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Abstract In this review we discuss recent insights

obtained from well-characterized model systems into the

factors that determine the orientation and tilt angles of

transmembrane peptides in lipid bilayers. We will compare

tilt angles of synthetic peptides with those of natural pep-

tides and proteins, and we will discuss how tilt can be

modulated by hydrophobic mismatch between the thick-

ness of the bilayer and the length of the membrane span-

ning part of the peptide or protein. In particular, we will

focus on results obtained on tryptophan-flanked model

peptides (WALP peptides) as a case study to illustrate

possible consequences of hydrophobic mismatch in

molecular detail and to highlight the importance of peptide

dynamics for the experimental determination of tilt angles.

We will conclude with discussing some future prospects

and challenges concerning the use of simple peptide/lipid

model systems as a tool to understand membrane structure

and function.
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Abbreviations

di-C10:0PC 1,2-Didecanoyl-sn-glycero-3-

phosphocholine

di-C12:0PC 1,2-Dilauroyl-sn-glycero-3-phosphocholine

di-C14:0PC 1,2-Dimyristoyl-sn-glycero-3-

phosphocholine

di-C18:0PC 1,2-Distearoyl-sn-glycero-3-phosphocholine

di-C14:1PC 1,2-Dimyristoleoyl-sn-glycero-3-

phosphocholine

di-C16:1PC 1,2-Dipalmitoleoyl-sn-glycero-3-

phosphocholine

di-C18:1PC 1,2-Dioleoyl-sn-glycero-3-phosphocholine

di-C20:1PC 1,2-Dieicosenoyl-sn-glycero-3-phosphocholine

di-C10:0PG 1,2-Didecanoyl-sn-glycero-3-phospho-

(1’-sn-glycerol)

di-C18:1PG 1,2-Dioleoyl-sn-glycero-3-phospho-

(1’-sn-glycerol)

EPR Electron paramagnetic resonance

CD Circular dichroism

NMR Nuclear magnetic resonance

ATR-FTIR Attenuated total reflection-Fourier transform

infrared

GALA Geometric analysis of labelled alanines

PISEMA Polarization inversion spin exchange at

magic angle

MD Molecular dynamics

BADAN 6-Bromoacetyl-2-

dimethylaminonaphthalene

IEADANS 5-((((2-Iodoacetyl)amino)ethyl)amino)

naphthalene-1-sulfonic acid
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TOAC 4-Amino-4-carboxy-2,2,6,6-tetramethyl-

piperidino-1-oxyl

Introduction

Membrane proteins perform a wide range of vital functions

in the cell, including signalling, transduction of energy, and

transport of ions and solutes over the cell membrane. In

spite of their obvious importance, knowledge on the

structural properties of membrane proteins is still relatively

sparse. Even less is known about the dynamical processes

that are essential for functioning. By definition, membrane

proteins need to undergo conformational changes to per-

form their function. These changes often include internal

motions such as tilting, turning, or shifting of one or more

a-helices or whole domains. Alternatively, secondary

structure elements such as a-helices or b-sheets can (par-

tially) fold or unfold, or adapt their structure. Finally,

simple reorientation of one or more amino acid residues

can occur. Since all these changes can be accompanied by a

(partial) reorientation of the protein within the membrane,

it can be expected that properties of the surrounding lipid

environment may have a significant influence on the

functioning of membrane proteins.

The functional activity of many membrane proteins

indeed was shown to depend on membrane properties

including membrane composition, fluidity, and thickness.

Examples of such membrane proteins include the nicotinic

acetylcholine receptor (AChR) (Barrantes 2004), the ther-

mosensor protein DesK (Cybulski et al. 2002; Aguilar et al.

2001), cytochrome c oxidase (Montecucco et al. 1982),

melibiose permease (Dumas et al. 2000), and different

ATPases (Johannsson et al. 1981a, b; Caffrey and Feigen-

son 1981). In reconstitution studies on these latter mem-

brane proteins, the activity was found to be highest when

the proteins were reconstituted in bilayers with matching

hydrophobic thickness. From these studies, it seems that

many membrane proteins have an optimal bilayer thickness

for functioning. Most probably, in bilayers with a nonop-

timal thickness, the activity of these membrane proteins is

altered by small changes in the structure or orientation of

transmembrane segments of these proteins. Such changes

will include variations in the helix tilt angle.

Functional importance of helix tilting in membrane

proteins

An example of a membrane protein where changes in the

tilt angle of transmembrane segments play an important

role for the function is the mechanosensitive channel

MscL. This well-studied channel protein prevents bacterial

cells from bursting as a result of water transport into the

cell in case of osmotic down shock (reviewed in Corry and

Martinac 2008; Sukharev and Anishkin 2004). The regu-

lation of MscL arises from changes in the lateral pressure

of the membrane and is mediated by hydrophobic coupling

between the lipids and the hydrophobic segments of

membrane protein, resulting in the conformational changes

needed to switch the channel to the open state. When

switching to the open state, this channel undergoes a large

concerted iris-like expansion combined with flattening of

the whole channel, which involves large reorientations of

the transmembrane a-helices (Betanzos et al. 2002).

