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a b s t r a c t

Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived
from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs,
circRNAs form covalently closed, continuous stable loops without a 50end cap and 30end poly(A) tail,
and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant,
and conserved across different species with a tissue or developmental-stage-specific expression.
circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing
and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence
reveals that circRNAs function in various human diseases, particularly cancers, and may function as bet-
ter predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential
clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the
present study, the current understanding of the biogenesis, characteristics, databases, research methods,
biological functions subcellular distribution, epigenetic regulation, extracellular transport and degrada-
tion of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA
research were first summarized, and the recent advances in determining the potential roles of
circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers,
were described. Furthermore, future perspectives for the clinical application of circRNAs in the manage-
ment of patients with cancer were proposed, which could provide new insights into circRNAs in the
future.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Circular RNAs (circRNAs) were initially found in a plant-based
virus in 1976 and described as ‘‘covalently closed circRNAs
molecules”[1,2]. However, circRNAs were originally considered to
be the byproducts of aberrant RNA splicing and did not attract
much attention by researchers during the next decades[3,4]. Fol-
lowing developments in bioinformatics, a large number of cir-
cRNAs have been identified, and some of their features have
become increasingly clear.

Due to the pressing need to understand the complex gene
expression dynamics in various types of cancer, the cellular roles
of RNA molecules with gene-regulatory potential have been widely
revealed. The vast majority (>90%) of the mammalian genome
could be transcribed into noncoding RNAs (ncRNAs), instead of
coding RNAs[5-9]. ncRNAs are classified into five primary cate-
gories: Housekeeper ncRNAs (small nuclear RNA; snRNA), small
nucleolar RNA, ribosomal RNA (rRNA), transfer RNA and regulatory
ncRNAs. Regulatory ncRNAs could be categorized into: Small
ncRNAs (<200 bp), including microRNA (miRNAs/miRs), small
interfering (si)RNAs and PIWI-interacting RNAs, snRNAs and long
ncRNAs (lncRNAs; >200 bp) [10,11]. circRNAs, a peculiar group of
lncRNAs extensively existing in mammalian cells, have recently
been regarded as an intriguing class of endogenous RNAs that form
a closed continuous loop[12-14].

First, a number of studies have reported that circRNAs are
strongly specific to tissues [15,16]. Secondly, due to their resis-
tance to ribonuclease (RNase) activity, circRNAs are much more
stable, as compared to their linear counterparts[15,17]. Thirdly,
genome-wide analysis has discovered that circRNAs exhibit a
higher sequence-conservation and more abundance than their lin-
ear counterparts [17,18]. In addition, circRNAs are regarded as
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competing endogenous RNAs that regulate alternative splicing or
transcription, bind or sequester proteins, and are translated into
functional peptides[19,20]. These features demonstrated that cir-
cRNAs may be capable of playing a role in pathological and biolog-
ical cellular processes. Increasing evidence indicates that circRNAs
are closely associated with the pathology of various diseases,
including Alzheimer’s disease[21] neurological dysfunction[22]
osteoarthritis[23] diabetes[24] cardiac disease[25] and cancer[26].

In particular, circRNAs have been found to play crucial roles in
cancer initiation, development and drug resistance[27,28]. Fur-
thermore, circRNAs can have an impact on the tumor microenvi-
ronment through intercellular communication due to its
abundance in exosomes and human fluids. Therefore, circRNAs
can be visualized as promising biomarkers for cancer. In the pre-
sent review, the current research on the clinical significance and
functional mechanism of circRNAs in the biogenesis, biological
functions, advances, challenges and clinical implications of various
cancers was summarized.
2. Biogenesis of circRNAs

circRNAs are typically derived from the back-splicing of precur-
sor mRNAs to form closed RNA transcripts. However, the mecha-
nisms of circRNAs biogenesis and regulatory factors involved in
circularization remains unclear [15,17]. circRNAs can also originate
from exons, introns, 50untranslated regions (UTR), 30UTR or anti-
sense sequences[15,17,29]. To date, circRNAs have been divided
into four categories: Exonic circRNAs (ecircRNA), circular intronic
RNAs (ciRNAs), exon–intron RNAs (EIciRNAs) and tRNA intronic
circRNAs (tricRNAs)[30]. Among the various types of circRNAs,
the most studied are ecircRNAs, which account for > 80% of all cir-



