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Abstract: Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of
Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune
diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review
summarizes the accumulated information on the risk factors for TID and LADA, and immunotherapy trials that offer insights
into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta
cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of
intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and
preserve beta cell function.
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Overview of Diabetes

Diabetes is a metabolic disease defined by hyperglycemia caused by deficiencies in insulin production, action, or both.'
Diabetes long-term complications include retinopathy, which can lead to vision loss; nephropathy, which can lead to renal
failure; peripheral neuropathy, which can lead to foot ulcers, amputations, and Charcot’s joints; and autonomic neuro-
pathy, which can lead to gastrointestinal, genitourinary, and cardiovascular symptoms, as well as sexual dysfunction.
Atherosclerotic cardiovascular, peripheral arterial and cerebral vascular disease are more common in diabetic patients. In
persons with diabetes, hypertension and anomalies in lipoprotein metabolism are frequently detected.'~

Diabetes is classified into four types or categories by the American Diabetes Association: type 1 diabetes, type 2
diabetes, gestational diabetes mellitus, and diabetes caused or associated with specific conditions (such as neonatal
diabetes and maturity-onset diabetes of the young), exocrine pancreas diseases (such as cystic fibrosis and pancreatitis),
and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ
transplantation).”

Immune system modulation is the goal of immunotherapy, a method that has proved effective in treating autoimmune
diseases. However, immunotherapy treatment for TID and LADA has had a low success rate. In this review, we
summarize the accumulated information on the risk factors for type 1 diabetes and latent autoimmune diabetes in adults
and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and
LADA to slow the rate of islet cell loss and preserve beta cell function. We highlight the most important immunother-
apeutic techniques that have been evaluated thus far, with an emphasis on distinguishing traits.
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Type | Diabetes

Type 1 diabetes (T1D) affects more than 1.2 million children and adolescents worldwide.”> T1D is an autoimmune disease
characterized by the destruction of immune-mediated pancreatic beta cells in the islets of Langerhans.* Although T1D
can occur at any age, it is most common in children and young adults. For those with T1D, daily insulin injections are
necessary to maintain a healthy blood glucose level and are required for people with T1D to survive.”° Insulin therapy
does not cure T1D or completely avoid complications, the use of insulin has revolutionized T1D management.”® Apart
from the acute complications of hypoglycemia (abnormally low blood glucose) and diabetic ketoacidosis (DKA), poor
metabolic control results in poor growth and the onset of vascular complications at an early age.°

Risk Factors for TID

The risk of developing preclinical or clinical T1D is influenced by environmental exposures and genetic predisposition.’ It is
suggested that gluten diet, cow milk, vitamin D intake, gut microbiota, viral infections (enteroviruses, Coxsackieviruses),
drugs (streptozotocin, pentamidine, and antibiotics), and epigenetic modifications all these factors play a role in T1D

development.'®

Risk Gene for TID

According to genome-wide association studies (GWASs), T1D is a polygenic disease with approximately 50% genetic
risk attributable to the HLA-DR-DQ haplotypes of the major histocompatibility complex (MHC) region of human
leukocyte antigen (HLA) class II (HLA), which are responsible for the presentation by B lymphocyte cells, dendritic
cells, and macrophages to cluster of differentiation CD4+ T lymphocyte cells.'!

Most non-HLA-associated genes identified by GWASs are involved in immune regulation and function (insulin, protein
tyrosine phosphatase non-receptor type 22 (PTPN22), interleukin 2 receptor subunit alpha (IL2RA), SH2B adaptor protein 3
(S12H2B3), protein tyrosine phosphatase non-receptor type 2 (PTPN2), cytotoxic T-lymphocyte associated protein-4 (CLTA4),
interleukin 18 receptor accessory protein (IL1I8RAP), c-c motif chemokine receptor 5 (CCRS), interferon induced with helicase
C domain 1 (IFIH1), a cluster of differentiation 226 (CD226), protein kinase c theta (PRKCQ), interleukin-2 (IL-2), BTB domain
and CNC homology 2 (BACH?2), ubiquitin associated and SH3 domain containing A (UBASH3A), a regulator of G protein
signaling 1 (RGS1), T-cell activation Rho GTPase activation protein (TAGAP); insulin production and metabolism (Erb-B2
receptor tyrosine kinase 3 (ERBB3); protection from beta cell apoptosis (tumor necrosis factor alpha-induced protein 3
(TNFAIP3).'?

