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Abstract

Background Improved optical diagnostic technology is

needed that can be used by also outside expert centers.

Hence, we developed an artificial intelligence (AI) system

that automatically and robustly predicts the pathological

diagnosis based on the revised Vienna Classification using

standard colonoscopy images.

Methods We prepared deep learning algorithms and colo-

noscopy images containing pathologically proven lesions

(56,872 images, 6775 lesions). Four classifications were

adopted: revised Vienna Classification category 1, 3, and

4/5 and normal images. The best algorithm—ResNet152—

in the independent internal validation (14,048 images, 1718

lesions) was used for external validation (255 images, 128

lesions) based on neoplastic and non-neoplastic classifica-

tion. Diagnostic performance of endoscopists was com-

pared using a computer-assisted interpreting test.

Results In the internal validation, the sensitivity, speci-

ficity, positive predictive value (PPV), negative predictive

value (NPV), and accuracy for adenoma (category 3) of

84.6% (95% CI 83.5–85.6%), 99.7% (99.5–99.8%), 90.8%

(89.9–91.7%), 89.2% (88.5–99.0%), and 89.8%

(89.3–90.4%), respectively. In the external validation,

ResNet152’s sensitivity, specificity, PPV, NPV, and accu-

racy for neoplastic lesions were 88.3% (82.6–94.1%),

90.3% (83.0–97.7%), 94.6% (90.5–98.8%), 80.0%

(70.6–89.4%), and 89.0% (84.5–93.6%), respectively. This

diagnostic performance was superior to that of expert

endoscopists. Area under the receiver-operating charac-

teristic curve was 0.903 (0.860–0.946).

Conclusions The developed AI system can help non-expert

endoscopists make differential diagnoses of colorectal

neoplasia on par with expert endoscopists during

colonoscopy.
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NPV Negative predictive value

95%

CI

95% Confidence interval

t-SNE T-distributed stochastic neighbor embedding

PIVI Preservation and Incorporation of Valuable

endoscopic Innovations

Introduction

Artificial intelligence (AI) is increasingly being applied to

medical images [1–3] and AI based on deep learning can

achieve high diagnostic accuracy comparable to that of

human experts [4–6]. We previously developed a system

that detects early signs of colorectal cancer by applying

deep learning to colonoscopy images [7].

During a colonoscopy, polypectomy is performed to

reduce the incidence and mortality of colorectal cancer

(CRC) [8–10]. Accurate endoscopic determination of col-

orectal polyp histology is essential for preventing unnec-

essary polypectomies and biopsy before endoscopic

resection, setting appropriate surveillance intervals, and

reducing the costs associated with the histopathologic

assessment of polyps. Previous studies have found that

expert endoscopists achieve high performance in optical

diagnosis with * 90% sensitivity and 80–90% specificity,

whereas community-based gastroenterologists achieve

only * 70% sensitivity and 75% specificity [11, 12].

Furthermore, several prospective studies have noted lower

sensitivity (70%) and specificity (80%) in differentiating

malignant from benign colon polyps under white-light

imaging (WLI) [13, 14].

To overcome these gaps and prevent missed diagnosis,

we sought to develop a robust automated endoscopic dif-

ferential diagnosis prediction system using deep learning.

Deep learning models have been successfully applied in

various computer vision tasks [15, 16]. In recent years,

deep learning has also been applied in the field of endo-

scopy, including polyp detection in colonoscopy, differ-

ential diagnosis in upper gastrointestinal endoscopy, and

determination of Helicobacter pylori infection status.

Several prospective randomized control trials have been

reported for the detection of colorectal tumors in colono-

scopy with AI, and some programs have been approved as

medical devices due to their usefulness in combination

with AI [17]. Despite this progress, however, AI technol-

ogy is still far from the point where correct diagnosis with

AI eliminates the need for pathological evaluation.