Fig. 1. Biogenesis, functions and degradation of circRNA. (A) Biogenesis of circRNAs. (a) circRNA formation through RBP-mediated pre-miRNA folding. (b) Pairing between the
2 introns flanking the circularized exons. (c) The back-splicing site promotes the joining of the downstream 5’donor sites with the upstream 3’acceptor sites. (d) tricRNA exon
termini link to each other to form a mature tRNA, and intron termini are ligated together to form tricRNA. (B) Functions and degradation of circRNAs. circRNAs could (1) bind
RBPs as transcription regulators, (2) function as miRNA sponges, (3) be translated into proteins/peptides, (4) generate pseudogenes, (5) sponge miRNA for direct degradation
and (6) be degraded by endonucleases. (7) The circRNA-complex may diffuse in the cytoplasm or be actively transported into particular regions of the cell (e.g., the synapse)
where it can release its bound cargo or start to be translated. (8) The enclosure of circRNAs or circRNA factor complexes in vesicles could be released into the extracellular
space, which would remove circRNAs from the cytoplasm. (9) The circRNA or circRNA complexes could reach other cells or tissues and therefore act as messenger molecules
or fulfill other unknown functions.
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cRNAs. Four related biogenesis mechanisms are discussed below
and the brief process of biogenesis is illustrated in Fig. 1.

2.1. RNA-binding protein (RBP)-induced circularization

circRNA biogenesis could be elicited by the mediation of RBPs of
circularization. RBPs, such as Quaking, Muscleblind and Fused-in
912
sarcoma, which are regarded as trans-acting factors, could enhance
circularization by bridging related intronic sequences[31]. The
dimerization of RBPs combined with the upstream and down-
stream of the circularized exons, can induce a closer link between
30 and 50ends of the circularized exons and facilitate splicing
(Fig. 1Aa) [32].
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2.2. Intron-pairing circularization

Pairing with a complementary inverted sequence could
enhance back-splicing [33]. The unique intronic sequence allows
the splice donor near the splice acceptor, finally promoting the
nucleophilic attack and cleavage[34]. The competition of reverse
complementary sequences at different locations results in one
gene producing different circRNA isoforms (Fig. 1Ab)[35,36].

2.3. Spliceosome-dependent lariat-driven circularization

Exon circularization is spliceosome-dependent, as confirmed by
the variation in 50 splice sites[36]. At the back-splicing site, the
spliceosomes are gathered to facilitate the connection between
the 50donor and 30acceptor sites[37]. Internal splicing consequently
occurs in the lariat, which leads to the release of ecircRNAs or
EIciRNAs[38]. In addition, back-splicing covering single exons or
several exons with intervening introns could occur post-
transcriptionally and co-transcriptionally (Fig. 1Ac)[39].

2.4. tricRNA splicing pathway

The formation of tricRNA requires tRNA splicing enzymes to
divide pre-tRNA into two parts: tricRNAs are derived from a 30-50

phosphodiester bond[40]. A structural motif resembling the
archaeal bulge-helix-bulge is present in pre-tRNA. The leader and
trailer are removed by RNase P and RNase Z, respectively. Cleavage
of the pre-tRNA yields two exon halves and an intron, each bearing
50OH and 20,30cyclic phosphate at the cut sites (Fig. 1Ad)[41].

3. Biological functions of circRNAs

circRNAs are known to have multiple functions, which include
serving as miRNA sponges, interacting with RBPs, modulating
alternative splicing and transcription, translation, generating pseu-
dogenes, transportation and communication. In addition, circRNAs
can regulate gene expression due to their role in aiding the process
of translation.

3.1. circRNAs interacting with proteins

circRNAs function as protein antagonists or baits to inhibit the
activity of proteins (Fig 1B.1). For instance, circ-Foxo3 could inter-
act with cell cycle-related proteins, including p21 and p27, thereby
blocking the roles of the proteins in cancer cell cycle progression
[42]. Another circRNA, circPABPN1, has been shown to bind to
HuR, a well-known RBP [43]. Similarly, the binding of circPABPN1
to the well-known RNA binding protein HuR reduced the transla-
tion of PABPN1 by preventing HuR from interacting with PABPN1
mRNA[44]. circANRIL, which was shown to bind to peccadillo
homolo 1 (PES1), repressed PES1-mediated rRNA maturation[45].

3.2. circRNAs act as miRNA sponges or competing endogenous RNAs

To date, the majority of circRNAs have been reported to serve as
miRNA sponges (Fig 1B.2) [29,46]. miRNAs play a pivotal role in
tumor progression [47,48]. It has been reported that competitive
endogenous RNAs (ceRNAs) can serve as sponges for miRNAs
[49]. circRNAs are predominantly cytoplasmic and have multiple
miRNA response elements (MER)[20] suggesting that circRNAs
may competitively bind to miRNAs. Thus, circRNAs could regulate
miRNA function through suppressing the effect of ceRNA.