The UK Biobank Affymetrix axiom array data was recently used to validate a genetic risk score (GRS) that used 67
single nucleotide polymorphisms (SNPs) (14 HLA DQA1-DQB1 SNPs, 21 other HLA SNPs, and 32 non-HLA SNPs)
for newborn screening and future T1D incidence. T1D GRS considerably enhanced the discrimination of T1D patients
from T2D and control participants.'® These data have made it possible to create GRS that could be used to identify those
who are at high risk.'* Although identifying GRS can determine their lifelong risk for developing a disease, it cannot
forecast those who have the preclinical disease and are experiencing the destruction of their beta cells.

Immune Pathogenesis
Islet autoimmunity in T1D manifests as persistent hyperglycemia and low c-peptide due to permanent loss of more than
70% of beta cell mass months to decades before the clinical disease.'” Blood glucose, HbAlc, and c-peptide were the
only way to diagnose T1D before the discovery of the underlying immunological pathogenesis and biomarkers to identify
those who have the disease.
T1D is characterized by the presence of specific autoantibodies (AAbs) for beta cell antigens as well as insulitis.'® Several
other additional autoantigens have also shown their presence and are recognized in human T1D as shown in Table 1.
Prospective, long-term investigations of those at risk of developing T1D have revealed that the disease proceeds
progressively through discrete recognizable phases before the onset of symptoms at varying but predictable rates. Stage 1
is characterized as pre-symptomatic beta cell autoimmunity as shown by the presence of two or more islet autoantibodies
with normoglycemia, stage 2 as pre-symptomatic beta cell autoimmune with dysglycemia, and stage 3 as symptomatic
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Table | Islet Autoantibodies to Pancreatic Insulin-Producing Cells Secreted in TID

Autoantigen Expression Subcellular Function References
Location
Carboxypeptidase H/E Neuroendocrine | Secretory Proinsulin to insulin processing [16]
cells granules
Chromogranin A Neuroendocrine | Secretory Precursor of several biologically [14,17]
cells granules active peptides
Glutamic acid decarboxylase 65 Neuroendocrine | Synaptic like Gamma-aminobutyric Acid [18]
cells microvesicles Synthesis
Glutamic acid decarboxylase 67 Islet cells, Synaptic like Gamma-aminobutyric Acid [19]
neurons microvesicles Synthesis
Glucose-regulated protein 78 Not restricted Endoplasmic Protein folding [19]
reticulum
Heat shock protein 60 Ubiquitous Mitochondria Protein folding [20]
Insulinoma-associated antigen 2 Neuroendocrine | Secretory Regulation of hormone secretion [20]
cells granules
Insulinoma- associated antigen-23 Neuroendocrine | Secretory Regulation of hormone secretion [20]
cells granules
Islets amyloid polypeptide (pplAPP) Beta cells Secretory Glucose homeostasis [21]
granules
Islet- cell antigen 69 Beta cells Secretory Unascertained [22]
granules
Islet-specific glucose-6 phosphatase catalytic Beta cells Endoplasmic Glucose metabolism [23]
subunit-related protein reticulum
Insulin gene enhancer protein isl-1 Not restricted Nucleus DNA binding transcriptional factor | [24]
Pancreatic duodenal homeobox protein | Beta cells Nucleus Role in pancreas development, beta | [25]
cell differentiation, and function
Peripherin Neuroendocrine | Filaments Unascertained [26]
cells
Pre-proinsulin, pro-insulin, insulin, oxidative post- Beta cells Secretory Glucose homeostasis [25,27,28]
translational modifications-insulin granules
Prolyl 4 hydroxylase subunit 8 Not restricted Endoplasmic Formation and rearrangement of [29]
reticulum disulfide bonds
Tetraspanin-7, Glima 38 Neuroendocrine | Plasma Signal transduction [30]
cells membrane
Urocortin-3 Beta cells, alpha Secretory May regulate insulin secretion [31]
cells granules
Zinc transporter 8 Beta cells Secretory Zinc uptake in beta cell secretory [32]
granules granules

Note: Adapted with permission from Rodriguez-Fernandez S, Aimenara-Fuentes L, Perna-Barrull D, Barneda B, Vives-Pi M. A century later, still fighting back: antigen-specific
immunotherapies for type | diabetes. Immunol. Cell Biol. 2021;99: 461-474. © 2021 Australian and New Zealand Society for Immunology, Inc.>?