To our knowledge, nearly all of these previous studies

have used only two-category output, namely, neoplastic

lesion versus non-neoplastic lesion or cancer versus

erosion. Only one study reported a deep learning model for

differential diagnosis in colonoscopy, but this model was

designed to distinguish only two categories—adenomatous

versus hyperplastic diminutive polyps—and lacked exter-

nal validation data [18]. Given that colorectal carcinogen-

esis is a multistep process involving alterations of several

oncogenes and tumor suppressor genes, a multi-class

classification model for pathological categorization can be

considered suitable for performing differential diagnosis in

colonoscopy. In the present study, we developed and

externally validated deep learning models that automati-

cally predict a differential diagnosis according to the

revised Vienna Classification [19] by using colonoscopy

images of various pathological non-invasive lesions and

adenocarcinomas of the colorectum. We aimed to develop

and validate an AI system for multi-class classification

along with a multi-step model of CRC carcinogenesis and

compared its performance to that of endoscopists.

Materials and methods

Patients and colonoscopy image samples

This study was a multicenter, retrospective observational

study using stored colonoscopy images. Inclusion criteria

were patients who had colorectal neoplasms. Exclusion

criteria were patients with advanced colorectal cancer (type

1–5 in Parris’ classification), inflammatory bowel disease,

familial adenomatous polyposis, and patients who under-

went chemotherapy and radiation therapy for colorectal

cancer.

The images were captured using the following three

modalities: WLI; equipment-based image-enhanced endo-

scopy (IEE), including narrow-band imaging (NBI) and

blue laser imaging (BLI); and chromoendoscopy, which

includes indigo carmine dye spraying and crystal violet

staining (Fig. 1, Supplementary Figs. 1 and 2). All images

were obtained using commonly used endoscopes (PCF-

Q240ZI, CF-H260AZI, PCF-Q260AZI, CF-HQ290AI, and

PCF-H290AZI, Olympus Optical Co., Tokyo, Japan; EC-

580RD/M, EC-590MP, EC-590ZP, EC-590WM3, EC-

600ZW/M, EC-600WM, and EC-L600ZP, Fujifilm Medi-

cal Co., Tokyo, Japan) and a standard video processor

system (EVIS LUCERA, Olympus Optical; Advancia HD

or LASEREO; Fujifilm Medical).

The characteristics of the lesions and the numbers of

images used in the present study are summarized in Table 1

and Supplementary Table 1, respectively. All lesions in the

training and validation sets were pathologically proven

early-stage CRCs (Tis or T1) or precancerous lesions. The

selected images had good image quality (less halation, no

stool, etc.), were in focus, free of hemorrhage, showed a
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single lesion in each image, showed no devices, and were

collected by the authors (MY, SR, HK, SY). All lesions in

the images were manually annotated as regions of interest

(ROIs) at their edges by two authors (HK, SY) and they

were confirmed by an experienced endoscopist (MY).

Building deep learning algorithms and internal

validation

Among the collected still images of colonoscopies per-

formed between January 2013 and December 2018, the

following types of images were used to train the deep

learning model in this study: revised Vienna classification,

category 1, hyperplastic polyps (HP) or sessile serrated

lesions (SSL); category 3, low-grade adenoma/dysplasia;

category 4, high-grade adenoma/dysplasia; category 5.1,

intramucosal carcinoma; category 5.2, submucosal invasive

carcinoma; and normal images (NA) cropped from the non-

diseased area of the lesion images [19]. All images were

pathologically verified according to the revised Vienna

Classification. In the case of heterogeneous histology, the

higher category was preferentially adopted. The criterion

for standard pathology was agreement on the histopatho-

logical diagnosis among three pathologists at our hospital

(the training set and internal validation set). Based on the

standard clinical treatment strategy (normal mucosa, no

treatment; non-neoplastic lesions, case by case; benign

neoplastic lesions, cold polypectomy or EMR, malignant

lesions: EMR, ESD or surgery), categories in the AI system

were set for categories 1, 3, and 4/5 of the revised Vienna

Classification and NAs. The diagnosis of SSL was not

mentioned in the revised Vienna Classification, but was

diagnosed by a pathologist according to the World Health

Organization classification and included in Category 1 of

the Vienna Classification in the present study.