The most well-known miRNA in the circRNA field is miR-7
[50,51]. miR-7 has been identified as either a tumor inducer or a
tumor suppressor during tumorigenesis. circular RNA sponge for
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miR-7 (ciRS-7; also known as CDR1as), the most well-known cir-
cRNA, contains > 70 miR-7 binding sites, and is expressed in differ-
ent tissues and organs[52]. By recruiting miR-7, ciRS-7 is capable of
inhibiting the miR-7 function and upregulating the expression of
related genes, such as IRS2 and EGFR[53]. In esophageal squamous
cell carcinoma, ciRS-7 was shown to act as ceRNA to absorb miR-7
and regulate the NF-jB/p65 pathway[54]. In the mammalian brain,
ciRS-7, a lncRNA cyrano, and miR-7 and miR-671, two miRNAs, can
collaborate to form a sophisticated regulatory network [55]. In
addition to ciRS-7, several circRNAs are considered to act as miRNA
sponges. CircHIPK3 has been shown to act as ceRNA to absorb miR-
NAs, including the miR-379, miR-4288, miR-558 and miR-7[56-
59]. circHIPK2 functions as an miR124-2HG sponge to modulate
astrocyte activation through the interplay between autophagy
and endoplasmic reticulum stress [60]. In addition, multiple lines
of evidence have proven that circITCH is capable of sponging
miR-214 in glioma and bladder cancer[61].
3.3. circRNA translation into proteins/peptides

A 50cap and 30poly(A)tail are required for linear mRNA transla-
tion[62]. Unlike mRNAs, circRNAs lack unique molecular structure
[63]. However, circRNAs can be translated through N6-
methyladenosine modification or internal ribosome entry site
(IRES) to promote direct binding of initial factors to the circRNAs,
as demonstrated with engineered circRNAs [62,64-66]. Although
the majority of circRNAs do not have the capacity to bind to ribo-
somes for translation, data have shown that a small proportion of
endogenous circRNAs can be translated into proteins or peptides
(Fig. 1B.3)[19,67-70]. It was reported by Pamudurti et al[19] that
endogenous circMbl3 was translated into a small peptide in the
fly head analyzed by mass spectrometry. In addition, it was indi-
cated by Legnini et al[70] that circZNF609, an circRNA, regulated
myogenesis and was translated into a protein.

The functional correlation between the majority of circRNA-
originated proteins and the linear proteins remains unclear. Since
circRNA-originated proteins are usually truncated versions of the
linear proteins, the circRNA-originated proteins share the same
start codons as their linear counterparts. However, they have a
stop codon that is formed by the circular junction. This raises the
question of whether circRNA-originated proteins share similar
functions with, or act as competitors to, their linear counterpart-
encoded proteins. Considering the rapid developments in the
protein-coding circRNA field, the foremost aims of this research
field are to expand our current understanding of the protein-
coding ability of circRNAs and the function of the resulting pro-
teins/peptides.
3.4. Pseudogenes derived from circRNAs

Pseudogenes are mainly derived from the reverse transcription
of linear mRNAs, which are located in 10% of known gene loci
inside the host genomes[71,72]. Myriad circRNA-originated pseu-
dogenes have been characterized by checking the back-splicing
junction sequences of the genomes (Fig. 1B.4)[73]. For example,
by retrieving the corresponding circle locus in the mouse genome,
9 low-confidence circRFWD2-derived pseudogenes and 33 high-
confidence circRFWD2-originated pseudogenes were identified.
However, most circRFWD2-derived pseudogenes did not contain
a poly(A)tail, indicating that the way in which circREWD2 is
reverse-transcribed into cDNA remains unclear. Therefore, the
molecular mechanism of generating pseudogenes is supposed to
be explored in circRNA research.



X. Tang, H. Ren, M. Guo et al. Computational and Structural Biotechnology Journal 19 (2021) 910–928
3.5. circRNAs regulate alternative splicing or transcription

Most circRNAs in the cytoplasm are derived from exons. On the
contrary, EIciRNAs are predominantly located in the nucleus and
act as transcriptional regulators[17]. It was demonstrated by Li
et al[74] that EIciRNAs interact with U1 snRNPs, and that the
EIciRNA-U1 snRNPs complexes may regulate RNA polymerase II
activity and promote the transcription of their parental genes
[75]. In addition, circRNAs were shown to interact with the Pol II
transcription compound to activate the transcription of their par-
ent genes[75]. circSEP3, an ecircRNA, was confirmed to modulate
the splicing of its parent gene. circSEP3 can bind intensively to
the cognate DNA locus, while the linear counterpart interacts more
weakly with DNA. The results identified the ability of circRNA to
skew splicing preference and favor the cognate alternative splicing
mRNA variant[76]. These studies together suggested that certain
circRNAs could regulate gene expression at both splicing and tran-
scription levels.
3.6. Other potential emerging functions of circRNAs

A compelling characteristic of circRNA is that it is extremely
stable and accumulates over time. Threfore, circRNAs can act as
‘‘flight recorders” of cellular transcription history. In a physiologi-
cal sense, long-lived circRNAs may act as a repository for transla-
tion. Considering that some of the circRNAs mentioned above
encode proteins from IRES elements, this repository could be trans-
lated to respond to physiological changes or stress response. The
local translation of circRNAs in synapses may be important, as
other RNAs are also translated in synapses [77]. Since circRNAs
can bind to RBPs[42] similar to miRNAs, circRNAs may work
through binding, interacting, delivering and releasing their cargo
to specific intracellular compartments. In addition, circRNAs may
compete in specific subcellular locations for the limiting amounts
of RBPs. However, further molecular biology experiments are
urgently needed to validate these hypotheses.