disease onset. The adoption of this staging classification will give T1D a standardized taxonomy, aid in the creation of
treatments and the planning of clinical trials to prevent symptomatic disease, advance precision medicine, and offer

a structure for an optimized benefit/risk ratio that will influence regulatory approval, reimbursement, and the adoption of
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interventions in the early stages of T1D to prevent symptomatic disease.** Islet-targeting autoantibodies that target
glutamic acid decarboxylase 65, insulinoma-associated protein 2, insulin, and zinc transporter 8 are all proteins linked to
secretory granules in beta cells and are all biomarkers of T1D-associated autoimmunity that are discovered months to
years before symptoms appear.>® These markers can be used to identify and study the risk of developing T1D.

At 5, 10, and 15 years of follow-up in the Colorado Diabetes Autoimmunity Study in the Young (DAISY), the Finnish
T1D prediction and prevention (DIPP), and the German BABYDIAB and BABYDIET studies, the progression rates of
T1D following seroconversion were 43.5%, 69.7%, and 84.2%, respectively.>® Understanding the immune mechanisms
of TID has made it possible to identify individuals who are more likely to experience clinical disease and to create
a novel treatment that aims to delay the onset and reverse the effects of the disease.'®

In recent years, the T1D Biomarker Working Group and its accompanying Core for Assay Validation (www.tl1dbiomar
kers.org) have been dedicated to transferring promising candidate biomarkers from the discovery arena to confirmation and
validation testing through a collaborative and coordinated approach. T cell-related biomarkers would significantly speed up
disease progression monitoring and the evaluation of T1D intervention therapy.’’ Due to the extremely low frequency of
diabetogenic T cells in peripheral blood, the low avidity contacts between autoreactive T-cell receptors (TCRs) and the HLA
peptide complex, and the significant disease heterogeneity, this research has proven to be challenging.'* However, recent
advances in single-cell technologies are making it possible to characterise diabetogenic T cells in high-dimensional pheno-
typic, transcriptional, and epigenetic detail.>® This might eventually lead to the discovery of accurate and sensitive immuno-
logical biomarkers.

Research Resources such as the Network for Pancreatic Organ Donors with Diabetes and Juvenile Diabetes Research
Foundation (nPOD; http://www.jdrfnpod.org/) provide an organized framework for obtaining tissues from subjects with

T1D or at risk of T1D, allowing for direct study of islet-infiltrating T cells, islet autoantigen reacting T-cells. Human
peripheral autoreactive T cells reacted to epitopes that showed posttranslational changes such as disulfide bonds in
insulin, islet-derived T cells with hybrid insulin peptide, fusions of proinsulin c-peptide with islet amyloid polypeptide
(IAPP).*® Islet-infiltrating T lymphocytes that specifically target proinsulin peptides. The B:9-23 specific T cells of the
islets responded to proinsulin, highlighting the relevance of proinsulin-specific T cells in the islet microenvironment.*’
CD4 T cells identify epitopes generated by the covalent cross-linking of proinsulin peptides to other peptides found in
cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic to CD4 T cells. T cells that target hybrid
peptides explain how immunological tolerance is disrupted in TID.*' Understanding the TCR repertoire of pathogenic
T cells in T1D may allow for their isolation and use as surrogate biomarkers of drug efficacy in individuals receiving
immune therapies.'*

Latent Autoimmune Diabetes in Adults
The pathogenesis and clinical manifestations of LADA are extremely diverse. Beyond the distinction between classic
T1D and LADA, the extensive heterogeneity of autoimmune diabetes is evident. It differs from classic TID/ T2D in
terms of genetic background, autoimmune response, rate of decrease in pancreatic islet function, and clinical metabolic
characteristics. It is characterized by genetic, phenotypic, and humoral variability, encompassing varying degrees of
insulin resistance and autoimmunity.**** Although these patients did not require insulin at the time of diagnosis, they are
believed to have a slowly progressing form of autoimmune diabetes with serum immunological markers of T1D.

