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Abstract

The conflicts exist between the phylogeny of Campanulaceae based on nuclear ITS

sequence and plastid markers, particularly in the subdivision of Cyanantheae (Campanula-

ceae). Besides, various and complicated plastid genome structures can be found in species

of the Campanulaceae. However, limited availability of genomic information largely hinders

the studies of molecular evolution and phylogeny of Campanulaceae. We reported the com-

plete plastid genomes of three Cyanantheae species, compared them to eight published

Campanulaceae plastomes, and shed light on a deeper understanding of the applicability of

plastomes. We found that there were obvious differences among gene order, GC content,

gene compositions and IR junctions of LSC/IRa. Almost all protein-coding genes and amino

acid sequences showed obvious codon preferences. We identified 14 genes with highly

positively selected sites and branch-site model displayed 96 sites under potentially positive

selection on the three lineages of phylogenetic tree. Phylogenetic analyses showed that

Cyananthus was more closely related to Codonopsis compared with Cyclocodon and also

clearly illustrated the relationship among the Cyanantheae species. We also found six cod-

ing regions having high nucleotide divergence value. Hotpot regions were considered to be

useful molecular markers for resolving phylogenetic relationships and species authentica-

tion of Campanulaceae.

Introduction

The three closely related families, Campanulaceae, Cyphiaceae, and Lobeliaceae are sometimes

treated as subfamilies of the broadly delimited Campanulaceae which consists of more than

2300 species with nearly cosmopolitan distribution [1]. Campanulaceae sensu stricto (s.str.)
primarily distributes in the temperate regions and is centered in East Asia, incorporating three

groups of the Platycodonoids, Wahlenbergioids, and Campanuloids based on the capsule

dehiscent mode and location of carpel and calyx lobes [2]. Later, Hong and Wang combining

the data from palynology, external morphology and DNA fragments, established a classifica-

tion with three tribes for Campanulaceae s.str., i.e., Cyanantheae, Wahlenbergieae and Campa-

nuleae [3, 4].
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Many Cyanantheae species are important traditional medicines, such as Platycodon grandi-
florus and Codonopsis pilosula showing anti-epileptic, anti-oxidative, anti-viral, and anti-

inflammatory properties and some species e.g., Cyananthus incanus and Cyananthus formosus
with ornamental values [5–8]. However, less attention has been paid to this group; there are a

few taxonomic and phylogenetic studies apart from the research of medicinal value [9, 10].

The Cyanantheae is distinct from other two tribes by colpate or colporate pollen with elongate

apertures and a loculicidal capsule or a berry. The subdivision of this group is still controversial

since Codonopsis, the largest genus among the Cyanantheae is polyphyletic [4, 11]. The contro-

versies mainly exist in the relationship of Codonopsis and its allies. Codonopsis is mainly dis-

tributed in the Himalayas and southwest China. Studing this genus will be helpful to clarify the

phylogenetic relationships of Cyanantheae. In the past years, the nuclear ribosomal ITS and

several plastid genome regions (such as atpB, matK, rbcL, petD) or their combinations had

been frequently used in the study of molecular systematics of Cyanantheae [9, 11]. The selected

loci failed to provide sufficient systematic information among Cyanantheae species. Some

important branches still show the low supported value and are undefined [4, 9, 11, 12]. As a

result, it is necessary to seek other methods for rebuilding the classification of Cyanantheae.

Whole plastid genome or hyper-variable regions are urgently needed. The broadly definition

of this clade comprises Platycodon, Canarina, Cyclocodon, Echinocodon, Codonopsis and Cya-
nanthus et al. [4]. Except the Canarina, other genera are only found in East Asia. Obviously,

the species of East Asia play a vital role in analyzing the genome evolution and demonstrating

the phylogenetic relationship of Cyanantheae. Cyclocodon and Cyananthus are noteworthy in

the flora of the Himalayas and adjacent areas. Alpine species of Cyanathus endemic to the

Himalaya-Hengduan Mountains, have been used to study the distributional responses to cli-

mate change [13]. For the species of Cyclocodon, calyx lobes are stripe or strip-lanceolate and

have dentate margin or rarely entire. Cyananthus is a distinctive member of Campanulaceae

due to the superior calyx and corolla, which illustrate that this genus appears earlier [14]. Plas-

tid genomes of these floras remain not to be elucidated. What’s more, the plastid genome evo-

lution in Cyanantheae is still blank.

In recent years, based on genomic resources, such as complete plastid sequences, there is a

good chance to study the genomic evolution and interspecific relationships of organisms [15–

18]. Chloroplasts are small organelles inside the cells of plants with the function of providing

photosynthetic machinery and producing essential energy. The majority of the plastid genomes

of land plants have highly-conserved compositions, with respect to the gene content and gene

order [19–22]. Nevertheless, many rearrangements are the rare evolutionary events and often

have certain phylogenetic significance [23]. Various plastid genome structures can be found in

the Campanulaceae species because of numerous rearrangements [9, 24–26]. However, the

research on plastome structures of Campanulaceae has been relatively scarce [24, 27]. Besides,

the conflicts still exist between the phylogeny of Campanulaceae based on ITS and based on

plastid markers [4, 11]. Until now, there are few studies of constructing Campanulaceae phylog-

eny based on the plastomes. Therefore, using the plastid genome structures will be helpful to

identify the uncertainty phylogenetic relationships and clarify the structural evolution. Plastid

markers and genetic information of more complete plastid genomes of Campanulaceae will also

further contribute to the conservation strategy and utilization of this family.