Considering that some circRNAs are found in vesicles [78,79]
and these vesicles could be transported to the target tissues, they
may also act as a delivery capsule. Along with circRNAs, miRNAs
and RBPs can be transferred to an organ or a tissue. At the targeted
organ or tissue, the miRNAs and RBPs would be released from cir-
cRNA through circRNA degradation or other mechanisms. It was
revealed by Liu et al[80] that in vitro synthesis of circRNAs can
serve as a quick, convenient and effective strategy of inhibiting
miRNA function.
4. Degradation of circRNAs

It was reported by Enuka et al[81] that the majority of circRNAs
have a longer half-life (18.8–23.7 h) than their full-length linear
counterparts, according to an in vitro study of 60 circRNAs in cell
culture following 4-thiouridine metabolic labeling (4.0–7.4 h). In
addition, circRNAs may have an even longer half-life in vivo
[82,83]. The accumulation of circRNAs in the brain is possibly
due to the good stability of these circRNAs [82,83].

The mechanisms and rates of circRNA degradation in vivo
remains unclear. In fact, the degradation of circRNA can be initi-
ated by an endonuclease. The first study on circRNA degradation
was performed using RNase H and Rrp44 to detect endonuclease
activity in vitro [84,85].The authors demonstrated that the cleavage
of artificial circRNA was very low. The best characterized circRNA
degradation pattern is the small RNA-mediated degradation of cir-
cRNAs. For example, it was revealed by Hansen et al[52] that the
degradation of CDR1as is mediatedby miR-671 through Argonaute
2 (Ago2)-mediated degradation. CDR1as, miR-671 and its binding
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site are highly conserved, and the deletion of one of these sites
leads to a significant increase in CDR1as levels[55].

A recent study indicated that the RNA modification ofN6-
adenosine methylation (m6A) promotes the recruitment of
endonucleases to degrade circRNAs[86]. It was found by Liu et al
[87] that the circRNAs are globally degraded by RNase L upon
poly(I:C) stimulation or viral infection. The authors discovered that
spontaneous RNase L activation, circRNA reduction and an
increased phosphorylation of PKR in peripheral blood mononuclear
cells (PBMCs) from patients with systemic lupus erythematosus
[87].

In addition to degradation, circRNAs could be eliminated from
cells by exocytosis. CircRNAs could be found in exosomes, but it
remains unclear whether the secretion of circRNAs could lower
their intracellular levels (Fig 1B.8)[88]. Moreover, circRNA secre-
tion may become a communication mechanism (Fig 1B.9)[89,90].
Therefore, more attention should be pay on the degradation and
extracellular transport of circRNAs. CircRNAs are abundant in the
cytoplasm and are contained in exosomes during their formation.
CircRNAs could be transferred from the cytoplasm into exosomes.
5. circRNA research database

With the rapid developments in bioinformatics, several useful
databases have been developed to date to improve circRNA
research. Online databases that are useful in circRNA prediction,
identification, characterization, localization and investigation of
the interaction of circRNAs with MER and RBP have been included
in the present study. The online databases of circRNA research are
shown in Table 1.
6. circRNAs in cancer

To date, various cancer-related circRNAs have been discovered
and characterized (Fig. 2). Accumulating evidence indicates that
these circRNAs function in a large number of cancers and play
indispensable roles in their occurrence and progression
[61,104,105].

6.1. Glioma

Emerging studies have confirmed that circRNAs play a pivotal
role in glioma. circRNA is a (Table 2) double-edged sword in
glioma. It was found by Yang et al[63] that circFBXW7, which con-
tains a spanning junction open reading frame (ORF), could be
translated into a 21-KDa protein, namely FBXW7-185aa. FBXW7-
185aa could cooperate with the protein encoded by the linear
FBXW7 to facilitate the degradation of c-Myc and suppress glioma
cell growth. In addition, it was discovered by Zhang et al[69] that
SHPRH-146aa, encoded by circSHPRH, protected its linear counter-
part against degradation by the ubiquitin proteasome that func-
tioned as a tumor inhibitor in human glioblastoma (GBM). In
addition, the overexpression of circSMARCA5[106] increased the
expression of serine and arginine rich splicing factor 3 to suppress
tumorigenesis in GBM. As reported in a previous study, hsa_-
circ_0001649 and circITCH also acted as tumor suppressors in
glioma[107]. Some circRNAs have also been found to play onco-
genic roles in glioma. Another study showed that circNFIX func-
tioned as ceRNA to absorb miR-34a-5p, and influenced the
expression of targeted gene NOTCH1[108]. circNT5E directly
sponged miR-422a, thus affecting the pathological development
of GBM[109]. CircTTBK2 was found by Zheng et al[110] to be over-
expressed in glioma tissues and cell lines, which facilitated glioma
cell growth. In addition, hsa_circ_0000177[111] hsa_circ_0012129
[112] circCFH [113] and hsa_circ_0046701[114] could also acceler-