The primary current diagnostic criteria for LADA include adult-onset diabetes (>30 years at diagnosis), the presence
of diabetes-associated autoantibodies, and the lack of insulin demand for at least 6 months following diagnosis.***°

The genetic distribution and phenotypic traits of the various LADA groups were related to the GADA level. From the
lowest GADA quartile to the highest, a significant trend toward reduced insulin secretion and metabolic trait values was
observed. Therefore, LADA patients with high GADA concentrations resembled but were not identical to, patients with
T1D, while those with low GADA concentrations resembled patients with T2D. Although the risk genotypes for HLA-
DQBI and protein tyrosine phosphatase non-receptor 22 (PTPN22) were elevated in LADA, they were substantially less
prevalent than in T1D.*

LADA accounts for 2-12% of all diabetes patients, with wide variations based on ethnicity, the autoantibody used for

screening (most frequently an autoantibody against glutamic acid decarboxylase [GADAY]), and the method of diagnosis.***’
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The human and an established rat model (LEW.1AR1/Ztm-IDDM) of LADA pancreas demonstrate variations in immune cell
infiltration, as well as a shift in the ratio of macrophages to CD8 T cells in the islet infiltrate, owing to an increase in Interleukin
1 beta (IL-1B) and a reduction in tumor necrosis factor-a.. In LADA, Interleukin 10 (IL-10), proliferating cell nuclear antigen
(PCNA), and insulin expression rose, but caspase 3 gene expression decreased, the underlying pathophysiology in human and

rat LADA pancreases was identical. LADA is a milder type of autoimmune diabetes in individuals of a late age.*’

Risk Factor for Latent Autoimmune Diabetes in Adults

In the first genome-wide association study of LADA, GWAS signals indicate that LADA is a late-onset form of T1D,
albeit with genetically attenuated potency of key T1D-associated HLA haplotypes and also with a genetic component
similar to T2D. Functional studies look at how the glycolytic regulator PFKFB3 is placed at the nexus of autoimmune
and metabolic diabetes.*® Independent effects of MHC class I reported in T1D were not observed in LADA, indicating
that the association of MHC class I may be a genetic discriminator between LADA and childhood-onset T1D.*’ Recent
research has confirmed the genetic relationship between LADA and both T1D and T2D, as well as the subtype-specific
signatures in the HLA and a novel LADA-specific locus called PFKFB3. GRS, which includes T1D-risk variations, is
a useful tool for differentiating diabetes subtypes and identifying patients who are insulin-dependent in fast-developing
states. Although genetic evidence supports the existence of LADA, more research is needed to fully determine its role in
the diabetes spectrum.’”

The Nord-Trondelag Health Study (HUNT) genotyped 60 SNPs known to be associated with T1D or T2D, including
14 tag SNPs for HLA haplotyping in 120 patients with T1D, 126 LADA, and 1090 T2D. Genetic heterogeneity of LADA
is linked to varying degrees of autoimmune activity and is distinguishable from both T1D and T2D. Most strongly
associated HLA haplotypes for T1D were significantly associated with patients with LADA, but primarily with LADA
with high anti-GAD levels. There were no connections between LADA and non-HLA T1D loci. Tetraspanin-8 (TSPANS)
and the fat mass and obesity-associated (FTO) were two T2D-related genes that were generally associated with LADA,
but primarily in patients with low anti-GAD LADA levels.' The researchers investigated the relationship between
altering beta-cell function in patients with latent autoimmune diabetes in adulthood and GAD autoantibody (GADA)
titers. Initial GADA titers in LADA patients identified subjects with varying degrees of persistent autoimmunity and
disease progression. Low GADA titer LADA patients shared T2D patients’ metabolic characteristics and decreased beta-
cell function.> In two large population-based studies (the Swedish case-control study and the Norwegian HUNT Study),
obesity and overweight are linked to an increased risk of LADA, especially when combined with a family history of
diabetes.” BMI was higher in LADA than in T2D but lower in T1D. GAD antibody titer in LADA correlated negatively
with BMI and c-peptide secretion. Beta cell function from the intravenous glucose tolerance test (IVGTT) in LADA was
228% higher than in T2D but 35% lower than in T1D. LADA had insulin sensitivity comparable to T2D but 41% higher
than T1D.>* The systematic and meta-analysis study found polymorphisms of protein tyrosine phosphatase
N22 (PTPN22), Insulin, transcriptional factor 7-like 2 (TCFL2), and variants of cytotoxic T-lymphocyte antigen-4
(CTLA-4) as risk factors for LADA.>>*°

Furthermore, consumption of processed red meat was associated with an increased risk of LADA particularly in
people with a family history of T1D or high-risk HLA genotypes (HLA-DQB1 and HLA-DRB1).”>” The family history of
TID, as well as a family history of T2D, was linked to an elevated risk of LADA.’® Being overweight, physical
inactivity, smoking, low birth weight, sweetened beverage consumption, and alcohol use are all associated with an
increased risk of LADA.>*®' LADA may be avoided by making the same lifestyle changes as T2D, such as losing
weight, increasing physical activity, and quitting smoking.