In other proteins, small changes in the orientation of one

or more a-helices are sufficient for proper functioning. For

sensory rhodopsin II, a small outward tilting of TM6 (helix

F) was observed (Wegener et al. 2000), which initiates a

20–30� turning of helix TM2 of the neighboring transducer

complex (Wegener et al. 2001). For the related bacterio-

rhodopsin, an outward movement of TM6 (helix F) and a

subsequent approach of TM7 (helix G) toward the proton

channel were observed during the photo cycle (Radzwill

et al. 2001). For melibiose permease, a symporter coupling

uphill transport of melibiose and various other galactosides

to the downhill transport of Na?, Li? and H? ions, the

average helix tilt angle was observed to increase upon ion-

binding from 26� to 36�, and to decrease again to 30� upon

subsequent sugar binding (Dave et al. 2008). These

examples demonstrate the importance of the orientation of

transmembrane segments for the function of membrane

proteins.

Much information on a-helix orientation in membrane

proteins has been obtained from X-ray crystallography

studies. A recent empirical study reported an average tilt

angle of 24 ± 14� for the transmembrane a-helices of

polytopic membrane proteins based on 46 qualified high-

resolution structures available in 2006 (Ulmschneider et al.

2005), which agrees well with earlier reported values of

22 ± 12� based on 15 structures in 2001 (Ulmschneider

and Sansom 2001) and 21 ± 10� based on only 2 struc-

tures, bacteriorhodopsin and cytochrome c oxidase, in 1997

(Bowie 1997). The low number of high-resolution struc-

tures available for membrane proteins is mainly due to the

difficulties in growing crystals of these hydrophobic

structures that are needed for structure elucidation using

X-ray crystallography.

Although high-resolution structures are essential for

understanding the structural changes required for func-

tioning of membrane proteins, only limited information on

the dynamics of these processes can be extracted from

crystal structures. In addition, the use of X-ray crystal-

lography does not allow to study the influence of the lipid
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environment on the orientation of the transmembrane

segments. For this reason, alternative methods are being

used to study structural and dynamic properties of proteins

in lipid bilayers. These methods include solid-state NMR

spectroscopy, EPR spectroscopy, CD spectroscopy, ATR-

FTIR spectroscopy, and fluorescence spectroscopy. Using

such alternative biophysical techniques, tilt angles of the

transmembrane a-helices with respect to the membrane

have been determined for a number of membrane proteins

and peptides.

Orientation of transmembrane segments in membranes

For natural transmembrane peptides, tilt angles were found

to vary significantly, as illustrated by the following exam-

ples performed in bilayers with acyl chain lengths ranging

from 14 to 18 carbon atoms. From solid-state NMR mea-

surements using the PISEMA method, a tilt angle of 38�
was reported for the influenza A M2 channel (Wang et al.

2001), 26� for the membrane conformation of the major

pVIII coat protein of fd filamentous bacteriophage (Marassi

and Opella 2003), and 13� for wild-type phospholamban

(Abu-Baker et al. 2007). For the channel-lining M2 seg-

ments from the d-subunit of the nicotinic acetylcholine

receptor, a tilt angle of 12� was reported from PISEMA

experiments (Opella et al. 1999) and a tilt angle of 14� from

EPR studies (Inbaraj et al. 2007). For phospholemman, a tilt

angle of 17� was found from ATR-FTIR spectroscopy

experiments on the full length protein (Beevers and Kukol

2006), and a tilt angle of 7� was reported from NMR

experiments on a phospholemman transmembrane region

(Wong et al. 2008). Using fluorescence techniques, a tilt

angle of 18� was determined for the major coat protein from

bacteriophage M13 (Nazarov et al. 2007).

This variation in tilt angles raises questions about the

determinants for the tilt of transmembrane helices. Is helix

tilt mainly an intrinsic property of transmembrane helices,

due for example to a specific distribution of amino acids

around the helix axis or to a relatively large hydrophobic

length of the helix? Or, in the case of oligomeric structures,

is it determined by peptide–peptide interactions? Or is the

tilt mainly imposed from the membrane, determined for

example by its hydrophobic thickness? How does each of

these factors contribute to determining the tilt angle?

Addressing these questions requires highly systematic

approaches. Years ago, this need initiated the design of

simplified model systems of artificial transmembrane a-

helical peptides, reconstituted into synthetic lipid bilayers.

In such simple peptide/lipid model systems, both lipid

and peptide composition can be easily and systematically

varied, allowing elucidation of the basic principles of

membrane protein organization and dynamics.

Use and design of transmembrane model peptides

Ideally, artificial transmembrane peptides should serve as

mimics for transmembrane segments of membrane pro-

teins. Therefore, the design of a proper transmembrane

model peptide requires information on the general com-

position of membrane proteins. Empirical analysis of the

amino acid structure in putative transmembrane segments

of a-helical single-span proteins showed a nonrandom

distribution of amino acids in transmembrane segments

(Landolt-Marticorena et al. 1993; Arkin and Brunger

1998). The hydrophobic stretch is to a large percentage

composed of hydrophobic residues such as isoleucine,

leucine, valine, and alanine, with leucine being the most

common residue. Putative helix initiating residues such as

proline, asparagine, and serine were found to be enriched at

the N-terminus of transmembrane segments. Aromatic

residues such as tryptophan and tyrosine as well as charged

residues such as lysine and arginine were found to have a

positional preference for the interface region.