Fig. 2. Overview of functional circRNAs in various types of cancer. The map shows the circRNAs that have been confirmed to function in various types of cancer.

Table 1
Database for circRNA research.

Database Website Function Ref

circRNADb http://202.195.183.4:8000/circrnadb/circRNADb.php Offering the detailed information of circRNAs, especially the exon splicing,
IRES and ORF

[95]

CircPro http://bis.zju.edu.cn/CircPro Analysis of protein-coding potential of circRNAs [96]
Circbase http://www.circbase.org/ Providing circRNAs information from multiple species [97]
Starbase v2.0 http://starbase.sysu.edu.cn/ Providing the RNA-RNA and protein-RNA interaction networks [98]
CIRCpedia v2 http://www.picb.ac.cn/rnomics/circpedia/ Containing circRNA annotation across 6 different species [99]

DeepBase v2.0 http://deepbase.sysu.edu.cn/ Containing 14,867 human circRNAs [100]
Circnet http://circnet.mbc.nctu.edu.tw/ Describing the regulation between circRNAs, miRNAs and genes [101]

CircInteractome http://circinteractome.nia.nih.gov/ Providing bioinformatic analysis of binding sites on circRNAs [102]

CSCD http://gb.whu.edu.cn/CSCD/ Predicting cellular distribution of circRNAs, MRE, RBP and variable splicing
of related genes

[103]

Circ2Traits http://gyanxet-beta.com/circdb/ Predicting the interaction among miRNAs, lncRNAs and circRNAs [104]
CirclncRNAnet http://app.cgu.edu.tw/circlnc/ Offering a ‘‘one-stop” resource for analysis of ncRNA biology [105]

CircRNADisease http://cgga.org.cn:9091/circRNADisease Providing experimentally supported circRNA and disease associations [106]
ExoRBase http://www.exorbase.org/ Including annotation, expression level and possible original tissues about

58,330 circRNAs in human blood exosomes
[107]
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Table 2
Summary of some tumor-related circRNAs.

Cancer CircRNA ID expression Function Mechanism Refs.

Glioma circFBXW7 Down-regulated tumor suppressor encoded peptides [63]
circSHPRH Down-regulated tumor suppressor encoded peptides [69]
circSMARCA5 Down-regulated tumor suppressor circSMARCA5/SRSF1/SRSF3 [106]
circITCH Down-regulated tumor suppressor circITCH/miR-214 [107]
circNFIX Up-regulated oncogene circNFIX/miR-34a-5p [108]
circNT5E Up-regulated oncogene circNT5E/miR-422a [109]
circTTBK2 Up-regulated oncogene miR-217/HNF1b/Derlin-1 [110]
hsa_circ_0000177 Up-regulated oncogene hsa_circ_0000177/miR-638-FZD7/Wnt [111]
hsa_circ_0012129 Up-regulated oncogene hsa_circ_0012129/miR-661 [112]
circCFH Up-regulated oncogene circ-CFH/miR-149/AKT1 [113]
hsa_circ_0046701 Up-regulated oncogene hsa_circ_0046701/miR-142-3p/ITGB8 [114]

HCC circMTO1 Down-regulated oncogene circMTO1/miR-9 [117]
circSMARCA5 Down-regulated tumor suppressor circSMARCA5/miR-17-3p [118]
circZKSCAN1 Down-regulated tumor suppressor PI3K pathway [119]
hsa_circ_0003570 Down-regulated oncogene Unknown [120]
Cdr1as Up-regulated oncogene Cdr1as /miR-7 [121]

Colorectal hsa_circ_0000069 Up-regulated oncogene Unknown [124]
cancer hsa_circ_0007534 Up-regulated oncogene Unknown [125]

hsa_circ_103809 Down-regulated oncogene Unknown [126]
hsa_circ_104700 Down-regulated oncogene Unknown [126]
CircCCDC66 Up-regulated oncogene CircCCDC66/miR-93 [127]
Circular BANP Up-regulated oncogene Circular BANP/p-Akt [128]
hsa_circ_001569 Up-regulated oncogene hsa_circ_001569/FMNL2 [129]
Cdr1as Up-regulated oncogene ciRS-7/miR-7 /EGFR [130]