During the 7-year follow-up period, 119 (56.1%) of the 212 LADA patients required insulin. In the first year after
diagnosis, high GADA titers, BMI< 25, ZnT8 and IA-2 positive, and sulfonylurea medication significantly enhance the
development of insulin demand in LADA patients. The distinctive gut microbiota and related metabolites of LADA
patients are linked to autoantibodies, glucose metabolism, islet function, and inflammatory factors, all of which may
contribute to the disease’s etiology.®*
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Immunotherapy Approaches to Suppress Beta-Cell Autoimmunity

In recent years, various combination therapies that target the many pathways involved in beta cell destruction have been
proposed. However, new promising combination therapies, such as those that combine immunomodulators with drugs that
stimulate beta cell regeneration to restore normoglycemia, are being developed.®® In the pancreatic draining lymph node
(pLN), a stem-like autoimmune progenitor gives rise to pLN autoimmune mediators. Using single-cell RNA sequencing and
clonal analysis, researchers discovered that autoimmune CDS8 T cells represent distinct T cell differentiation states and
identified factors that drive the transition from a stem-like autoimmune progenitor to the autoimmune mediator in the pLN.
Strategies that target the stem-like autoimmune progenitor pool have the potential to be novel and powerful immunother-
apeutic interventions for T1D.%* Targeting the stem-like autoimmune progenitor pool may lead to the development of
innovative and potent immunotherapeutic treatments for T1D. Moreover, researchers hypothesized that microneedle intra-
dermal administration of human proinsulin peptide C19-A3 coupled to ultrasmall gold nanoparticles (GNPs) may increase
antigen-specific immunotherapy by promoting tolerogenic dendritic cell immunomodulation.®® Liraglutide, a drug used to
promote beta cell regeneration, and immunotherapy based on Phosphatidylserine (PS) in the membrane and encapsulating
insulin A and B chains (PSAB-liposomes) shown to reduce hyperglycemia in an autoimmune T1D model with spontaneous
onset.®® Recent data suggest that MBD2 (methyl-CpG-binding domain 2) could be a viable target for developing epigenetic-
based T1D therapeutics in clinical settings. Mbd2 deficiency exacerbated the development of T1D in the NOD mice model.
Thl stimulation caused the Statl promoter to undergo DNA methylation and induction of MBD2 expression, which then
bound to methylated CpG DNA within the Statl promoter, allowing MBD2 to maintain Th1 program homeostasis and prevent
autoimmunity. By controlling the STAT1-IFN axis, MBD2 functions as a repressor to maintain the homeostasis of the Th1
program in T1D.*” Moreover, the deletion of Renalase (RNLS), a potential gene for T1D identified by a GWAS, made beta
cells resistant to autoimmune destruction in a mouse model of T1D. In diabetic mice, oral pargyline protected transplanted
beta cells, by delaying diabetes development. RNLS is a therapeutic target to prevent the loss of beta cells in T1D and
a regulator of beta cell susceptibility.®® However, its precise role in LADA is unknown.

Circulating C-X-C motif chemokine receptor type 5-negative, programmed cell death protein 1-positive
(CXCR5 PD-1") peripheral T helper (Tph) cells are linked to clinical T1D development. Tph cells are useful biomarkers
of disease progression as well as a target for immunotherapy in T1D.*’ A combination of six HLA-DRB1*0401-selective
beta-cell peptides was administered intravenously to individuals with this genotype who had just developed T1D at
dosages of 10, 100, and 500 g per month for 24 weeks. Treatment resulted in dose-dependent increases regulatory T cells
(Treg) expression of the canonical transcription factor FOXP3 and altered expression of the Treg gene, as well as
substantial modifications in islet-specific immune responses. Multiple-peptide immunotherapy shows promise as an
approach to repair immune regulatory abnormalities key to the pathobiology of autoimmune diabetes in this first-in-

human investigation.”%”!