Here, we report newly sequenced complete plastid genomes of Cyananthus flavus, Cycloco-
don parviflorus, and Codonopsis hongii using next-generation sequencing technology and

genomic comparative analysis with other eight published plastome sequences of Campanula-

ceae download from the NCBI. The main objectives of this study are to (1) assemble and anno-

tate the genome structures of three Cyanantheae species, (2) reveal structural and size

variation in the plastomes of Campanulaceae, and trace the evolutionary pattern of IR
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expansion/contraction, (3) identify divergence hotspots of plastome regions for further evolu-

tionary and systematic study of Campanulaceae and determine signatures of positive selection,

and (4) test the applicability of plastid phylogenomics in resolving phylogenetic relationships

of Campanulaceae s.str., especially within the Cyanantheae.

Materials and methods

Plant material, DNA extraction, and sequencing

There is no specific permits required for obtaining the healthy and fresh leaves of Cyananthus
flavus, Cyclocodon parviflorus, and Codonopsis hongii, since they are not endangered or pro-

tected species and were collected from the fields that are not privately owned or protected. The

plant materials of Cyananthus flavus, Cyclocodon parviflorus, and Codonopsis hongii were col-

lected at Lijiang City (27˚0’24.4"N, 100˚10’31.1"E, alt. 3439 m), Cangyuan Wa Autonomous

County (23˚14’39"N, 98˚56’55"E, alt. 946 m), Gongshan Derung and Nu Autonomous County

(27˚43’44.1"N, 98˚21’34.4"E, alt. 1660 m) of Yunnan, China, respectively.

The voucher specimens of three species were deposited at Herbarium of Kunming Institute

of Botany, Chinese Academy of Sciences (KUN). The voucher numbers are KUN 1379897

(Cyananthus flavus), KUN 1380108 (Cyclocodon parviflorus), and GLGS21262 (Codonopsis
hongii). Total genomic DNA was isolated from silicagel-dried leaves by using a CTAB protocol

[28]. The quality and concentration of DNA were evaluated via agarose gel electrophoresis and

spectrophotometry (NanoDrop-2000, Thermo Fisher Scientific). We used an ultrasonicator to

randomly fragment the extracted genomic DNA into 400-600bp following manufacturer’s

manual (Illumina). DNA libraries with 500-bp insert size were constructed by the NEBNext1

Ultra™ II DNA Prep Kit for illumina. Sequencing of paired-end 150 bp read lengths was run

on Illumina HiSeq X TEN at Plant Germplasm and Genomics Center of Kunming Institute of

Botany. The sequencing quantity of all newly sequenced species is more than 1 Gigabyte.

Plastid genome assembly and annotation

Complete plastid genome of Codonopsis lanceolata (KP889213) as reference, the paired-end

reads were filtered and assembled into a complete plastome using GetOrganelle (https://

github.com/Kinggerm/GetOrganelle) [29]. The final assembly graph was viewed and checked

by Bandage [30] to confirm the paths of the plastomes. In addition, the four junctions between

the IR (inverted repeat) regions and LSC (large single copy region)/ SSC (small single copy

region) were reconfirmed by PCR and Sanger sequencing. The primers were designed based

on the reference genome (Codonopsis lanceolate MH018574) through the Primer3 algorithm

(http://frodo.wi.mit.edu/primer3/) with the default setting and displayed in the S1 Appendix

which also showed the PCR reactions. Sanger sequencing was finished in the BioSune com-

pany after purify the them through precipitation with 95% ethanol and 3-sodium acetate. Gen-

eious 8.0.2 [31] was used to align the sanger sequences and assembled genomes for checking

any differences. The assembled plastid genome was automatically annotated using PGA [32],

then manually adjusted in Geneious. Circular plastid genome maps of Cyananthus flavus,
Cyclocodon parviflorus, and Codonopsis hongii (Figs 1, 2 and 3) were drawn using OGDRAW

tool [33] with default settings and checked manually. The sequence of plastomes generated in

this study was submitted to the NCBI database with the GenBank accession number (Table 1).

Genome structure analyses and genome comparison

Six plastomes of Campanulaceae s.str. available in GenBank (Table 1) were included as closely

related groups. Among of these, three species are the Campanuleae plants. Additionally,
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Lobelia erinus (Lobelioideae) (MF770635) and Cyphia crenata (Cyphioideae) (MF770625)

were assigned as the out-group to reconstruct phylogenetic relationships. The whole plastid

genomes of eleven species, including the three newly sequenced Cyanantheae species in this

study were performed using Mauve [34]. We calculated the ORFs (opening reading frame)

>300 bp in the IRa regions of each species in the Geneious. The boundaries between the IR

and SSC regions, IR and LSC regions, plus the different contents of IR were compared and

analyzed. In total, 76 protein coding genes of all studied species were compiled into a single

file and aligned with MAFFT [35] and manually adjusted with Geneious. In addition, the rpl23

Fig 1. Plastid genomes of Cyananthus flavus (A), Cyclocodon parviflorus (B), and Codonopsis hongii (C). Genes inside the circle are transcribed

clockwise, and genes outside the circle are transcribed counter-clockwise. The dark-gray inner circle corresponds to the GC content, and the light-gray

represents the AT content.

https://doi.org/10.1371/journal.pone.0233167.g001
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and infA genes were excluded from the data matrix, since there being too many losses there.