Gastric hsa_circ_0000190 Down-regulated oncogene Unknown [133]
hsa_circ_002059 Down-regulated oncogene Unknown [134]

cancer hsa_circ_0000199 Up-regulated oncogene hsa_circ_0000199/miR-198 [135]
circDLST Up-regulated oncogene circDLST/miR-502-5p [136]
circPSMC3 Up-regulated oncogene circPSMC3/miR-296-5p [137]
hsa_circ_0092303 Up-regulated oncogene hsa_circ_0092303/miR-331-3p [138]
circNRIP1 Up-regulated oncogene circNRIP1/miR-149-5p [139]
circLMTK2 Up-regulated oncogene circLMTK2/miR-150-5p [140]
circSERPINE2 Up-regulated oncogene circSERPINE2/miR-375 [26]
circDONSON Up-regulated oncogene circDONSON/NURF complex [141]
hsa_circ_0008549 Up-regulated oncogene hsa_circ_0008549/miR-136-5p [142]

Lung hsa_circ_0008305 Down-regulated oncogene hsa_circ_0008305/miR-429 [144]
F-circEA-2a Up-regulated oncogene Unknown [145]

cancer hsa_circ_0011385 Up-regulated oncogene hsa_circ_0011385/miR-361-3p [146]
CircTP63 Up-regulated oncogene CircTP63/miR-873-3p [147]
circENO1 Up-regulated oncogene circENO1/miR-22-3p [148]
circFGFR1 Up-regulated oncogene circFGFR1/miR-381-3p [149]
circSMARCA5 Down-regulated tumor suppressor circSMARCA5/miR-19b-3p/HOXA9 [150]

AML circDLEU2 Up-regulate oncogene circDLEU2/miR-496/PPKACB [151]
circHIPK2 Up-regulated oncogene circHIPK2/miR-124-3p [152]
circPAN3 Up-regulated oncogene circPAN3/miR-153-5p [153]

CLL circCBFB Up-regulated oncogene circCBFB/miR-607/FZD3/Wnt [154]
hsa_circ_0132266 Down-regulated tumor suppressor hsa_circ_0132266/miR-337-3p/PML [155]
circ-RPL15 Up-regulated oncogene miR-146b-3p/RAF1 axis. [156]

CML circBA9.3 Up-regulated oncogene circBA9.3/c-ABL1 [157]
hsa_circ_0080145 Up-regulated oncogene hsa_circ_0080145/miR-29b [158]
circHIPK3 Up-regulated oncogene circHIPK3/miR-124 axis [159]

MM hsa_circ_0007841 Up-regulated oncogene hsa_circ_0007841/miRNAs [160]
hsa_circ_0000190 Down-regulated tumor suppressor hsa_circ_0000190/miR-767-5p [161]
circITCH Down-regulated tumor suppressor circITCH/miR-615-3p [162]

BC circTCF25 Up-regulated oncogene circTCF25/miR-103a-3p [164]
hsa_circ_0001361 Up-regulated oncogene hsa_circ_0001361/miR-491-5p [165]
circSLC8A1 Down-regulated tumor suppressor miR-130b/miR-494 [166]

kidney circHIAT1 Down-regulated tumor suppressor circHIAT1/miR-195-5p/29a-3p [167]
Cancer hsa_circ_001895 Up-regulated oncogene hsa_circ_001895/miRNA-296-5p [168]

circNRIP1 Up-regulated oncogene circNRIP1/miR-505 [169]

(HCC: Hepatocellular carcinoma; AML:acute myloid leukemia; CLL: chronic lymphocytic leukemia; MM: multiple myeloma; BC: bladder cancer)
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ate glioma tumorigenesis. These findings indicated that circRNA
might have an marked effect on the progression of GBM, increasing
its potential as a convenient biomarker for GBM screening.

6.2. Hepatocellular carcinoma (HCC)

HCC, which accounts for 90% of primary malignancies of the
liver, is a major cause of cancer-related mortality worldwide
[115,116]. circRNAs have been reported in several studies to be
able to function as a tumor inhibitor in HCC. circMTO1 repressed
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HCC tumorigenesis by directly sponging miR-9 to elevate p21, sug-
gesting that circMTO1 was associated with the prognosis of HCC
[117]. In addition, circSMARCA5 increased TIMP3 expression by
sponging miR-181b-5p to inhibit HCCprogression [118]. Further-
more, circZKSCAN1 could collaborate tightly with its linear mRNA
to inhibit the growth, migration and invasion of HCC[119]. The
downregulation of hsa_circ_0003570[120] has been shown to be
closely linked to tumor size and neoplastic angiopoiesis in HCC.
Of note, Cdr1as was found to be significantly overexpressed in
HCC, as compared with the adjacent normal tissues, and Cdr1as
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to be a sponge for miR-7, which was involved in the promotion of
HCC cell growth and migration[121,122]. These findings indicated
that circRNA was firmly interrelated with the progression and
tumorigenesis of HCC.