Immunotherapy Approaches from Intervention for Prevention of TID
Despite over a century of insulin replacement treatment, there is still no cure for T1D etiology. Finding the “correct”
therapy for the “right” patient at the “right” moment is still an unmet goal in T1D. For those with T1D, disease-
modifying treatments continue to be an aspirational goal. Several therapies, including anti-inflammatory medications, and
T or B cell-specific immunosuppressants, have been investigated thus far. In addition, a small number of clinical trial data
have revealed minor benefits of immunotherapy in T1D summarized in Table 2.

In the Phase 2 study, a single 14-day session of teplizumab (Fc receptor-nonbinding anti-CD3 monoclonal antibody)
significantly reduced the development of clinical T1D in high-risk, non-diabetic relatives of diabetic patients with at least
two autoantibodies and abnormal oral glucose tolerance test. The median delay in diabetes diagnosis was two years. The
individuals most likely to respond were those lacking one T1D-associated MHC allele, HLA-DR3, but possessing HLA-
DR4, as well as the absence of anti-ZnT8 antibodies (ClinicalTrials.gov Identifier: NCT01030861).”> Teplizumab is
currently licensed in the United States for patients who are at high risk of developing T1D.”

Consequently, in multicenter, double-blind, randomised controlled trial T1D patients aged 6—45 years who have just
received abatacept (10—1000 mg/kg per dose) intravenously on days 1, 14, and 28 and once a month for a total of 27
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Table 2 Immune Interventions in TID

Intervention Immune Target Immunotherapy References
Clinical Trial Study

AntiCD3 Mab (Teplizumab) CD3 NCT01030861 [72]
CTLA4-Ig (Abatacept) CD28/CD80/CD86 NCTO01773707 [73]
Anakinra IL-1 receptor NCTO00645840 [74]
Canakinumab IL-1B NCT00947427 [75]
Etanercept TNF-a receptor NCT00730392 [76]
Alum-formulated glutamate decarboxylase (GAD-Alum) | Glutamic acid decarboxylase antigen NCT01785108 [77]
Imatinib Mesylate Tyrosine kinase inhibitor NCTO01781975 [78]
Rituximab CD20 NCT00279305 [79]
Teplizumab CD3 NCT00385697 [80]
Anti-Thymocyte Globulin (ATG)/ Pegylated Thymoglobulin NCT02215200 [81]
Granulocyte Colony Stimulating Factor (GCSF)

Mycophenolate Mofetil-Daclizumab Inhibitor of inosine monophosphate NCT00100178 [82]

dehydrogenase/ CD25
Tocilizumab IL-6R NCT02293837 [83]
Bacillus Calmette-Guérin TNF receptor 2 NCT02081326 [84]
Polyclonal regulatory T cells plus IL-2 Regulatory T cells and IL-2 NCT02772679 [85]
Tolerogenic Dendritic Cell Vaccine PlpepTolDCs Autologous Tolerogenic Dendritic Cell with NCT04590872 [86]
Proinsulin Peptide (PlpepTolDC)

Simponi (Golimumab) TNF-a NCT03298542 [87]
Amevive (alefacept) CD2 NCT00965458 [88]
Anti-interleukin-2| antibody and liraglutide IL-21 NCT02443155 [89]

infusions for two years. Over two years, co-stimulation modulation with abatacept halted the decline in beta cell function.
The positive impact shows that T-cell activation still occurs around the time of T1D clinical diagnosis (ClinicalTrials.gov
Identifier: NCT00505375).”