In particular these aromatic and charged residues at the

interface can be expected to have a large influence on the

orientation of transmembrane segments because their

interactions with the membrane will be much more specific

than those of the hydrophobic amino acids in the lipid acyl

chain region. Indeed, a common structural motif observed

in many membrane proteins is a belt of aromatic residues

located at the membrane-water interface. These are present

for example in the a-helical potassium channel KcsA

(Doyle et al. 1998; Williamson et al. 2003) (see Fig. 1a)

and the b-barrel maltoporin (Seshadri et al. 1998). Such

interfacial tryptophans are believed to anchor membrane

proteins in the membrane, where interaction with the sur-

rounding lipids will help the proteins to adopt the proper

orientation in the membrane.

These structural elements characteristic for many

membrane proteins were considered in the design of dif-

ferent model transmembrane peptides. An overview of

transmembrane model peptides used in the literature is

given in Table 1. Such designed model peptides offer

several advantages over the use of natural transmembrane

peptides. Most importantly, many specific properties, such

as hydrophobicity, hydrophobic length, or nature of

flanking residues, can be systematically varied. Moreover,

suitable labels can easily be incorporated during peptide

synthesis, allowing the use of a wide range of biophysical

techniques. For these reasons, synthetic peptides are

becoming increasingly useful in the development and

improvement of biophysical techniques to characterize

membrane proteins/peptides (Andronesi et al. 2004; Le-

maitre et al. 2004) and as models to understand the basic

principles of peptide/protein-lipid interactions (Killian and

Nyholm 2006; Shahidullah and London 2008; Yano et al.
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ba
Fig. 1 Structures of a the

transmembrane parts of the

potassium channel KscA (PDB

entry 1J95) and b the

transmembrane model peptide

WALP23, which is used to

mimic transmembrane segments

of membrane proteins. Only

tryptophans are shown with

explicit side chains, illustrating

the belt of aromatic residues

present in the tetrameric KcsA

Table 1 Amino acid sequences of tryptophan and/or lysine-flanked transmembrane model peptides used in literature

Model peptide Amino acid sequence References

Peptides flanked by tryptophans

WALPx,

x = 2m ? n ? 6

Ac-GWW(LA)mLnWWA-amidea,

m = {3, 5, 6, 7, 8, 10, 12},

n = {0, 1}

Killian et al. (1996), de Planque et al. (1998, 1999, 2001, 2003), Demmers et al.

(2001), Rinia et al. (2002), Strandberg et al. (2002), Petrache et al. (2002),

Morein et al. (2002), van der Wel et al. (2002, 2007); Kol et al. (2003), Weiss

et al. (2003), Andronesi et al. (2004), Ganchev et al. (2004), Strandberg et al.

(2004), van Duyl et al. (2005), Özdirekcan et al. (2005, 2007), Im and Brooks

(2005), Sparr et al. (2005a, b), Siegel et al. (2006), Holt et al. (2008)

GWALP23 Ac-GGALW(LA)6LWLAGA-

ethanolamine

Vostrikov et al. (2008)

WLP23 Ac-GWWL17WWA-amide Özdirekcan et al. (2005), Esteban-Martin and Salgado (2007a)

WL22 Ac-WWL18WW-amide Esteban-Martin and Salgado (2007b)

WA22 Ac-WWA18WW-amide Esteban-Martin and Salgado (2007b)

Peptides flanked by tryptophans and lysines

LW Ac-KKWWL8AL8WWKK-amide Fastenberg et al. (2003)

W-L22-W Ac-KKWL22WKK-amide Liu et al. (2002)

KWALP23 Ac-GKALW(LA)6LWLAKA-amide Daily et al. (2008)

Peptides flanked by lysines

KALPx,

x = 2m ? 7

Ac-GKK(LA)mLWWA-amide,

m = {6, 8, 10, 12}

de Planque et al. (2001), Strandberg et al. (2002), Morein et al. (2002), Kol et al.

(2003), van Duyl et al. (2005), Özdirekcan et al. (2005), Kandasamy and

Larson (2006)

(LA)12 Ac-KK(LA)12KK-amide Zhang et al. (1995a, b, 2001)

KLP23 Ac-GKKL17KKA-amide Özdirekcan et al. (2005), Esteban-Martin and Salgado (2007a)

L24 Ac-KKL24KK-amide Axelsen et al. (1995), Subczynski et al. (1998), Liu et al. (2002)

P16/24 Ac-KKGL16/24KKA-amide Davis et al. (1983), Huschilt et al. (1985), Morrow et al. (1985), Huschilt et al.

(1989), Zhang et al. (1992a, b, 1995c)

A24 Ac-KKA24KK-amide Lewis et al. (2001)

Peptides flanked by lysines that include a tryptophan in the hydrophobic stretch

p(LA)6/8 Ac-KKG(LA)3/4W(LA)3/4KKA-amide Vidal and McIntosh (2005), Krishnakumar and London (2007)

pLx,

x = 2m
Ac-KKGLmWLmKKA-amide,

m = {5, 6, 7, 8, 9, 10, 11}

Ren et al. (1999), Caputo and London (2003), Lew et al. (2003), Krishnakumar

and London (2007), Shahidullah and London (2008)

pLmAm,

m = {6, 7, 8}

Ac-KKGLmWAmKKA-amide Krishnakumar and London (2007)

pA18/22 Ac-KKA9/11WA9/11KK-amide Shahidullah and London (2008)

a In some cases ethanolamine is used instead
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2002; Liu et al. 2002; Mall et al. 2000). In particular the

WALP (depicted in Fig. 1b) and KALP peptides have been

used for these purposes. These model peptides are com-

posed of a hydrophobic stretch of alternating leucines and

alanines flanked at both ends by a pair of tryptophans and

lysines, respectively.