To compare nucleotide diversity (pi) in different groups, we divided the eleven samples into

the groups of all species, the Cyanantheae, the Campanuleae, and the out-group. The Pi

throughout the coding regions with 200 bp step size and 600 bp window length was deter-

mined via the DnaSP version 6 [36] software.

The distribution of codon usage with the relative synonymous codon usage (RSCU) value

and the GC content were calculated using the software MEGA 6.0 [37]. RSCU represents the

ratio of the observed frequency of a codon to the expected frequency and is a good indicator of

codon usage bias [38, 39]. When the RSCU value is less than 1, synonymous codons are used

less frequently than expected; otherwise, the value is greater than 1 [40]. The visualization of

codon usage in the form of heatmaps of Campanulaceae species and a histogram were con-

ducted with R language with an RSCU value.

Fig 2. Percentages of variable sites in protein-coding regions. The blue line indicates the comparison of eleven species among the family Campanulaceae; the

gray line indicates the comparison of six Cyanantheae species; the orange line indicates the Campanuleae species; the yellow line indicates the out-group. X

axis: position of the midpoint of a window. Y axis: nucleotide diversity of each window.

https://doi.org/10.1371/journal.pone.0233167.g002

Fig 3. Comparison of the borders between IR and LSC/SSC regions and the gene composition of IR regions.

https://doi.org/10.1371/journal.pone.0233167.g003
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Repeat sequence analyses

REPuter [41] was hired to identify dispersed repeats, including forward (F), reverse (R), palin-

drome (P), and complement (C) repeats. The repeat sizes were limited to a minimum of 50 bp

and the maximum computed repeats were detected less than 100, with a Hamming distance of

3. The IRb of each plastome was removed before the repeat detection, and then the location of

repeats in IRb as manually found based on those detected in IRa. We used online Tandem

repeats finder (http://tandem.bu.edu/trf/trf.html) to identify tandem repeats sequences with

default parameters. Simple sequence repeats (SSR or microsaltellites) in the eleven genomes

were detected by A Perl script MISA [42]. Tandem repeats (1–6 nucleotides) were viewed as

microsatellites, with the minimal repeat number set to 12, 6, 5, 5, 5 and 5 for mono-, di-, tri-,

tetra-, penta-, and hexa- nucleotides, respectively. All of the repeats were manually verified.

We also counted the repeat numbers in the regions of LSC, SSC and IRa.

Positive selection analysis

In order to detect the protein-coding genes under selection within the species of Campanula-

ceae, we used Muscle (codon) implemented in MEGA to align the each gene. We analyzed all

CDS gene regions, except the rpl23 and infA. A Maximum likelihood phylogenetic tree based

on CDS regions was constructed using RAxML [43]. The codon substitution models were per-

formed for calculating the non-synonymous (dN) and synonymous (dS) substitution rates,

along with their ratios (ω = dN/dS), which were implemented in the Codeml program,

PAML3.15 [44]. We used the site-specific model of M0, M1a, M2a, M3, M7, and M8. This

model allowed ω ratio to vary among sites with a fixed ω ratio in all branches. M1a (neutral)

vs. M2a (positive selection), M7 (β) vs. M8 (β and ω), and M0 (one-ratio) vs. M3 (discrete),

were calculated in order to detect positive selection, by comparing the site-specific model [45].

Likelihood ratio test (LRT) of the above comparison was conducted respectively to evaluate

the selection strength and the p-values of Chi square (x2) smaller than 0.05 was thought as

significant.

The branch-site model with difference ω among branches (labeled foreground-lineages) of

the phylogeny and sites, were also used to test which sites were influenced by the positive selec-

tion in the foreground-branch and conducted using the CODEML algorithm [44] executed in

EasyCodeML [45, 46]. We took three main lineages of Cyanantheae, Campanuleae and out-

group as the foreground branch separately and calculated the positive selection occurred on

the aboved branches by using 76 protein-coding genes individually. If the LRT p-values were

significant (<0.05), Bayes Empirical Bayes (BEB) method [47] was implemented to calculate

posterior probabilities for finding sites under positive selection on the three branches [48].