Children who had been diagnosed with T1D received daily anakinra for 28 days and were observed for 6 months.
Before and after anakinra therapy, blood was taken for microarray analysis. Anakinra-treated patients showed identical
HbAlc and mixed-meal tolerance testing (MMTT) responses, but reduced insulin needs 1 and 4 months after diagnosis,
and lower insulin-dose-adjusted HbAlc 1 month after diagnosis, compared to controls (ClinicalTrials.gov Identifier:
NCT00645840).°" In clinical investigations, T1D patients aged 6-45 years were included in a randomized, placebo-
controlled experiment. In newly diagnosed T1D, canakinumab (a human monoclonal anti-interleukin-1 antibody) 2 mg/
kg (maximum 300 mg) subcutaneous injection monthly for 12 months was proved safe but ineffective as a single
immunomodulatory medication (ClinicalTrials.gov, identifier: NCT00947427).” In organ-specific autoimmune diseases,
interleukin-1 inhibition may be more efficient when used in conjunction with therapies that target adaptive immunity. At
a dose of 0.4 mg/kg (maximum dose of 25 mg/dose), twice a week, etanercept (TNF receptor inhibitor) is administered
subcutaneously to 18 newly diagnosed T1D patients (11 men and 7 women, ages 7.8—18.2 years). Etanercept therapy
reduced HbA 1c and increased endogenous insulin production in young individuals with newly diagnosed T1D, indicating
that beta cell activity was preserved (ClinicalTrials.gov identifier: NCT00730392).7°
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In a double-blind, placebo-controlled clinical trial, non-diabetic children between the ages of 4 and 17.9 who had
autoantibodies to glutamate decarboxylase (GADA), insulin, or zinc-transporter 8 were randomized, stratified by 2 or
more islet autoantibodies, to 2 injections of 20 g GAD-Alum or placebo, spaced 30 days apart. In young children with
prediabetes, GAD-Alum as a subcutaneous prime and boost injection was safe, but it had little impact on the develop-
ment of T1D (ClinicalTrials.gov identifier: NCT01122446).°%% In recent-onset T1D, a double-blind placebo-controlled
intervention with glutamic acid decarboxylase (GAD)-alum, vitamin D, and Ibuprofen was conducted (T1D). 64 T1D
patients were randomized (age 10—17.99 years, fasting c-peptide 0.12 nmol/l, GADA-positive). A linear relationship was
found between baseline c-peptide, HbAlc, and insulin/per kilogram/24 h and change in c-peptide AUC after 15 months.
c-peptide was not preserved by ibuprofen, vitamin D, or GAD-alum. Baseline clinical and immunological variables, as
well as vitamin D levels, all affected treatment success (Clinical Trial Registration Identifier: NCT01785108).*

In a multicenter phase 2 trial, randomly assigned, double-blind, placebo-controlled patients with newly diagnosed T1D
aged between 18-45 years, positive for islet autoantibody, and with stimulated c-peptide of greater than 0.2 nmol L™ on
a mixed meal tolerance test (MMTT) were included. At a dose of 400 mg imatinib mesylate (4X100 mg of film-coated tablets
per day) is administered. A 26-week treatment of imatinib retained beta cell function at 12 months (ClinicalTrials.gov,
Identifier: NCT01781975). Determining the appropriate dosage and duration of treatment, safety, and efficacy of imatinib in
children, the use of complementary medications in combination, and imatinib’s ability to delay or arrest the progression of
diabetes in a population at risk. A double-blind experiment comprised 87 newly diagnosed T1D patients aged 8 to 40
rituximab treatment decreased CD19+ B cells, lowered glycated hemoglobin levels, and needed less insulin. The use of
rituximab preserved beta-cell activity (ClinicalTrials.gov identifier: NCT00279305).°> The discovery that B lymphocytes
contribute to the pathophysiology of T1D may offer up a new avenue in the treatment of this ailment. In this two-year trial,
participants are given one of three teplizumab infusion regimens (14-day full dosage, 14-day reduced dose, or 6-day full dose).
Teplizumab immunotherapy inhibits deterioration in beta-cell function and improves glycemic control with reduced insulin
dosages (ClinicalTrials.gov, Identifier NCT00385697)."

The T1D TrialNet Study Group showed that low-dose anti-thymocyte globulin (ATG) (2.5 mg/kg) retained beta-cell
function and lowered HbAlc for 1 year in new-onset T1D in a three-arm, randomized, double-masked, placebo-
controlled phase 2b trial. 29 individuals received ATG plus pegylated granulocyte colony-stimulating factor (GCSF),
while the other 29 received ATG only. Compared to placebo, low-dose ATG (2.5 mg/kg) results in improvements in
immune cell subsets, a decrease in HbAlc, and long-term preservation of beta-cell function. While the advantages of
low-dose ATG were diminished by the addition of GCSF (ClinicalTrials.gov Identifier: NCT02215200).%!

