
nostic Pathology and from the Laboratory of Medicine of our Institute. Expert pathologists
re-evaluated all FFPE RMS samples for adequacy and quantity of material. All patients
and/or their guardians agreed and signed an informed consent to research activities at the
time of admission.

In vitro experiments were performed utilizing a panel of RMS cell lines both commer-
cial and primary established and derived from AYA- and PEDS-RMS patients. In details,
commercial cell lines RH30 (AYA-RMS) and RD (PEDS-RMS) were purchased from Ameri-
can Type Culture Collection (ATCC; LGC Standards) and grown according to guidelines.
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Specifically, RH30 cells were cultured in RPMI medium (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; EuroClone, Italy),
RD cells were cultured in DMEM medium (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA). As for primary RMS cell lines, they were established in our laboratory from tumor
specimen of AYA-RMS (RMS-SL and RMS-C) and PEDS-RMS (RMS-GJ) patients by me-
chanical and collagenase II enzymatic dissociation, followed by culturing and propagating
in Amniomax-C100 medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA).

For experiments with Vincristine, RMS cells were treated for 24 h with 1 µM of
Vincristine (Teva) and then proliferation and apoptosis were analyzed.

4.2. RNA Extraction from FFPE and miRNAs Analysis

Total RNA was isolated from 64 (49 tumor tissues and 15 normal tissues) RMS FFPE
using miRNeasy FFPE Kit Qiagen, Valencia, CA, USA), and the procedure was automated
on a QIAcube Robotic workstation. The RNA extracted was quantified on a Qubit.dsDNA
HS Assay Kit on a Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA, USA)
while RNA integrity was assessed using Agilent RNA ScreenTape on a 4200 TapeStation,
(Agilent Technologies, Santa Clara, CA, USA). MiRNAs were then reverse transcribed using
a TaqMan microRNA Reverse Transcription Kit and a TaqMan RT Primer Pool specific for
selected miRNA according to the manufacturer’s instructions (Thermo Fisher Scientific,
Waltham, MA, USA), as previously described [29]. MiRNA expression was evaluated using
the TaqMan assay (Thermo Fisher Scientific, Waltham, MA, USA) and normalized to the
expression of the small nucleolar RNA RNU48.

4.3. MiRNA and siRNA Transfection

For in vitro transfection experiments, RMS cell lines (105 cells) were seeded in petri
dishes and transfected with miR-223 mimics (50 nM, ID: MC12301, Thermo Fisher Scientific)
or negative control (SCR) with Lipofectamine 2000 (Invitrogen™, Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instruction. Silencing of IGF1R was
evaluated utilizing RMS cell lines that were transfected with siRNA IGF1R (ID s194405
100 nM, Thermo Fisher Scientific, Waltham, MA, USA) or negative control (SCR) with
Lipofectamine 2000 according to the manufacturer’s instruction. After 24 h following
transfection, cells were harvested for in vitro experiments.

For the corroboration of IGF1R as target of miR-223, after IGF1R silencing, transfection
of miR-223 mimics was performed as described above.

4.4. Luciferase-Based Proliferation Assays

All transfected RMS cells (5 × 103 cells/well) were plated in 96-well plate, and
a RealTime-Glo assay (Promega Corporation, Madison, WI, USA) was performed after 72 h
in accordance with the manufacturer’s instructions.

4.5. Migration and Invasion Assays

Experiments for migration assays utilized 105 cells resuspended in 100 µL of RPMI
free seeded on the top chamber of Corning®FluoroBlok™(Corning, Glandale, AZ, USA)
Cell Culture Insert with 8 µm pore size, while 500 µL of RPMI full medium were added
at the bottom chamber. After 24 h, cells that migrated towards the bottom side of the
insert were fixed with methanol and their nuclei labeled using VECTASHIELD® Antifade
Mounting Medium with DAPI (Vector Laboratories, Newark, CA, USA). Migrated cells
were enumerated/counted through Olympus BX51 fluorescence microscopy. On the other
hand, to evaluate the invasion capacity of RMS cells, invasion inserts were coated with
Matrigel (Becton Dickinson, Franklin Lakes, NJ, USA) prior to the seeding of cells, stopping
the assay after 48 h. Enumeration of cell was assessed by selecting three random fields for
each filter and counting cells contained in that area.
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4.6. Early and Late Apoptosis Assessment