As discussed above, an important parameter for the

structural organization of membrane proteins is the orien-

tation of their transmembrane segments within the lipid

bilayer. One convenient way of addressing the question to

what extent the orientation of transmembrane segments can

be imposed from the membrane is by analysis of the tilt

angle of transmembrane helices in model systems. In

model systems, the hydrophobic length of the peptide and

the bilayer thickness can be systematically varied, leading

to a situation of hydrophobic mismatch.

Hydrophobic mismatch as driving force

for helix reorientation

Hydrophobic mismatch occurs if the hydrophobic length of

the membrane protein does not match the hydrophobic

thickness of the membrane. To be more specific, positive

hydrophobic mismatch describes the situations with too

thin membranes, and negative hydrophobic mismatch the

situations with too thick membranes. As already mentioned

above, the activity of membrane proteins depends strongly

on the hydrophobic thickness of the bilayer and is often

decreased in nonmatching situations (for reviews see

Andersen and Koeppe 2007; Jensen and Mouritsen 2004).

In case of positive hydrophobic mismatch, a logical

response to relieve the unfavorable exposure of hydro-

phobic amino acids to the aqueous phase seems to be

increasing the tilt of the helix.

The response of the tilt angles of transmembrane seg-

ments to hydrophobic mismatch has been studied for a

number of natural peptides and model peptides. So far, in all

cases indeed an increase in tilt angle was observed upon

decreasing bilayer thickness. However, in most cases this

response was not sufficient to fully compensate for the

mismatch. For example, 2H NMR experiments (discussed in

more detail below) suggested that the tilt angle for WALP23

peptides increased from 5.2� in di-C14:0PC to 8.1� in

di-C12:0PC, and for KALP23 peptides from 7.6� to 11.2�
(Strandberg et al. 2004; Özdirekcan et al. 2005). Consid-

ering geometrics, this change in tilt angle would be too

small to compensate for the changes in bilayer thickness.

Similar results were obtained for several natural pep-

tides. For M13 coat protein, an increase from 18� in di-

C20:1PC to 33� in di-C14:1PC was determined from

fluorescence experiments using IAEDANS-labelled pep-

tides (Koehorst et al. 2004). For alamethicin, a peptide

antibiotic building pores in cell membranes, a decrease in

tilt angle from 23� in di-C10:0PC to 13� in di-C18:0PC was

found from EPR experiments employing TOAC, a spin-

labelled amino acid analogue (Marsh et al. 2007). For both

natural peptides, the changes in tilt are insufficient to

compensate for changes in bilayer thickness.

So far, to our knowledge, there is only one example of a

natural peptide for which full compensation for hydro-

phobic mismatch has been observed. Using PISEMA

experiments, for virus protein U (Vpu) from HIV-1

incorporated into bilayers of ether-linked di-C10:0PC/di-

C10:0PG (9:1), a tilt angle of 51� was found, which sys-

tematically decreased upon increasing the bilayer thickness

to 18� in ether-linked di-C18:1PC/di-C18:1PG (Park and

Opella 2005), thereby fully compensating for the change in

bilayer thickness. This finding is even more striking con-

sidering that relatively high peptide-to-lipid ratios were

used and that the peptide most likely is present in an

oligomeric form. Thus it seems that, at least in this specific

case, surrounding lipids are much stronger determinants for

peptide orientation than adjacent peptides. Another possi-

bly relevant feature of the system is that the peptide misses

interfacial anchoring residues at one end, which might

influence its ability to adapt to mismatch.

From these experiments, it is clear that the membrane

has an influence on the tilt of protein transmembrane seg-

ments but that peptide composition is important as well.

However, the specific reasons for the differences in adap-

tation to hydrophobic mismatch are not clear yet. A com-

plicating factor is the notion that a change in the tilt angle

of transmembrane segments is not the only possible

mechanism to compensate for hydrophobic mismatch. If,

for a given protein, alternative mechanisms would be more

favorable, there would be no reason to expect complete

adaptation to a positive mismatch just by a change in tilt

angle of the transmembrane segment. Below we will pro-

vide examples of such alternative mechanisms, which show

that indeed many responses can occur.

Alternative/additional mechanisms to adapt

to mismatch

The consequences of hydrophobic mismatch have been

investigated extensively, in particular for WALP and

KALP peptides. Figure 2 illustrates several possible

adaptations for the case of a positive mismatch situation,

which all have been observed experimentally. Besides

helix tilt (a), another option is that the lipid acyl chains in

direct vicinity to the peptide stretch to accommodate the

peptide (b). This was in fact observed for WALP peptides

by 2H NMR experiments on acyl chain deuterated lipids

(de Planque et al. 1998), but not for KALP peptides
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(de Planque et al. 2003). Another possibility to alleviate the

consequences of hydrophobic mismatch is peptide self-

association (c). This behavior was observed for WALP

peptides (Sparr et al. 2005a; de Planque et al. 2001; Killian

et al. 1996) as well as for lysine-flanked peptides (Ren et al.