Phylogenetic analyses

A total of 76 common protein-coding genes shared in the plastomes of Campanulaceae were

aligned with MAFFT [33] and were manually adjusted. Lobelia erinus and Cyphia crenata were

selected as the out-group (Table 1). Maximum likelihood (ML) analysis were implemented

using RAxML with a bootstrap of 1000 repetitions [42], and the best tree in a single run were

found by using the GTR+G model consulted from the RAxML instruction. The jModelTest

2.0 program [49] was used to determine the best-fitting model for dataset based on the Bayes-

ian information criterion (BIC). Regarding Bayesian inference (BI), two independent chains

(burinin = 1000) was performed using the program MrBayes v3.2 (Ronquist et al. 2012) at the

CIPRES Science Gateway website (http://www.phylo.org/) [50], with the GTR+I+G model

determined by jModelTest in the unpartitioned dataset. The Markov chain Monte Carlo

(MCMC) analysis was run for 2×1000,000 generations, with trees sampled every 1,000
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generations. The first twenty-five per cent of trees calculated were removed as burn-in and the

tree of a majority rule consensus would be generated from the remaining trees. The average

standard deviation of split frequencies equal to or less than 0.01 would be considered the con-

vergence of the MCMC chains. Figtree v1.4 (http://tree.bio.ed.ac.uk/software/figtree/) was

used to visualize and annotate trees.

Results and discussion

General features of the plastid genomes

In this study, we first determined the whole plastid genomes of three Cyanantheae species. The

mean coverages of Cyananthus flavus, Cyclocodon parviflorus and Codonopsis hongii were

679x, 483x and 1000x, respectively, and the clean reads of the above species were 2,926,584 to

8,710,738. The complete plastid genomes of Cyananthus flavus, Cyclocodon parviflorus, and

Codonopsis hongii displayed a typical quadripartite structure and were circular molecular

165,675bp-169,524bp in size (Fig 1 and Table 1). A total of seven protein-coding genes and six

tRNA genes contained one intron, whereas three genes (rps12, clpP, ycf3) contained two

introns, as shown in Table 2. Ycf3 gene expression result in stable accumulation of photosys-

tem I complexes [51].

The size of the Cyphia crenata plastid genome (178,956bp) was the longest, and that of the

Trachelium caeruleum plastid genome (162,321bp) was the shortest. Interestingly, the LSC

Table 2. List of genes present in three newly sequenced plastomes.

Category of genes Group of gene Name of gene

Self-replication Ribosomal RNA genes rrn16(×2), rrn23(×2), rrn4.5(×2), rrn5(×2)

Transfer RNA genes trnA-UGC� , (×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC�,
trnH-GUG, trnI-CAU, trnI-GAU� , (×2), trnK-UUU�, trnL-CAA, trnL-UAA�, trnM-CAU, trnN-GUU, trnP-UGG,

trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU (a,b), trnV-GAC,

trnV-UAC�, trnW-CCA, trnY-GUA
Small subunit of ribosome rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12�� , (×2), rps14, rps15(×2), rps16, rps18, rps19
Large subunit of ribosome rpl2� , (×2), rpl14, rpl16�, rpl20, rpl22, rpl23(a,c×2)(d×1), rpl32, rpl33, rpl36

DNA-dependent RNA

polymerase

rpoA, rpoB, rpoC1, rpoC2

Genes for

photosynthesis

Subunits of NADH-

dehydrogenase

ndhA� , (×2), ndhB� , (×2), ndhC, ndhD, ndhE, ndhF, ndhG (×2), ndhH (×2), ndhI (×2), ndhJ, ndhK

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3��, ycf4
Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ
Subunits of cytochrome b/f

complex

petA, petB�, petD�, petG, petL, petN

Subunits of ATP synthase atpA, atpB, atpE, atpF�, atpH, atpI
Subunits of rubisco rbcL

Other genes Maturase matk
Protease clpP��

Envelope membrane

protein

cemA

C-type cytochrome

synthesis gene

ccsA

Genes of unknown

function

Conserved open reading

frames

ycf1 (×2), ycf2 (×2)

a gene is in Cyananthus flavus; c gene is in Cyclocodon parviflorus; d gene is in Codonopsis hongii;
� gene contains one intron;

�� gene contains two introns; (×2) indicates that the number of the repeat unit is 2.

https://doi.org/10.1371/journal.pone.0233167.t002
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region (79,041bp) of the Cyphia crenata was the shortest, while its IR region (45,915bp) and

the coding region (92,511bp) were the longest among the studied species, which might be

related to the expansion of the border positions between the LSC and IR regions [52, 53]. The

length of LSC regions of Campanuleae species was 100,110bp-105,555bp, which were longer

than the other species, whereas this group had the shortest IR, with length of 27,276bp-

29,637bp, which might be caused by the contraction between the LSC and IR regions. The size

of plastid genome was similar among the six species of Cyanantheae (Table 1), apart from Pla-
tycodon grandiflorus with the longest IR region and shortest LSC and SSC region among the

species of this group.

As shown in Table 2, 44.05%-46.52% sequences of plastid were responsible for coding

among the Campanuleae species, but more than half sequences being in charge of coding

among the other studied species. The GC contents of the LSC and SSC regions in all studied

species (except for P. grandiflorus) were slightly lower than those of the IR regions. The Lobelia
erinus plastid genome had the highest GC content (39.0%), while the Cyphia crenata plastid

genome had the lowest GC content (36.38%). For the Campanuleae species, they showed more

GC content in the IR region (41.1% or 142.0%). The overall GC content is an significant spe-

cies indicator [54]. In addition, 80 or 83 protein-coding genes were identified in the Campanu-

leae species, with 7 genes in the IR regions. 86–95 were identified in the Cyanantheae species,

with 13–21 genes located in the IR regions. 99 protein-coding genes were found in the Cyphia
crenata, with 21 genes in the IR regions. Four conserved rRNAs were checked in every species.