The collected dataset contains 51,550 images of 8,493

consecutive lesions, and 19,352 NAs were assigned to

training, hyperparameter tuning, and internal validation

sets in a ratio of about 5:1:1 (Table 1 and Supplementary

Table 1). The training and hyperparameter tuning datasets

were collected from 2013 to 2017, and the internal vali-

dation set was collected in 2018 at our division. The

hyperparameter tuning set was used for setting adequate

values of hyperparameters including the learning rate,

batch size, number of iterations, momentum, and weight

decay.

Deep learning algorithm—ResNet152 (Supplementary

Fig. 3 and Supplementary Table 2)—were trained to learn

the colonoscopy features of the disease [20]. Data aug-

mentation (DA) was used to eliminate the class imbalance

between the four categories (Supplementary Fig. 4) [21].

Detailed information is provided in the online supple-

mental materials. The category with the highest output

score in the multi-class classification was adopted as the

Fig. 1 Representative images in white light imaging. a, e, i Super-

ficial elevated type. b, f, j Polypoid type. c, g, k Laterally spreading

tumor type. d, h, i Flat and depressed type. a, b, c, d Category 1 in the

revised Vienna Classification. e, f, g, h Category 3 in the revised

Vienna Classification. i, j, k, l Category 4/5 in the revised Vienna

Classification
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AI’s inference result. The diagnostic performance of the

trained model for categories 1, 3, and 4/5 of the revised

Vienna Classification and NAs and the inference speed

were calculated using the internal validation set.

External validation

An external validation study focusing on differentiation

between neoplastic and non-neoplastic lesions was per-

formed as in previous studies [18, 22]. All images collected

between July 2020 and October 2020 from seven com-

munity hospitals in four prefectures of Japan excluding our

hospital were assigned. Inclusion criteria were as follows:

(1) patients elder than 20 y/o who underwent colonoscopy

for fecal immunochemical testing positive, and surveil-

lance after polypectomy, (2) patients who have macro-

scopic type 0 in Pari’s classification lesion. Colonoscopy

was aimed at endoscopic resection, and patients who have

inflammatory bowel disease or previous colonic surgery

were excluded. Lesions pathologically proved hyperplastic

polyp, sessile serrated lesion, adenoma, or adenocarcinoma

were used for the external validation. Among them, images

that had good image quality (less halation, no stool, etc.),

were in focus, free of hemorrhage, showed a single lesion

in each image, and showed no device were selected.

The external validation set was comprised 255 images of

128 lesions, including 83 images of non-neoplastic lesions

(56 HP and 27 SSL images) and 172 images of neoplastic

lesions (Table 1 and Supplementary Table 1). The diag-

nostic performance of the trained model for differentiation

of neoplastic and non-neoplastic lesions and the inference

speed were calculated on the graphics processing unit

(NVIDIA GeForce RTX 2070) of a personal computer. The

Table 1 Number of images used in the deep learning training and validations

Revised Vienna Classification Training Hyperparameter

tuning

Internal

validation

External

validation

Category 1

Hyperplastic polyp or sessile serrated lesion, images (lesions) 7004

(1086)

1869 (274) 963 (198) 83 (68a)

WLI 1917 (868) 522 (219) 221 (127) 46 (34)

IEE (BLI/NBI) 2915 (945) 726 (237) 466 (168) 37 (34)

Chromoendoscopy* 2172 (557) 621 (150) 276 (106) 0 (0)

Category 3

Low-grade adenoma/dysplasia images (lesions) 15693

(3489)

2652 (585) 5639 (1316) 172 (131�)

WLI 4567

(2741)

713 (453) 1586 (971) 98 (60)

IEE (BLI/NBI) 7036

(3137)

1242 (556) 2667 (1154) 74 (71)

Chromoendoscopy* 4090

(1556)

697 (271) 1386 (528) 0 (0)

Category 4/5

High-grade adenoma/dysplasia or Submucosal invasive cancer

images (lesions)

12629

(1075)

3164 (266) 1955 (204)

WLI 3137 (942) 693 (216) 490 (162)

IEE (BLI/NBI) 4492 (937) 1169 (235) 762 (176)

Chromoendoscopy* 5000 (657) 1302 (155) 703 (112)

Normal, images 11056 2805 5491 0

WLI 3650 898 2075

IEE (BLI/NBI) 4594 1221 2061

Chromoendoscopy* 2812 686 1355

Total number of images 46382

(5650)

10490 (1125) 14048 (1718) 255 (128)

WLI white light imaging, IEE image-enhanced endoscopy, BLI blue laser imaging, NBI narrow-band imaging

*Chromoendoscopy includes indigo carmine dye spraying and crystal violet staining
aThe 71 lesions were captured using both WLI and IEE images and were counted in both groups
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pathological information set was taken from the medical

records of each participating institution.