1999). Yet another possible adaptation is deformation of

the backbone to decrease the effective length of the peptide

(d). In principle this could be accomplished by formation

of a p-helix, but this has not been observed experimentally.

Alternatively, kinking or flexing of the transmembrane

helix may occur as a response of the peptide backbone to

positive mismatch (e). 2H NMR results on WALP peptides

and analogues thereof indicated a kink in the helix as

response to a too-thin bilayer (Strandberg et al. 2004; Daily

et al. 2008). A similar reaction was found for the TM1

segment of lactose permease, which was observed to flex in

addition to tilting to satisfy the hydrophobic mismatch

(Yeagle et al. 2007). Finally, another consequence to

extreme mismatch conditions could be that peptides switch

to a non-transmembrane state, i.e., bound to the membrane

interface (f), or are even excluded from the membrane.

This has been documented extensively for lysine-flanked

model peptides of different hydrophobic lengths and

compositions (Krishnakumar and London 2007; Webb

et al. 1998). Also for WALP peptides it was shown that

when mismatches are too large, the peptides incorporate

less well (de Planque et al. 2001; Killian et al. 1996).

Thus, many alternative responses of protein transmem-

brane segments to mismatch are possible besides tilting,

and it is far from clear what determines the extent to which

each of these adaptations may occur for a given protein.

Considering the fact that in particular the WALP peptides

adapt to hydrophobic mismatch in several different ways,

one would expect that for these peptides tilting would be at

most a partial response to mismatch and hence not suffi-

cient to allow complete adaptation to bilayer thickness.

Although WALP peptides can be considered fairly simple

systems as compared to natural membrane proteins and

peptides, characterization of the tilt of these model peptides

has not been straightforward. We will now present a case

study of the WALP peptides that illustrates the difficulties

in determining tilt angles of peptides in membranes and the

important role of peptide dynamics.

Implications of peptide dynamics on the determination

of tilt angles

In general, solid-state NMR approaches are particularly

suitable to obtain detailed information on the structural

properties of transmembrane peptides in lipid bilayers. For

example, helix tilt and rotation angles (van der Wel et al.

2002; Strandberg et al. 2004; Özdirekcan et al. 2005) as

well as deviations from a-helical structure (Strandberg

et al. 2004; Daily et al. 2008) can be investigated by

analysis of a set of quadrupolar splittings obtained from

peptides that include a deuterium-labelled alanine with the

GALA method, or from PISEMA experiments on uni-

formly 15N-labelled peptides by analysis of the character-

istic wheel-like patterns, which provides direct information

on the orientation of the transmembrane helices (Traaseth

et al. 2006; Park and Opella 2005; Marassi and Opella

2000).

However, with both these NMR methods, assumptions

have to be made regarding the dynamics of the peptides.

Importantly, a high mobility results in difficulties in

interpretation of the results and can lead to an underesti-

mation of the tilt angle (Özdirekcan et al. 2007; Esteban-

Martin and Salgado 2007a). The importance of obtaining

knowledge on motional properties of peptides is illustrated

by comparison of results obtained by solid-state NMR and

MD simulations on WALP peptides. 2H NMR experiments

in combination with the GALA method indicated that

WALP peptides have a relatively small tilt angle (\10�) in

different types of bilayers (Özdirekcan et al. 2005).

In contrast, MD studies on the same systems suggested

much larger tilt angles, fluctuating from around 20–40�
(Özdirekcan et al. 2007). As a potential explanation for this

discrepancy, it was suggested that the WALP peptide can

adopt different rotational angles but that there is an energy

barrier between the preferred rotational states, such that

‘hopping’ motions occur. From the MD trajectories, the

authors back-calculated the NMR quadrupolar splittings

and they concluded that if such motions indeed would

occur, this would lead to an underestimation of the tilt

angles determined by 2H NMR experiments.

The extent to which transmembrane peptides undergo

motional averaging will not only depend on peptide

a b c d e f

Fig. 2 Schematic representation of possible adaptations in case of a

too long transmembrane segment, i.e., positive hydrophobic mismatch

conditions: a helix tilting, b acyl chain stretching, c oligomerization,

d backbone deformation/distortion, e backbone kinking/flexing,

f switching to a non-transmembrane state, i.e., binding to the

membrane interface
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composition and properties of the lipid environment, but

also on the extent to which the peptides self-associate.

Most of the natural transmembrane peptides investigated

with solid-state NMR methods are believed to exist as

homo-oligomers in the functional unit; good examples are

the influenza M2 channel (Wang et al. 2001; Cady et al.

2007), phospholemman (Wong et al. 2008), or phospho-

lamban (Abu-Baker et al. 2007). Interactions among the

subunits of these helical bundles can be expected to largely

restrict the motions of the transmembrane segments.