The T. caeruleum plastome encodes 44 types of tRNAs, whereas other species encodes 36–38

(Table 1).

The plastid genome structure comparison using MAUVE software revealed that the plas-

tomes of all the accessions were not conserved, and many rearrangements of gene organization

had occurred (S2 Appendix). We identified some obvious differences, such as gene composi-

tion, gene order, GC content, IR junction in the plastomes of the Campanulaceae, although

the plastid genomes of land plants are commonly supposed to be highly conserved [55].

On the other side, we divided the eleven species within Campanulaceae into four groups

according to the phylogenetic results of this study, they were the groups of all species, the Cam-

panuleae, the Cyanantheae and the out-group of Lobelia erinus and Cyphia crenata. The nucle-

otide diversity (pi) value of four groups was calculated to evaluate the sequence divergence

among the 76 protein-coding genes of plastomes (Fig 2 and S1 Table), with the mean value of

0.06649 in the out-group, 0.05687 in the Campanuleae species, and 0.03394 in the Cya-

nantheae species. The analysis revealed that all four groups exhibited the high levels of diver-

gence in the ccsA and ndhF gene of the SSC regions, which indicated that the SSC region

might be undergoing rapid nucleotide substitution in species of family Campanulaceae and

contain variable information for species authentication and phylogenetic analysis. Ycf1 and

ycf2 gene were the hotpot regions for each group. Furthermore, we also identified two hotpot

regions (rpl22 and rps3 gene, pi>0.1) for the group of all species, while the other three groups

did not show the high divergence in above two genes. Many fragments of coding genes, such

as atpB, matK, ndhF, have been used for phylogenetic reconstructions at various taxonomic

levels [56–58]. We could use the hotpot regions acquired from this study to develop the poten-

tial markers, which would be helpful not only in identifying the species, but also in the recon-

struction of phylogeny within differernt groups of Campanulaceae in further studies.

IR contraction and expansion

It is well known that the IR regions facilitated the stability of the other regions of the genome

by intramolecular recombination, thus limiting recombination between the LSC and SSC
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regions [59, 60]. The expansion and contraction of IR regions at the borders are considered

the major reasons for genome size differences, and are best to study the phylogeny and the

plastid genome evolution history of plants [61–63]. We checked the differences of the borders

among the IR, LSC and SSC regions of 9 genera. The differences of genes located in the IR

region were also examined. Detailed comparisons of the boundaries among the studied plas-

tomes were presented in Fig 3. The ndhE gene crossed the IRa and SSC regions for the Campa-

nulaceae species, and the boundary between SSC and IRb regions was in the ndhF-ndhG
spacer (Fig 3). The ndhF gene was complete in the SSC region, more than 200bp away from

the IRb region.

Cyanantheae species and Lobelia erinus had the same IRa/LSC borders: the rps19 gene in

the LSC region and the rpl2 gene in the IRa region. The IR regions contained the rpl2, trnI--
CAU, ycf2, trnL-CAA, ndhB, rps7, ycf1, rps15, ndhH, ndhA, ndhI, ndhG, and part of ndhE
genes. It was worth mentioning that P. grandiflorus had the IRa/LSC boundary spanning the

rpl36 gene. Besides, this species had the similar gene contents to the other species of Cya-

nantheae, coupled with the rps8, rpl14, rpl16, rps3, rpl22, rps19, and part of rpl36 gene. The spe-

cies of this group showed no IR expansion and contraction, which were canonical IR and

similar to L. erinus.
For the Campanuleae species, the IRa/LSC boundary was located between the trnL-CAA

gene and the ycf2 gene. There were only eight complete genes, trnL-CAA, clpP genes, etc., in the

IR region. The ycf2 genes appeared in the LSC regions. The length of the IRa regions of three

Campanuleae species, varying in the range of 27,276–29,637 bp, was shorter than the eight

other species, which varied from 37,290–45,915 bp (Table 1). Species of Campanuleae occurred

the IR-contracted out of LSC, and the large IR contractions have been rarely reported, and the

most plausible explanation is considered as illegitimate recombination [64–66].

Plastome of Cyphia crenata experienced IR-expaned into LSC, which lead to the largest

plastome of studied Campanulaceae (Fig 3). The petB gene of Cyphia crenata crossed the IRa/

LSC region, with 187bp located in the LSC region and 2,595 bp in the IRa region. IR region of

Cyphia crenata had the part of petB gene, petD gene, ORF 159, ORF 180 and ORF119, which

did not show in the IR regions of the other studied species. We also calculated the ORFs >300

bp in the IRa region, among the eleven species, and the results illustrated that there were five

ORFs appearing in the IRa regions of Cyphia crenata, with total length of 2,211bp. However,

other species had 1–3 ORFs, with length of 324 to 1,230bp (S2 Table). Cyphia crenata was the

only species indicating the IR region expanded into LSC region. It was hypothesized that the

longer sequences of ORFs appearing in the IRa regions might be closely associated with IR

expansion. Additionally, the IR region of Cyphia crenata had more tandem and dispersed

repeats compared with the LSC region and SSC region. Previous studies have suggested that

the intramolecular recombination, the occurance of many various repeat sequences, and the

insertion-deletions may interpretate the variety of the IR boundary region sequences [59, 67–

69], which could also be applied to explain the large IR expansion of Cyphia crenata.