To compare diagnostic yields between the AI system

and the endoscopists, an observational study involving a

computer monitor test was conducted, using all 255 images

from the external validation set. The participating endo-

scopists were all employees of our hospital and were

classified into the following groups: expert (C 5000

colonoscopies or certification by the Japan Gastroentero-

logical Endoscopy Society; 4 endoscopists), fellow

(\ 5000 colonoscopies and no board certification; 3

endoscopists), and novice (\ 1000 colonoscopies and no

board certification; 5 endoscopists). The observers were

blinded to both the histopathological diagnosis and clinical

information, and the images were evaluated randomly to

calculate the human diagnostic yield for each observer.

T-distributed stochastic neighbor embedding (t-

SNE) analysis

We analyzed the internal features of the fully trained

ResNet152 model by using t-SNE analysis. Detailed

information is provided in the online supplemental

materials.

Statistical analysis

The diagnostic performance of the trained model was

evaluated by estimating the sensitivity, specificity, NPV,

and PPV with their Clopper–Pearson exact 95% CIs. In the

internal validation, accuracy, PPV, and NPV were calcu-

lated under the assumption that the ratio of lesions (in-

cluding category 1, 3, and 4/5) to non-lesions (including

NAs) was 60:40. The diagnostic performance was calcu-

lated on an image basis that had a confidence score of 0.9

or higher. Detailed information is provided in the online

supplemental materials.

Patient and public involvement

This study included no patient and public involvement.

Results

Representative depiction of the AI

Representative images of AI responses according to cate-

gory and lesion morphology are shown in Fig. 1 and

Supplementary Figs. 1 and 2 for the modalities WLI, IEE,

and chromoendoscopy, respectively. In addition, a repre-

sentative depiction of AI is shown in Supplementary Video

1.

Characteristics of lesions

The clinicopathological characteristics of the lesions in the

validation sets are shown in Supplementary Table 1. The

numbers of images used for internal and external validation

for each modality (WLI, IEE, and chromoendoscopy) are

summarized in Table 1. The number of images stratified by

tumor location, tumor size, and morphology are summa-

rized in Supplementary Table 3. Supplementary Table 4

summarizes the details of the manufacturer and modality

(WLI or IEE) used in the external verification set. Detailed

information is provided in the online supplemental

materials.

Deep learning algorithm

On the basis of these results, we chose ResNet152 as the

prediction model because it had the highest accuracy with

the fastest inference time. Detailed information is provided

in the online supplemental materials.

Diagnostic performance of the AI system

in the internal validation test

The diagnostic performance of the fully trained ResNet152

model in the internal validation test is summarized in

Table 2. The model achieved an overall accuracy of 89.8%

(95% CI 89.3–90.4%). The sensitivities for categories 1, 3,

and 4/5 were 82.4% (95% CI 79.6–85.1%), 84.6 (95% CI

83.5–85.6%), and 79.8 (95% CI 77.7–81.8%), respectively,

and the specificity was 99.7% (95% CI 99.5–99.8%). The

positive predictive values (PPVs) for categories 1, 3, and

4/5 were 72.8% (95% CI 69.8–75.8%), 90.8% (95% CI

89.9–91.7%), and 70.4% (95% CI 68.2–72.5%), respec-

tively, when calculated with an assumption that the ratio of

lesions (including categories 1, 3, 4 and 5) to non-lesions

(including NAs) was 60:40 based on a previous study [23].

The negative predictive values (NPVs) for categories 1, 3,

and 4/5 achieve 91.2% (95% CI 90.7–91.8%), 89.2% (95%

CI 88.5–90.0%), and 93.3% (95% CI 92.8–93.8%),

respectively, when calculated with an assumption that the

ratio of lesions to non-lesions was 60:40.