Mycophenolate mofetil (MMF) alone or in combination with daclizumab (DZB) was evaluated in a multi-center,
randomized, placebo-controlled, double-masked study to stop the loss of beta cells that produce insulin in newly diagnosed
TID (ClinicalTrials.gov Identifier: NCT00100178).5"** Tocilizumab (IL-6R monoclonal antibody) was studied in
a multicenter, randomized, placebo-controlled, double-blind experiment in people with newly diagnosed TID.
Immunophenotyping revealed decreases in IL-6R downstream signaling in T cells. However, there were no alterations in
CD4 memory subsets, T helper 17 (Th17) cells, Tregs, or CD4+ T effector cell resistance to Treg suppression or prevent the
rate of loss of residual beta cell function. During therapy, a dendritic cells (DC) subgroup declined, but when therapy ended, it
returned to baseline (ClinicalTrials.gov Identifier: NCT02293837).%* Polyclonal Tregs and low-dose IL-2 were combined in
a Phase I study (TILT trial), to improve Treg survival and expansion. Patients with T1D received a single infusion of
autologous polyclonal Tregs, then one or two 5-day doses of human low-dose IL-2 (1d-IL-2). Therapy increased the amount of
endogenous and infused Tregs, but it also increased the number of activated NK, mucosal-related invariant T, and clonal CD8+
T cells (ClinicalTrials.gov Identifier: NCT02772679).”° These findings have significant ramifications for the use of 1d-IL-2 and
Tregs in the treatment of autoimmune diseases in patients who already have active immunity. The safety and efficacy of
a multi-dose Bacillus Calmette-Guérin (BCG) vaccination for the prevention of infectious illness in T1D in randomised,
double-blind, placebo-controlled phase 2/3 trial was studied (ClinicalTrials.gov Identifier: NCT02081326).** To modify
autoimmune illnesses in an antigen-specific manner and to interfere in the pathophysiology of T1D, tolerogenic dendritic cells
(tolDCs) are thought to be an appealing strategy. In T1D, C19-A3, a naturally produced proinsulin peptide, demonstrates
activated immunological responses, and tolDCs that present this peptide can induce proinsulin-specific regulatory T cells
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(ClinicalTrials.gov Identifier: NCT04590872).°” Administration of autologous tolDCs pulsed with proinsulin peptide intra-
dermally slow the gradual loss of beta-cell function with a shorter duration of T1D and retained c-peptide production.

Therapy Approaches for Prevention of LADA

The physician faces significant challenges in identifying and treating LADA. A consensus statement from a global expert
panel discussed some key points for future action, such as a) screening for LADA, b) personalized medicine, c) the need
for more randomized controlled comparative trials with hypoglycemic agents, d) further investigation of immune therapy,
e) large-scale long-term studies in different patient populations, f) quality of life/lifestyle issues, g) studies including
patients of different ethnic origin) the nature/quality of autoantibody assays.**

There are few clinical studies with LADA. Randomized, double-blind, placebo-controlled, dose-escalation clinical
trial in a total of 47 LADA patients who received 4, 20, 100, or 500 Ag Diamyd subcutaneously at weeks 1 and 4. The
ratio of CD4+ CD25+ to CD4+ CD25- cells rose. The stimulatory effects of 20 Ag Diamyd on both fasting and
stimulated c-peptide were seen.”® In patients with LADA, strict glycemic management is the foundation for preventing or
delaying beta-preserved cell loss and decreasing the onset of diabetes complications. Insulin, insulin sensitizers, sodium-
glucose co-transporter 2 inhibitors, dipeptidyl peptidase-4 inhibitors, and receptor agonists are all used to treat LADA.”°
In preliminary research, rosiglitazone, and insulin may help LADA patients maintain islet beta cell activity.”’

A double-blind, randomized, controlled trial demonstrated that linagliptin medication reduces the rate of fall in
C-peptide levels by raising endogenous glucagon-like Peptide 1 (GLP-1) levels to protect beta cells in LADA patients
during a two-year follow-up.'” Recent data suggest that adding 2000 TU of vitamin D3 per day to the dipeptidyl

peptidase-4 inhibitor saxagliptin may preserve beta cell function in LADA patients. '’

Conclusion

Immunotherapies have shown promise in targeting the immune system, but they have not yet been able to achieve long-
term glycemic control or preserve insulin secretion in people with type 1 diabetes (T1D) or latent autoimmune diabetes in
adults (LADA). This is because the autoimmune destruction of beta cells in these conditions is often severe, and
immunotherapies alone cannot reverse the damage. However, they may be able to slow the rate of beta cell loss, and the
duration of glycemic control may be extended through the refinement of various immunotherapies. Single-target
immunotherapies have not yet been able to fully restore T1D or LADA. However, progressive research in a clinical
context should focus on improving intervention doses, doing more thorough examinations of intervention responders,
and/or combining minimally effective single-target immunotherapies. This may lead to the development of more
effective and durable immunotherapies for T1D and LADA.
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