The IR expansion and contraction of this study provided new evidence for the classification

of Campanulaceae s.str. at the genome level. Based on the species included in this study, the

group of Cyanantheae species with canonical IR was sister to the Campanuleae species having

the IR-contracted out of LSC regions, which was consistent with previous studies about the

subdivision of Campanulaceae s.str. [4, 10, 11]. In addition, the IRa/LSC boundary and the IR

contents of Cyanantheae species were similar but different from Campanuleae species, with

the exception of Platycodon grandiflorum.

Overall, the junction positions of LSC/IRa regions varied slightly in the plastid genomes of

Campanulaceae, and the genes existed in the IRa region were also different in the studied

groups. Whereas, the boundary of IRa/SSC of all species had the similar pattern. The events of
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IR expansion and contraction are helpful to research subdivision of Campanulaceae s.str. and

the genome evolution among the Campanulaceae species.

Codon usage bias

The plastid genome of Campanulaceae was detected for its codon usage frequency according

to sequences of protein-coding genes and relative synonymous codon usage (RSCU). RSCU

refers to the relative probability of a codon encoding a corresponding amino acid synonymous

codon, which eliminates the effect of amino acid composition on codon usage [70]. The pat-

tern of the codon preference has the vital role in studying species evolution [71–73]. The ana-

lytic varieties provided by statistical analyses of all 76 protein-coding cpDNA and amino acid

sequences demonstrated obvious codon preferences. It showed the similarity of protein

codons in the Campanulaceae species, of which AGA had the highest frequencies, and CGC

had the least occurrence frequencies (Figs 4 and 5). 64 codon preferences were identified, with

20 amino acids and one stop codon involved. The standard ATG codon was typically the start

codon for nearly all protein-coding genes. All three stop codons were present, with UAA being

the most frequent stop codon in all eleven plastomes. RSCU values of methionine (AUG) and

tryptophan (UGG) were equal to one and encoded by only one codon, indicating no codon

bias for these two amino acids. All the protein-coding genes were composed of 42,552–48,095

codons as shown in S3 Table.

As shown in Fig 5, the result of the distributions and the visualization of codon usage in the

form of heatmaps of Campanulaceae species showed that approximately half of the codons

were not frequently used. These codons had the RSCU value of>1, and most of these (25/28,

89.3%) ended with base A or U, resulting in the bias for A/T bases. About half of codons had

the RSCU value of<1, and most of those (27/34, 79.41%) ended with base C or G. The third

codon shows a high A/U preference, which is a common phenomenon in plastid genomes of

higher plant [74–76]. The high RSCU value is possibly caused by the function of the amino

acid or the structure of the peptide to avoid mistakes in transcription [77].

Analysis of repeats

This analysis of repeats was only token one IR into account. In the majority of the studied spe-

cies, the most dispersed repeats were forward, then palindromic, and the least reverse. The

Fig 4. Codon contents of 20 amino acids and stop codons in all protein-coding genes of the Campanulaceae plastomes. The color of the histogram

corresponds to the color of codons.

https://doi.org/10.1371/journal.pone.0233167.g004
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comparison analyses (Fig 6) revealed that most of the forward repeats were 50–69 bp, and the

longest repeats with length of 1,009 bp, were detected in the T. caeruleum, followed by Cam-
panula punctata of 640 bp length, and Adenophora remotiflora of 620 bp length, which were

much longer than other species studied. Besides, in the group of Campanuleae species, dis-

persed repeats were mainly distributed in non-coding regions (IGS) (S4 Table). Long repeat

sequences may be useful to do phylogenetic analysis and increase plastid genome rearrange-

ments [73, 78, 79].

The results also displayed that among the tandem repeats, the repeats located in the spacer

of rpl2-trnI CAU had appeared in the clade of Cyanantheae and the out-group, but not shown

in the Campanuleae species (S5 Table) which had the IR contraction and did not show the ycf2
gene in the IR region. It indicated that the lack of repeats in rpl2-trnI CAU might be linked to

the IR contraction. Most and variable tandem repeats (except for species of Codonopsis min-
ima, Trachelium caeruleum and Cyphia crenata) were located in the CDS regions, which might

accelerate evolution of coding and regulatory sequences [80].

A large proportion of SSRs was found in the non-coding regions (IGS). We identified A/T/

G mononucleotide repeats (p1), while the majority of the dinucleotide repeat sequences (p2)

were comprised of AT/TA repeats, and the TG, CA, AC and GT repeats were also found. Fur-

thermore, A and T were the most frequent bases in all SSR types, which resulted in the bias for

Fig 6. Frequency of three types of dispersed repeats by length. (F: forward, P: palindrome, R: reverse).

https://doi.org/10.1371/journal.pone.0233167.g006

Fig 5. Heatmap analysis for codon distribution of all protein-coding genes of all considered species. Colour key:

Higher red values indicate higher RSCU values, and lower blue values indicate lower RSCU values.

https://doi.org/10.1371/journal.pone.0233167.g005
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the studied plastomes. About half of the species had the compound repeats (S6 Table and Fig

7). Most simple sequence repeats (SSRs) are widely used for species authentication, phyloge-

netic analysis, and population genetics because of their high levels of polymorphism [81–84].