Results of subgroup analysis of sensitivity (by tumor

location, tumor size, and morphology), raw data for the

diagnostic performance of the AI system, and diagnostic

performance stratified by modality and manufacturer are

summarized in Supplementary Table 5, Supplementary

Table 6, and Supplementary Table 7, respectively. Detailed

information is provided in the online supplemental

materials.

Among all 14,048 images, 13.2% (1855 images) were

diagnosed with a confidence score lower than 0.9 and

excluded from the analysis. The distribution was differed
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between lesion or NA: 22% in category 1, 20% in category

3, 23% in category 4 or 5, and 1% in NA.

External validation of AI performance

in differentiating neoplastic and non-neoplastic

lesions and comparison with endoscopists

The sensitivity and specificity of the AI system for neo-

plastic lesion were 88.3% (95% CI 82.6–94.1%) and 90.3%

(95% CI 83.0–97.7%), respectively (Table 3). The area

under the receiver operating characteristic (ROC) curve

was 0.903 (0.860–0.946). External validation with data

from an observational study in humans demonstrated that

the AI system had a diagnostic sensitivity comparable to

that of expert endoscopists and superior to that of fellows

and novices (Fig. 2). Specifically, the AI system had a

diagnostic sensitivity comparable to that of expert

endoscopists and better than fellows and novices, whereas

the specificity exceeded that of all endoscopists (Table 3).

The median sensitivity and specificity of all endoscopists

were 85.0% (range 65.0–93.3%) and 69.4% (range

43.5–90.3%), respectively. Sensitivity was higher accord-

ing to skill level: expert, 87.9% (range 65.0–93.3%); fel-

low, 85.0% (range 80.8–89.2%); and novice 82.5% (range

75.0–90.0%). Specificity was also higher according to skill

level: expert, 72.6% (range 48.4–90.3%); fellow, 71.0%

(range 50.0–82.3%); and novice, 66.1% (range

43.5–71.0%). The median inference speeds of the AI sys-

tem and the endoscopist were 12.9 ms/image (interquartile

range = 12.8–14 ms/image) and 1830 ms/image (in-

terquartile range = 1660–2260 ms/image) to analyze the

same set of 255 images (Table 3).

The sensitivity, specificity, and NPV in the WLI sub-

group and in the IEE subgroup for the AI system and

Table 2 Diagnostic performance of the AI system for predicting the pathology of early-stage colorectal cancers and precursor lesions in the

internal validation

Revised Vienna

Classification

Sensitivity %,

(95% CIs)

Specificity %,

(95% CIs)

Positive predictive

value %, (95% CIs)

Negative predictive

value %, (95% CIs)

Accuracy %,

(95% CIs)

Category 1* 82.4 99.7 (99.5–99.8) 72.8 91.2 89.8 (89.3-90.4)

(79.6–85.1) (69.8-75.8) (90.7-91.8)

Category 3a 84.6 90.8 89.2

(83.5–85.6) (89.9-91.7) (88.5-90.0)

Category 4/5b 79.8 70.4 93.3

(77.7–81.8) (68.2-72.5) (92.8-93.8)

Overall 83.3 83.4 99.4

(82.4–84.1) (82.5-84.3) (99.2-99.7)

CIs confidence intervals

*Vienna Classification Category 1 includes hyperplastic polyp or sessile serrated lesion
aCategory 3 includes low-grade adenoma/dysplasia
bCategory 4/5 includes high-grade adenoma/dysplasia or submucosal invasive cancer