Especially oscillations around the helix axis will be small

since such motions would alter the contact interfaces to

neighboring helices. Thus, the orientation parameters of

transmembrane segments participating in oligomers will be

much less affected by motional averaging when investi-

gated with solid-state NMR methods.

WALP peptides were shown to have no tendency to self-

associate even at high peptide-to-lipid ratios, and only

under large mismatch conditions a slightly higher tendency

to self-associate was found (Sparr et al. 2005a). However,

even for peptides that do not have a tendency to oligo-

merize, peptide-peptide interactions may occur if the

samples contain a high peptide-to-lipid ratio. For example,

in order to achieve sufficient sensitivity, PISEMA spectra

of uniformly 15N-labelled peptides are recorded on oriented

bilayers at high peptide-to-lipid ratios, e.g., of 1:16 (Wang

et al. 2001) or 1:20 (Vostrikov et al. 2008). In contrast, 2H

NMR experiments on peptides with single deuterium-

labelled alanines by using the GALA method can be per-

formed on unoriented bilayers at low peptide-to-lipid ratios

of 1:100 (Strandberg et al. 2004), thereby avoiding side

effects of peptide–peptide interactions on the orientation of

the transmembrane peptides. Therefore, in these experi-

ments, large peptide motions, i.e., oscillations around the

helix axis, are much more probable, which would lead to

averaging of the quadrupolar splittings.

It is clear that in order to unambiguously determine tilt

angles of transmembrane peptides under different experi-

mental conditions, information on their dynamics is

required. WALP peptides in PC bilayers seem like an ideal

test case for this because these systems have been char-

acterized extensively already by many different techniques

(Killian 2003; Killian and Nyholm 2006). Moreover, it is

important to solve the discrepancy described above, and to

reliably characterize these model peptides in order to allow

using them as simple and well characterized model sys-

tems, for example for the validation of new techniques and

calibration of existing methods. This holds not only for

validation of solid-state NMR methods, but also for MD

simulation techniques, which at present are limited by

relatively short timescales and the requirement for many

input parameters that need to be validated by experimental

results. Indeed, to our knowledge MD simulations so far

have not succeeded in reproducing the experimentally

observed quadrupolar splittings.

Recent developments in the ‘‘tilt story’’

The importance of peptide dynamics for calculations of

peptide rotation and tilt by solid-state NMR methods have

led several groups to focus in more detail on motional

properties of transmembrane peptides. Strandberg et al.

reanalyzed experimental 2H NMR data published for

WALP23 peptides (Strandberg et al. 2004) using different

peptide models with increasing complexity of peptide

dynamics. The authors compared the results obtained with

the previous, quasi-static model that included peptide

motion using a global order parameter S (Fig. 3a) with the

results of more advanced dynamic models including

explicit oscillations Dq and/or wobbling-in-a-cone

motions Ds (Fig. 3b). The different motion models were

found to match the data with similar deviations in terms of

rmsd, but yielded very different tilt angles (Strandberg

et al. 2009). In an accompanying publication, the same

group of authors investigated the effect of peptide

dynamics on PISEMA experiments (Esteban-Martin et al.

2009). For this purpose, PISEMA spectra were generated

from trajectories of an earlier MD study on WLP23

(Esteban-Martin and Salgado 2007a). Analysis of these

data with the different peptide models yielded similar tilt

angles for both the quasi-static and the dynamic peptide

models. However, the virtual PISEMA data could be fitted

best with a peptide model including explicit oscillations

and wobbling.

In an attempt to explore the differences between the

established solid-state NMR methods, Vostrikov et al.

compared the results of 2H NMR and PISEMA experi-

ments obtained on a related model peptide, a GWALP

peptide (Vostrikov et al. 2008). In this study, the experi-

mental data sets were separately analyzed using the con-

ventional, quasi-static peptide model. Both the 2H NMR

and PISEMA data sets yielded very similar tilt angles of

12.6� and 10.8�, respectively. Closer inspection of the fits

to the experimental data shows some deviations of the 15N

data from the fitted PISEMA wheel, especially for larger

dipolar couplings, which may suggest an underestimation

of the tilt angle (see discussion in Esteban-Martin et al.

2009). Since the GWALP peptide is a close relative of the

WALP peptides flanked at both ends by only a single

tryptophan, it may exhibit significant motions around the

helical axis. Together with the notion that analysis of tilt

angles by using either 2H NMR or PISEMA data can be

complicated due to motional averaging, it is very well

possible that the use of the conventional, quasi-static

peptide model may not be sufficient in this case.
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Very recently, a new strategy based on solid-state NMR

methods has been developed, called MACADAM (multiple

anisotropic constraints and dynamic analysis of membrane

peptides) (A. Holt, L. Rougier, V. Réat, F. Jolibois,

O. Saurel, J. Czaplicki, J.A. Killian, A. Milon, unpublished

data). This new approach combines nuclear interactions

with different orientations with respect to the helix axis,

which allows determination of both orientation and

dynamics of transmembrane segments in membranes. The

experimental data were analyzed using a dynamical model,

which extended the previous ‘‘quasi-static’’ model by

oscillations around the helix axis and wobbling-in-a-cone

motions, similar to the dynamical models utilized in the

recent work of Strandberg et al. (2009). A tilt angle of

*21� was obtained, which is much larger than the tilt

angle of around 5� determined from 2H NMR experiments

in combination with the GALA method. Furthermore, a

rotation angle of *150� was observed, which agrees well

with the results reported previously from 2H NMR

experiments.