Microsatellites have a great influence on the genome recombination and rearrangement by

their wide distribution across the entire genome [85–87]. The other types of mono-, di-, tri-,

tetra- and penta- nucleotide were identified at a much lower frequency among the Campanula-

ceae species and other plants [88–90].

The total plastome regions of all Campanulaceae possessed the highest number of tandem,

dispersed and SSR repeats (S4–S6 Tables and Fig 8), and SSC regions had the lowest number

of these repeats. SSR repeats of LSC regions contained higher number of repeats compared

with IRa and SSC regions. Tandem repeats of IRa regions had more repeats than LSC and SSC

regions in some species, while less in species of Campanuleae. However, Campanuleae had

more tandem repeats in LSC regions, which may be guessed that this phenomena is relevant to

the IR contraction [91–93].

There was nearly no dispersed repeats in the SSC regions, except the Adenophora remoti-
flora with more than 89 dispersed repeats. The results showed that dispersed repeats of IR

regions of Cyanantheae appeared more frequently than in LSC regions, except for Cyananthus
flavus. The presence of all types of repeats demonstrated that the locus was a crucial hospot for

genome reconfiguration [94–97]. Moreover, the repeats of plastid genomes will be helpful for

identifying polymorphisms at the species level for deducing distant phylogenetic relationships

among Campanulaceae species. Repeats were previously inferred to associate with plastome

structural variation [98–101]. In this study, the plastomes of all studied species possessed large

amount of repeats and longer repeats, and presented the structural variations. These together

supposed that repeats might also affect size variation in the Campanulaceae plastomes.

Fig 7. The distribution maps of simple sequence repeats (SSR). Classification of SSRs by repeat types. p1, mononucleotides (mono-); p2,

dinucleotides (di-); p3, trinucleotides (tri-); p4, tetranucleotides (tetra-); p5, pentanucleotides (penta-); p6, hexanucleotides (hex-); c, compound.

https://doi.org/10.1371/journal.pone.0233167.g007
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Positive selection analysis

We compared the ratio of non-synonymous (dN) and synonymous (dS) substitution for 76

protein-coding genes among the newly sequenced species with other eight species. We focused

on the Bayes Empirical Bayes (BEB) analysis of Paml and the highly positively selected sites of

P>99% (��) because one slightly positive selection had more than 10 positive sites of P>95%.

Finally, fourteen genes with highly positively selected sites within the Campanulaceae family

were identified (S7 and S8 Tables). Those genes contained one subunit of Protease (clpP), two

NADH-dehydrogenase subunit genes (ndhD, ndhI), two photosystem II subunit genes (psbL,

psbN), one ribosome large subunit gene (rpl16), six ribosome small subunit genes (rps3, rps4,

rps8, rps11, rps12, rps18), and the ycf1, ycf2 gene. According to the M2 and M8 models, ndhI,
psbI and rps3 only had one sites under highly positive selection. The gene ycf1 and ycf2 har-

bored more than 30 highly positive selections, followed by clpP (7,11), ndhD (10, 0), psbN
(0,2), rpl16 (3,4), rps4 (3,6), rps8 (0,2), rps11 (1,1), rps12 (18, 22). Likelihood ratio tests (M0 vs.

M3, M1 vs. M2 and M7 vs. M8) supported the presence of highly positively selected codon

sites (S8 Table). Some studies have indicated that ycf1 is required for plant viability and

encodes Tic214, which is a vital component of the TIC complex in Arabidopsis [102–104].

Most genes under positive selection have the functions in genetic system or photosynthesis,

which demonstrate that the functional genes of plastid have important significance during the

plant evolution [105–108].

Fig 8. Repeat number in the different regions of Campanulaceae plastomes, including Tandem repeats, Dispersed

repeats and SSR repeats. The yellow line refers to SSC regions, the gray lines refers to IRa regions, the orange line

refers to LSC regions, and the blue line refers to the total plastome.

https://doi.org/10.1371/journal.pone.0233167.g008
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There existed limitation in the study of natural selection by using branch and site modes sep-

arately because for the majority of genes in a specified branch, only few sites were under positive

selection, however, branch-site model allowed us to detect the various selective pressure on the

labeled foreground lineage against the remanent background branches [48]. After the analysis

of BEB, we found 96 sites under potentially positive selection in the 76 protein-coding genes

with posterior probabilities more than 0.95 and 10 sites greater than 0.99 (S9 Table). The

branches of Cyanantheae, Campanuleae and out-group all showed there were positively selected

sites in ycf1 and ycf2, and there were more detected on the branch of Cyanantheae for ycf2.