Table 3 External validation of the diagnostic performance of the AI system and endoscopists for predicting the pathology of early-stage

colorectal cancers and precursor lesions

All endoscopists Experts Fellows Novice AI

n = 12 n = 4 n = 3 n = 5

Sensitivity (median) 88.9% 89.6% 90.3% 84.7% 90.1%

IQR 84.7–90.6 83.3–92.4 88.2–90.3 84.7–90.3 NA

95% CIS NA NA NA NA 83.6–96.6

Specificity (median) 65.8% 67.1% 55.3% 68.4% 72.3%

IQR 53.9–76.3 53.3–78.9 47.4–61.8 63.2–76.3 NA

95% CIS NA NA NA NA 60.0–85.1

Inference time, [sec/image] (median) 1.83 1.72 2.17 1.86 0.0129ss

IQR 1.66–2.26 1.63–1.84 1.92–2.34 1.69–2.51 0.0128–0.014

The AI model and the endoscopists were tested using the same 255 images

AI artificial intelligence, IQR interquartile range, NA, not assessed
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endoscopists are summarized in Supplementary Table 8

and the differences in performance according to endoscope

manufacturers are summarized in Supplementary Table 9.

Detailed information is provided in the online supple-

mental materials.

Among all 255 images, 28.6% (73 images) were diag-

nosed with a confidence score lower than 0.9 and excluded

from the analysis. The distribution was high at 37% of the

WLI images in the neoplastic lesions compared to 27% of

the WLI images in the non-neoplastic lesions, and 22% of

the IEE images in the neoplastic and non-neoplastic

lesions.

Visualizing the internal features of convolutional

neural networks (CNNs) with t-SNE

The internal features of the fully trained ResNet152 model

are shown in Fig. 3. Each point represents the projection of

the 2048-dimensional features of ResNet152 onto two

dimensions for an endoscopy image. NA clusters and

lesion clusters containing categories 1, 3, and 4/5 are

Fig. 2 ROC curve of the trained model and diagnostic performance

of endoscopists in the external validation. External validation with

data from an observational study in humans demonstrated that the AI

system had the same diagnostic sensitivity as expert endoscopists and

was superior to that of fellows and novices

Fig. 3 t-SNE visualization from the last hidden layer of the trained

ResNet-152 for the four categories. All endoscopic images were

marked with their internal features of the trained ResNet-152 and

corresponding revised Vienna Classification. Most of the endoscopic

images were well separated into the revised Vienna Classifications.

a All validated images in the internal validation study. b White light

images. c Image-enhanced endoscopy. d Chromoendoscopy
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clearly separated on the left and right, respectively, and

lesion clusters are also well classified into the 3 categories.

However, category 3 and category 4/5 are slightly mixed

(Fig. 3a). In the WLI subgroup, the category 3 cluster is

well separated from the category 4/5 cluster, whereas the

category 1 and category 3 clusters overlap slightly

(Fig. 3b). In the IEE subgroup, the category 1 and 3 clus-

ters are more clearly separated than in the WLI subgroup

(Fig. 3c), but there is a slight overlap between the category

3 cluster and the category 4/5 cluster. In the chromoen-

doscopy subgroup, the category 3 cluster overlaps with the

category 4/5 cluster more than in the IEE subgroup

(Fig. 3d).

Discussion

In this study, we developed an AI system that uses deep

learning techniques to automatically and robustly predict

the pathological diagnosis of the revised Vienna Classifi-

cation from standard and common endoscopic colonoscopy

images. In recent years, attempts have been made to

develop AI systems that can predict the pathological

diagnosis of colorectal tumors by using deep learning and

support vector machines, and some meaningful and valu-

able data have been reported [18, 22, 24–28]. Although

improving the optical diagnosis of benign lesions can

reduce pathological costs, models incapable of diagnosing

high-grade tumors, including cancer, are unsatisfactory for

clinical use due to the multi-step process of colorectal

carcinogenesis. Furthermore, in order for the research

results to be discussed worldwide, it is necessary to use

globally uniform pathological diagnostic criteria for this

type of research. Therefore, we adopted a multi-class

classification for the output class of the CNN, which is

based on the revised Vienna Classification, a widely known

international classification method. In this study, we

included four clinically important categories of the multi-

class classification: category 1 (non-neoplastic lesion),

category 3 (low-grade adenoma/dysplasia), and category 4

(high-grade adenoma/dysplasia) or 5 (invasive carcinoma).

Each of these four classifications has different clinical

treatment strategies, including observation, cold polypec-

tomy, endoscopic mucosal resection, and surgery, so clas-

sifying them is a clinically important issue [29].