In addition, an alternative, complementary approach

based on steady-state fluorescence spectroscopy for the

investigation of the orientation of transmembrane peptides

in membranes was applied (Holt et al. 2009). For this study,

WALP23 peptides including cysteine replacements in dif-

ferent positions along the helix were labelled with the

environment-sensitive label BADAN. The fluorescence

spectra of this label reflect the local polarity at the position

of the label, which was used to determine the orientation of

the peptide in the bilayer. For WALP23 inserted in di-

C18:1PC, a tilt angle of ca. 24� and a rotation angle of 136�
were found, which agree well with the results of the new

MACADAM approach. Furthermore, as with the GALA

method, only small changes in tilt angle were observed upon

changing the hydrophobic thickness of the bilayer, i.e.,

24.8� and 19.8� in bilayers of di-C16:1PC and di-C20:1PC,

respectively. These findings suggest that WALP23 peptides

do not fully compensate for hydrophobic mismatch by tilt-

ing, in agreement with the notion that other adaptations

occur simultaneously (Killian and Nyholm 2006).

Functional importance of tryptophan anchoring

From the adaptations to hydrophobic mismatch, it is clear

that WALP peptides interact strongly with the surrounding

lipids and it is likely that the flanking tryptophan residues

play a role in this interaction. Tryptophans in interfacial

positions of membrane proteins are thought to couple

transmembrane segments to the membrane in a very par-

ticular manner; on one hand tryptophans prefer a distinct

location at the membrane-water interface (Yau et al. 1998;

Persson et al. 1998; de Planque et al. 2003), but on the

other hand tryptophans in interfacial positions were also

shown to inhibit tilting of transmembrane segments

(Chiang et al. 2005). This, at first sight contradictory,

behavior of tryptophan-flanked transmembrane segments

may have two reasons.

First, interfacial tryptophans were shown to order lipid

acyl chains in the vicinity of transmembrane segments

when experiencing positive hydrophobic mismatch (de

Planque et al. 2002), which may also involve a more or less

pronounced concerted response of lipids in more remote

lipid layers around the transmembrane segments. Such a

stretching of the lipids leads to a more ordered and con-

densed bilayer around the transmembrane peptide, which in

turn may hinder tilting. Second, tilting may entail a dif-

ferent and more unfavorable rotamer conformation and/or

localization of the tryptophan side chain in the membrane.

It was found before that tryptophans prefer certain rota-

meric conformations and locations at the membrane

interface (Yau et al. 1998; Persson et al. 1998; Chamber-

lain and Bowie 2004). The latter may be important for

maintaining the correct localization and orientation of

∆ρ

ρρ

∆τ

ττ

Quasi-static model Dynamic model

a b
Fig. 3 a The quasi-static model

describes the orientation of the

peptide by a tilt angle s and a

rotation angle q, with limited

motional averaging described

by a global order parameter

S. b In the dynamic model, the

previous model is extended by

an oscillation Dq around the

helix axis and by a wobbling-

in-a-cone motion Ds
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tryptophans at the membrane/water interface, assuring the

proper orientation and insertion of membrane proteins.

Future prospects

The work on establishing properties of even the most

simple model systems of a synthetic peptide (in this case

WALP) in artificial lipid systems has proven to be quite

challenging. We are now finally beginning to approach the

situation that the properties of the systems are becoming

fully understood and that the characterization is thorough

and reliable under a wide range of experimental conditions.

The availability of such a thoroughly characterized model

system of a synthetic transmembrane peptide in lipid

bilayers opens up many perspectives for future studies.

First, one can apply this knowledge to investigate fun-

damental questions regarding the complex interaction

mechanisms of membrane proteins and lipids within the

membrane by addressing the importance of specific peptide

or lipid properties for the peptide/lipid interplay. As an

example, studies on the behavior of model membranes

containing either WALP or KALP peptides have yielded

valuable insights on the possible roles of tryptophans and

lysines as flanking residues. They showed that tryptophans

strongly anchor transmembrane segments to the lipid/water

interface and that they resist being pulled away from the

interface either towards the hydrophobic core of the bilayer

or towards the aqueous phase (de Planque et al. 2003). In

contrast, lysines have a long flexible side chain, which does

not resist being pulled into the aqueous phase, and which

can snorkel to the membrane/water interface when the

backbone is pulled into the hydrophobic part of the bilayer

(Kandasamy and Larson 2006; Strandberg and Killian

2003). Hence, lysines as flanking residues may allow

membrane proteins to readily adapt to varying membrane

thickness, without significant distortion of either the sur-

rounding lipids or the protein backbone. Options for future

studies include for example finding out basic principles of

how the overall hydrophobicity affects the tendency of a

peptide to adjust its tilt angle to the bilayer thickness, or

how the flanking residues and the amino acid distribution

around the helix axis influence the preferred direction of tilt

of a peptide.

Second, the availability of simple, well characterized

and reliable model systems is important for validation and/

or calibration of new techniques. WALP peptides have

been used for improving MD simulations, and for testing

various new methods including NMR approaches (Vogel

et al. 2003; Lemaitre et al. 2004; Andronesi et al. 2004),

EPR approaches (Nielsen et al. 2005), and computational

techniques (Im and Brooks 2005; Bond et al. 2007;

Ulmschneider et al. 2009).