6.3. Colorectal cancer (CRC)

CRC is the fourth leading cause of global mortality [123]. RNA
sequencing was conducted toscrutinize the expression of circRNAs
in tumor and normal tissues. In a study by Anna et al[82] 11 upreg-
ulated and 28 downregulated circRNAs were identified in CRC tis-
sues. Furthermore, the ratio of selected circRNAs to their host gene
in the CRC tissues (hsa_circ_0817/CUL5, hsa_circ_3204/USP3, hsa_-
circ_6229/METTL3 and hsa_circ_7374/TNS4) was smaller than that
in the adjacent normal tissues. Similarly, microarray analysis
showed that the expression of 412 circRNAs was upregulated,
while 480 circRNAs were downregulated in CRC tissues, as com-
pared with normal tissues[124]. In detail, quantitative polymerase
chain reaction (qPCR) results of CRC patients indicated that the
hsa_circ_0000069 expression was elevated and promoted cell pro-
liferation, migration and invasion in CRC[124]. In addition, the
expression of hsa_circ_0007534 was linked to tumor stage and
lymphatic metastasis in CRC tissues [125]. In addition, it was found
by Zhang et al[126] that the expression of hsa_circ_104700 and
hsa_circ_103809 was clearly downregulated in CRC tissues and
closely linked to cancer pathogenesis. It was shown by Hsiao
et al[127] that the elevation of circCCDC66 in CRC was closely asso-
ciated with tumor pathogenesis. CircCCDC66 can sponge miRNA-
33b and miR-93 to protect MYC mRNA from degradation. On the
other hand, circBANP was found to be elevated in CRC, the knock-
down of which could significantly inhibit the growth of CRC cells
[128]. In addition, hsa_circ_001569 could upregulate the expres-
sion of its functional targets FMNL2 and BAG4, subsequently exert-
ing a strong effect on tumorigenesis[129]. Furthermore, CDR1as
was aberrantly increased in CRC tissues. The expression of CDR1as
was closely associated with tumor volume, tumor metastasis and
survival rate [130]. The downregulation of CDR1as suppressed
CRC cell growth and migration by blocking miR-7 targets [131].
Collectively, these findings revealed that circRNA is involved in
the progression and pathogenesis of CRC.

6.4. Gastric cancer (GC)

GC is the third most common cause of cancer-related mortality
worldwide[132]. hsa_circ_0000190 Was found by Chen et al[133]
to be downregulated in GC tissues. The low levels of hsa_-
circ_0000190 were correlated with tumor volume, metastasis
and the tumor-node-metastasis stage. It was reported by Li et al
[134] that the expression level of hsa_circ_002059 was closely
associated with GC distant metastasis and tumorigenesis. Further-
more, Huang et al[135] reported that circAKT3 (hsa_circ_0000199)
sponged miR-198 to promote PIK3R1 expression and DNA damage
repair, consequently suppressing the apoptosis of GC cells. A recent
study revealed that circDLST sponged miR-502-5p to facilitate cell
proliferation, cell cycle and DNA synthesis both in vitro and in vivo
[136]. Rong et al[137] identified circPSMC3 and reported that its
expression was decreased in GC tissues, GC plasmas and GC cell
lines. circPSMC3 sponged miRNA-296-5p with phosphatase and
tensin homolog (PTEN) to promote GC proliferation.

Conversely, it was discovered by Zhang et al[138] that circCAC-
TIN (hsa_circ_0092303) was a tumor inducer that promotes GC
growth by modulating TGFBR1 mRNA expression and sponging
miRNA-331-3p. It was found by Zhang et al[139] that circNRIP1
sponged miR-149-5p to enhance GC cell progression, migration
and invasion. It was further proven that circNRIP1 could be trans-
mitted between GC cells by exosomal communication. CircLMTK2
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was found by Wang et al[140] to be elevated in GC tissues and cor-
related with poor prognosis, as well as poor tumor node metastasis
(TNM) stage. circLMTK2 sponged miR-150-5p and eventually regu-
lated the expression of c-Myc to promote GC tumorigenesis.
YWHAZ and circSERPINE2 were found by Liu et al[26] to be upreg-
ulated, while miR-375 was clearly downregulated in GC tissues
and cells. Mechanistically, circSERPINE2 sponged miR-375 and
modulated YWHAZ expression to promote GC cell growth and cell
cycle progression. It was discovered by Ding et al[141] that the
expression of circDONSON was positively correlated with
advanced TNM stage and poor prognosis. Mechanistically, cir-
cDONSON promoted GC proliferation by recruiting the NURF com-
plex to initiate SOX4 expression. circOSBPL10 (hsa_circ_0008549)
was found by Wang et al[142] to be markedly upregulated in GC
tissues, and its decreased expression impaired GC tumorigenesis.
Similarly, circOSBPL10 promoted GC cell growth through the
circOSBPL10-miR-136-5p-WNT2 axis in GC cells. Therefore, cir-
cOSBPL10 may act as a novel predictor of prognosis and prolifera-
tion in GC. Collectively, these results revealed that circRNAs can
serve as novel diagnostic and prognostic biomarkers of GC.