The strengths of our AI system include (1) high diag-

nostic performance based on approximately 70,000 images

of more than 8500 unique lesions, (2) multi-class classifi-

cation according to the Vienna Classification and the multi-

step pathway of the colorectal carcinogenesis, (3) perfor-

mance confirmed by internal and external validation, and

(4) availability for use with non-magnified endoscopic

images from multiple manufacturers. To the best of our

knowledge, two recent studies have reported high diagnosis

performance with the 3-classification AI model (CADx).

Minegishi et al. reported a single-arm prospective study

using CADx for narrow-band imaging (NBI-CADx) clas-

sifying 3-classes: hyperplastic polyp, sessile serrated

lesion, and neoplastic/adenomatous. Using still NBI ima-

ges, the NBI-CAD achieved an overall 93.3% sensitivity

and 61.5% specificity for diagnosing diminutive (\ 5 mm)

neoplasms [30]. Similar results were reported by Ozawa

et al. using about 17,000 images from about 4800 col-

orectal polyps and about 4000 normal colorectum images

[31]. Although the sensitivity was high, the low specificity

may to lead the misidentification of non-neoplasms as

neoplasms, resulting in shorter surveillance intervals. Even

including WLI images, the high sensitivity and specificity

for diagnosing neoplastic lesions in external validation at

88.3 and 90.3% in our study suggest that a large amount of

training data, about 57,000 images from about 7000 unique

lesions, may have affected the performance, and this AI

system can be used to provide precise feedback to physi-

cians in clinical settings.

We have developed a robust, high-performance diag-

nostic model that aims to enable the use of AI during

colonoscopy without interfering with the physicians’

operations. The accuracy of discriminating between neo-

plasms and non-neoplasms using WLI is reported to be

about 70% sensitivity and about 80% specificity in both

experts and endoscopists in general hospitals. The AI

system developed in this study achieved a sensitivity of

70–80% and specificity of almost 100% in all four cate-

gories, suggesting that high diagnostic accuracy was

achieved even for WLI. Although previous studies have

reported that expert endoscopists show high sensitivity

(about 85–95%) in optical diagnosis using IEE and pit

pattern, specificity is only about 70–80%, and not all

community-based gastroenterologists show such high per-

formance [11, 32, 33]. Our AI system achieved[ 80%

sensitivity and almost 100% specificity in all four cate-

gories in IEE. Interestingly, for all endoscopic images in

the internal validation set, we applied t-SNE to visualize

the internal features of ResNet152 based on the revised

Vienna Classification. The endoscopic images were well

classified by the internal features into different clusters

according to the three categories of the revised Vienna

Classification and NA, particularly in IEE. Therefore, the

diagnostic performance of the developed AI model is

considered to be comparable to that of experts, such as

endoscopists at university hospitals and high-volume

centers.

WLI, an optical digital image such as NBI/BLI, and

occasional use of chromoendoscopy are sequentially used

for one lesion in a clinical setting. In the AI system, the

sensitivity for diagnosing category 1 in IEE (NBI/BLI)

123

886 J Gastroenterol (2022) 57:879–889



increased about 6%, decreased about 4% in category 3, and

increased about 11% in category 4 or 5, compared to WLI.

In chromoendoscopy, the sensitivity for diagnosing cate-

gory 4 or 5 increased by about 13% than WLI (Supple-

mentary Table 7). In addition, the sensitivity for diagnosing

neoplastic lesion was the same between the WLI and IEE

(NBI/BLI), but specificity was about 6% higher in IEE than

WLI in the external validation (Supplementary Table 8).

Therefore, it is considered that IEE has an additional effect

over the WLI in diagnosing HP or SSL, and chromoen-

doscopy has an additional effect on narrowing the diag-

nosis of high-grade dysplasia or cancer.