Third, one can use artificial model systems to investigate

molecular details of the possible role of transmembrane

protein segments in functional properties of membrane

proteins. Examples are the influence of transmembrane

segments on lipid transbilayer movement (Kol et al. 2001,

2003), the importance of the length of the transmembrane

segment for partitioning into liquid-ordered domains (Ren

et al. 1999; van Duyl et al. 2002; Vidal and McIntosh

2005), the involvement of protein transmembrane segments

in signalling (Matthews et al. 2006), or the sensing of

membrane fluidity by protein transmembrane segments

(Mansilla and de Mendoza 2005).

As the investigations using designed model systems

continue, and as more and more insight is obtained about

the molecular nature of peptide/lipid interactions and the

factors that can influence this, we will gradually improve

our understanding of properties of membrane proteins and

how they are influenced by the lipid environment. Because

such model systems allow testing of an almost infinite

number of parameters in lipid and peptide composition as

well as environmental conditions, challenges will lie in

selecting those parameters that allow direct testing of a

working hypothesis or that will provide answers to general

questions that are important for understanding protein/

lipid interactions. The ultimate challenge will be to extend

this research towards understanding and predicting prop-

erties and lipid interactions of multi-spanning proteins in

membranes. An initial step towards this goal would

require the use of more sophisticated model systems, for

example with two or more covalently coupled transmem-

brane peptides whose properties can be systematically

altered. In the end, the knowledge obtained on such sys-

tems may help to obtain a complete understanding of the

principles that govern structure, function, and dynamic

properties of this important but elusive class of proteins in

lipid bilayers and how they can be modulated by the lipid

environment.
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Özdirekcan S, Etchebest C, Killian JA, Fuchs PFJ (2007) On the

orientation of a designed transmembrane peptide: toward the

right tilt angle? J Am Chem Soc 129:15174–15181

Park SH, Opella SJ (2005) Tilt angle of a trans-membrane helix is

determined by hydrophobic mismatch. J Mol Biol 350:310–318

Persson S, Killian JA, Lindblom G (1998) Molecular ordering of

interfacially localized tryptophan analogs in ester- and ether-

lipid bilayers studied by 2H-NMR. Biophys J 75:1365–1371

Eur Biophys J (2010) 39:609–621 619

123



Petrache HI, Zuckerman DM, Sachs JN, Killian JA, Koeppe RE II,

Woolf TB (2002) Hydrophobic matching mechanism investi-

gated by molecular dynamics simulations. Langmuir 18:1340–

1351

Radzwill N, Gerwert K, Steinhoff HJ (2001) Time-resolved detection

of transient movement of helices F and G in doubly spin-labeled

bacteriorhodopsin. Biophys J 80:2856–2866

Ren J, Lew S, Wang J, London E (1999) Control of the transmem-

brane orientation and interhelical interactions within membranes

by hydrophobic helix length. Biochemistry 38:5905–5912

Rinia HA, Boots JWP, Rijkers DTS, Kik RA, Snel MME, Demel RA,

Killian JA, van der Eerden JPJM, de Kruijff B (2002) Domain

formation in phosphatidylcholine bilayers containing transmem-

brane peptides: specific effects of flanking residues. Biochem-

istry 41:2814–2824

Seshadri K, Garemyr R, Wallin E, von Heijne G, Elofsson A (1998)

Architecture of beta-barrel membrane proteins: analysis of

trimeric porins. Protein Sci 7:2026–2032

Shahidullah K, London E (2008) Effect of lipid composition on the

topography of membrane-associated hydrophobic helices: sta-

bilization of transmembrane topography by anionic lipids. J Mol

Biol 379:704–718

Siegel DP, Cherezov V, Greathouse DV, Koeppe RE II, Killian JA,

Caffrey M (2006) Transmembrane peptides stabilize inverted

cubic phases in a biphasic length-dependent manner: implica-

tions for protein-induced membrane fusion. Biophys J 90:200–

211

Sparr E, Ash WL, Nazarov PV, Rijkers DTS, Hemminga MA,

Tieleman DP, Killian JA (2005a) Self-association of transmem-

brane alpha-helices in model membranes—importance of helix

orientation and role of hydrophobic mismatch. J Biol Chem

280:39324–39331

Sparr E, Ganchev DN, Snel MME, Ridder ANJA, Kroon-Batenburg

LMJ, Chupin V, Rijkers DTS, Killian JA, de Kruijff B (2005b)

Molecular organization in striated domains induced by trans-

membrane alpha-helical peptides in dipalmitoyl phosphatidyl-

choline bilayers. Biochemistry 44:2–10

Strandberg E, Killian JA (2003) Snorkeling of lysine side chains

in transmembrane helices: how easy can it get? FEBS Lett

544:69–73

Strandberg E, Morein S, Rijkers DTS, Liskamp RMJ, van der Wel

PCA, Killian JA (2002) Lipid dependence of membrane

anchoring properties and snorkeling behavior of aromatic and

charged residues in transmembrane peptides. Biochemistry

41:7190–7198
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