Campanuleae lineage demonstrated the positively selected sites in rpl16 but did not reveal the

positively selected sites in rps2, rps3, rps4, rps11 and rps15 although the LRT p-value was less

than 0.05. The out-group branch showed one positively site in ndhI. rpoA gene also did not

have positively selected sites in the branch of Cyanantheae. It has been shown that the high rate

of molecular evolution existing in numberous genes following genome duplication actuates the

functional changes [109, 110]. Besides, the positive selection is concerned with the shift of func-

tion and environment [109, 111]. Therefore, positively selected sites detected in this study may

drive the protein-coding genes allowing occupation of diverse habitats [48, 109].

Phylogenetic analysis

In recent years, more plastid genome database provides an important basis for the determina-

tion of the evolutionary, taxonomic, and phylogenetic studies of plants [51, 112–116].

Phylogenetic analysis was performed by ML and BI nucleic acid analyses based on the 76

aligned sequences of plastomes (Fig 9). Lobelia erinus and Cyphia crenata were used as out-

group. The two typologies showed similar phylogenetic patterns. The ML tree revealed that

Campanulaceae s.str. formed a monophyletic clade, and Cyanantheae and Campanuleae were

also monophyletic. The bootstrap value of previous researches on the phylogenetic relation-

ships of Cyanantheae was relatively low by using ITS sequence and several plastid markers

[4,11]. However, the relationships of Cyanantheae species were well supported in this study.

All nodes in the phylogenetic tree were strongly supported, with 100% bootstrap (BP) values

and 1.00 Bayesian posterior probabilities (PP). From phylogenetic analysis, Cyanantheae

Fig 9. Phylogenetic relationship of all Campanulaceae species by using the 76 protein-coding genes, based on the Maximum

likelihood (ML) analysis and Bayesian inference (BI) analysis.

https://doi.org/10.1371/journal.pone.0233167.g009
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species were divided into two clades. One clade consisting of Cyclocodon parviflorus and P.

grandiflorus was the earlier diverging lineage in the group of Cyanantheae. The other clade

was composed of Cyananthus flavus, Codonopsis hongii, Codonopsis lanceolate and Codonopsis
minima. Codonopsis hongii was a sister species to other Codonopsis species. Cyclocodon parvi-
florus had a close relationship with Platycodon grandiflorus. Previous studies had demonstrated

that Cyclocodon was restored as the separate genus only based on the morphology of pollen

and seed coat, plus the gross morphological characters [12, 117]. In this study, Cyclocodon was

not closely related to Codonopsis and had different structures of plastid genomes compared

with Codonopsis species (Fig 3), which supply the extra evidence for confirming Cyclocodon at

the generic rank. Cyananthus were treated as the generic rank by the former researches, but

the phylogenetic relationships between Codonopsis and Cyananthus were weakly supported

[12]. Nevertheless, Cyananthus flavus being related to all studied Codonopsis species was dem-

onstrated in our study with strong supports based on the 76 protein coding genes. Therefore,

successful phylogenetic construction for eleven Campanulaceae species studied here imply

that plastid genome database will be a potentially useful resource for molecular phylogeny

studies within the order Cyanantheae.

The results also indicated that it was helpful to illustrate phylogenetic analysis of species in

the family Campanulaceae. The phylogenetic tree constructed in this study showed that Cya-

nantheae formed a sister clade to Campanuleae clade (Fig 9), which is consistent with the pre-

vious studies [9, 11]. Therefore, it is hypothesized that Cyanantheae had an earlier divergence

among the Campanulaceae from a common ancestor than Campanuleae species because Cam-

panuleae had a unique IR contraction structure (Fig 3). The phylogenetic relationships of

Campanuleae have been explored by using the coding regions of plastomes [24].

Conclusions

We first reported the complete plastid genome sequences of three Asian Cyanantheae spe-

cies (Cyananthus flavus, Cyclocodon parviflorus, and Codonopsis hongii) and compared

these to published species in the family Campanulaceae. The results of the genome struc-

tural comparison indicated the large amount of rearrangements and various repeat

sequences. The junctions between the LSC region and IRa region manifested the diverse

locations in different clades. IR contraction/expansion might be explained by the multiple

repeat sequences, the indels and the recombination. Fourteen genes with highly positively

selected sites within the Campanulaceae family had been identified, and most of them were

genetic system or photosynthesis related genes. Branch-site model revealed many positively

selected sites in certain genes on the specified branches, which may offer the important sig-

nificaces for the adaptive evolution. We also discussed the type of the codon preference,

which had the vital roles in studying species’ evolution. Six coding-regions (ccsA, ndhF,

rpl22, rps3, ycf1 and ycf2) in the highly variable regions will be utilized as potential molecu-

lar markers for constructing the phylogenetic relationships of the family Campanulaceae.

Phylogenetic analysis indicated that Cyananthus was more closely related to Codonopsis
compared with Cyclocodon and clearly showed the relationship among the Cyanantheae

species. The plastid genomes will contribute to the development of genetic resources in

resolving the phylogenetic analysis and species authentication of Campanulaceae, and in

facilitating the exploration their structural differences. Nevertheless, only limited species

were shown in this study, and thus, we believe that further studies that include various spe-

cies having the information of plastomes, are needed to clarify the molecular evolution and

phylogenetic relationships of Campanulaceae.
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