In addition, the principal aim of this AI system was to

prevent misdiagnosis by endoscopists in colonoscopy;

therefore, we confirmed the superiority of the sensitivity

and specificity by comparing the performance of the sys-

tem with that of various endoscopists. Previous studies on

computer-assisted diagnosis (CADx) have reported extre-

mely high diagnostic performance; however, neoplastic/

non-neoplastic classification was the main outcome and no

studies were confirmed by external validation. Therefore,

we performed external validation to verify the ability of our

AI model to discriminate neoplastic/non-neoplastic classi-

fication and to compare its performance with various

endoscopists, following these previous studies. Using

endoscopic images of conventional observation from seven

other institutions, the present AI model was confirmed to

achieve a sensitivity of 88.3% and specificity of 90.3%.

The observational study demonstrated that this AI system

has a diagnostic sensitivity comparable to that of endo-

scopy experts and is superior to that of fellows and novices.

In terms of expert performance using IEE, the sensitivity

was above 90%, exceeding the 87.9% achieved by the AI

system, but the specificity was only 70%, which is lower

than the 93.1% achieved by the AI system. Although high

sensitivity and specificity are strengths of this AI system, it

was found that when the prevalence of neoplastic lesions

was about 67%, its NPVs were about 80% for both WLI

and IEE, missing the threshold of 90% laid out in the

Preservation and Incorporation of Valuable endoscopic

Innovations (PIVI) statement. Because 19% (49/255 ima-

ges) of the images in the external validation set were of

tumors 10 mm or larger, the NPV was not considered to

exceed 90% (Supplementary Table 3). Interestingly,

although the endoscopist took about 2 s to judge each

image, the inference time of the AI system was only 0.01 s

and the AI model was successfully implemented in colo-

noscopy videos (Supplementary Video 1). Therefore, when

used in combination with the previously developed lesion

detection method, our system is capable of performing all

tasks, from lesion detection to diagnosis [7].

We reviewed all images of the lesion that AI made a

misdiagnosis in the external validation and found there

were two reasons: (1) lesion itself was difficult to diagnose,

(2) lesion was not properly visualized, such as out of focus,

etc. These images were considered difficult to diagnose

even by endoscopists. Therefore, even if AI diagnostic

support became widespread, it is considered that endo-

scopists would need to acquire endoscopic skills so that

they could capture images in which lesions were captured

center with proper focus.

This study has some limitations. First, the major limi-

tation was its retrospective design and the distribution of

the images with a lower than 0.9 confidence score, 13.2%

in the internal validation and 28.6% in the external vali-

dation, is expected to be higher in clinical practice.

Therefore, it is considered that multiple images are nec-

essary for AI diagnosis in clinical practice AI diagnosis

support. Second, although this AI model predicts four

clinically important categories (the three categories of the

revised Vienna Classification and normal mucosa), it can-

not discriminate high-grade dysplasia and invasive cancer

(categories 4 and 5 of the revised Vienna Classification)

due to the relatively small number of invasive cancers in

our datasets. In addition, 89% (2849/3196 images) of the

Chromoendoscopy data were indigo carmine dye spraying

images, while the number of crystal violet staining images

were small at 347/3196 images (11%) and most of the

images were category 4 or 5 (Supplementary Table 7).

Further study is needed to classify category 5 of the revised

Vienna Classification separately. Third, the external vali-

dation set in the present study was limited to the distinction

between neoplastic/non-neoplastic lesions due to the small

number of images/lesions, so we cannot perform a vali-

dation of the system using multi-class classification. Also,

since most of the lesions in the external validation were

small lesions\ 10 mm, chromoendoscopy images could

not be collected (Supplementary Table 4). In addition,

pathological diagnoses were not centrally reviewed in the

external validation. A further large-scale external valida-

tion study is needed to address this issue. Fourth, Images

with and without magnification were included, however,

we were unable to analyze the diagnostic performance

separately due to a lack of supplemental information about

magnification. However, an advantage of this AI system is

that it can be applied to many of the endoscopes developed

by Japan’s two major manufacturers, Olympus Medical

and Fujifilm Medical. Thus, this AI model is considered

more robust than other reported systems. We are planning

to start in vivo clinical trials using this AI system.

In conclusion, we have developed an AI system that

automatically predicts the revised Vienna Classification of

CRC in colonoscopy. The present results suggest that this

AI system can support endoscopists to avoid misdiagnosis,

thereby improving the differential diagnosis of colorectal

cancer.
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