Evaluation of apoptosis properties, both early and late, was investigated by collect-
ing and staining cells with the Annexin V-FITC Kit (Miltenyi Biotec, Bergisch Gladbach,
Germany) according to the manufacturer’s instruction, after 72h from the transfection.
Specifically, to distinguish apoptotic stage of cells, early apoptotic cells were discriminated
as Annexin V+/Propidium Iodide−, while late apoptotic cells as Annexin V+/Propidium
Iodide+. Samples were analyzed via FACS (FACSCanto II, BD Biosciences, San Jose, CA,
USA) and FlowJo software (TreeStar, Ashland, OR, USA).

4.7. Cell Cycle Analysis

Cell cycle analysis was necessary to estimate the percentages of a cell population in
the different phases of the cell cycle. For this reason, transfected cells were fixed using
cold 70% ethanol overnight at −20 ◦C to be labeled the following day with a Propidium
Iodide (PI) solution (PI 50 µg/mL, 0.1% Triton X100 and 0.1% of citrate in water) added to
RNAse A (Roche, Basel, Switzerland) 0.5 mg/mL and incubated at 37 ◦C for 40 min, being
careful of protecting cells from light source. Finally, an accurate cell cycle analysis of all
RMS cells was assessed by FACS. The percentage of cells in a specific phase of the cell cycle
was determined based on the positivity for PI.

4.8. Western Blot Analysis

Cell pellets were lysed in RIPA buffer (Thermo Fisher Scientific, Waltham, MA, USA)
with protease inhibitor cocktail and protein quantification were performed through Brad-
ford assay. In details, 40 µg of proteins were separated on Bolt™ 4 to 12% polyacrylamide
gels (Thermo Fisher Scientific) and transferred to nitrocellulose transfer membrane using
iBlot™ 2 Gel Transfer Device (Thermo Fisher Scientific). To block aspecific binding sites,
membranes were incubated for 1 h at RT with 5% non-fat milk in T-TBS 1X and then
incubated O/N at 4 ◦C with the following primary antibodies: rabbit anti-cleaved caspase 3
(1:1000, Cell Signaling Technology, Danvers, MA, United States), rabbit anti-IGF1R (1:1000
Abcam, Cambridge, UK) and mouse anti-β-actin (1:5000 Sigma-Aldrich, St. Louis, MI,
USA). After three washing with T-TBS 1X, membranes were incubated with goat anti-rabbit
or goat anti-mouse secondary antibodies HRP-conjugated (GE Healthcare Life Sciences,
Marlborough, MA, USA; 1:5000). Signals were detected via an enhanced chemilumines-
cence (ECL, GE Healthcare Life Sciences, Marlborough, MA, USA) reaction in a MINI HD9
Western Blot Imaging System (Cleaver Scientific Ltd., United Kingdom). Densitometry
analysis was performed using ImageJ Software.

4.9. Quantitative Real Time PCR

cDNA was synthesized from 250 ng of extracted total RNA. RT-PCR was performed
using Taqman Universal Master Mix II (Thermo Fisher Scientific, Waltham, MA, USA).
Relative quantification of the expression levels of the selected genes was performed using
GAPDH as the endogenous control. The data were calculated as 2−(ddCT) methods.

4.10. Statistical Analysis

The statistical analysis was performed using Graphpad Prism 5 software. Statistically
significant differences were determined with Student’s t-test when comparing two groups
or Two-way ANOVA test for multiple comparisons. The term “n” is referred to the number
of biological replicates performed for each experiment. The absence of asterisks denotes
results that are not statistically significant.

5. Conclusions

MiR-223 is involved in the modulation of RMS cells proliferation, migration and
invasion with a stronger effect in AYA-RMS cells compared with PEDS-RMS cells. MiR-
223 has an impact on different cellular processes, ranging from cell proliferation and
invasiveness of RMS cells and could be an interesting target for future therapeutic studies.
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However, to date, potential off-target effects and the efficiency of delivery in the tumors,
remain challenges that requires solutions prior to utilizing miRNAs as therapeutic agent
for the treatment of cancers.
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