6.5. Lung cancer

Lung cancer has the highest cancer-related mortality rate
worldwide[143]. Wang et al[144] confirmed that circPTK2 (hsa_-
circ_0008305) sponged miR-429, consequently favoring non-
small cell lung cancer (NSCLC) cell invasion. F-circEA-2a was found
by Tan et al[145] to be predominantly located in the cytoplasm and
to facilitate cell migration and invasion. Chen et al[146] discovered
that the oncogenic circRNA circHIPK3 (hsa_circ_0011385) could
sequestrate miR-361-3p and interact with splicing factors. It was
found by Cheng et al[147] that circTP63 sponged miR-873-3p
and prevented the decrease of FOXM1, subsequently promoting
cell cycle progression. Zhou et al[148] revealed that circENO1 and
its linear counterpart were elevated in lung adenocarcinoma
(LUAD) cells. The downregulation of circENO1 induced apoptosis,
and suppressed cell growth, migration and EMT. CircENO1 sponged
miR-22-3p and upregulated ENO1. Collectively, circENO1 may
serve as a target of LUAD. circFGFR1 was found by Zhang et al
[149] to be increased in NSCLC patients, an increase that was
linked to poor prognosis. Mechanistically, circEGFR1 sponged
miR-381-3p to elevate the expression of the downstream gene
CXCR4, and finally accelerated NSCLC tumorigenesis. Nevertheless,
Wang et al[150] showed that circSMARCA5 sponged miR-19b-3p,
subsequently exerting its tumor inhibitory effects. Collectively,
these results predicted that circRNAs can serve as a therapeutic
target in lung cancer.

6.6. Hematological malignancies

A multitude of circRNAs have been used as diagnostic and prog-
nostic biomarkers in hematological malignancies, such as acute
myloid leukemia (AML), chronic lymphocytic leukemia (CLL),
chronic myeloid leukemia (CML) and multiple myeloma (MM).

AML. CircDLEU2 was reported by Wu et al[151] to act as a
sponge to suppress the biological function of miR-496 and subse-
quently promoted AML tumorigenesis by targeting the miR-496/
PPKACB channel. Li et al[152] discovered that circHIPK2 was ele-
vated in other AML types, as compared to acute promyelocytic leu-
kemia (APL). CircHIPK2 sponged miR-124-3p, which was closely
associated with cell differentiation, thereby playing a crucial role
in activating transcription. Therefore, circHIPK2 might act as an
APL-associated biomarker. It was revealed by Shang et al[153] that
oncogenic circRNA circPAN3 could be an important regulator of
drug resistance, which is mainly due to the circPAN3-miR-153-
5p axis in AML cells.
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CLL. Xia et al[154] showed that circCBFB (hsa_circ_0000707)
played a crucial role in CLL tumorigenesis. Mechanistically,
circCBFB sponged miR-607 to elevate the expression level of
FZD3 and subsequently activated the Wnt/b-catenin pathway. In
a study by Wu et al[155] circMTO1 (hsa_circ_0132266) was shown
to be markedly decreased in the peripheral PBMCs of CLL patients,
as compared to the control group. Mechanistically, hsa_-
circ_0132266 facilitated CLL progression and pathogenesis mainly
through the hsa_circ_0132266/miR-337-3p/PML signaling cascade.
circ-RPL15 was identified as a novel oncogenic biomarker for CLL,
with its mechanism working via the miR-146b-3p-mediated
repression of the RAS/RAF1/MEK/ERK pathway[156].

CML. It was revealed by Pan et al[157] that circBA9.3 might effi-
ciently facilitate the growth of cancer cells by suppressing apopto-
sis. circBA9.3 was mainly located in the cytoplasm and elevated the
expression of c-ABL1 and BCR-ABL1. Therefore, circBA9.3 was
linked to an increased tyrosine kinase activity, which promoted
tyrosine kinase inhibitor treatment resistance. Liu et al[158] indi-
cated that hsa_circ_0080145 functioned as a sponge to absorb
miR-29b and subsequently favored the proliferation of CML. This
study indicated that hsa_circ_0080145 could be a promising bio-
marker for CML treatment. As previously reported, the oncogenic
role of circHIPK3 was confirmed in the development and treatment
of CML. These oncogenic effects were achieved by sponging miR-
124[159].

MM. It was confirmed by Gao et al[160] that the hsa_-
circ_0007841 expression was markedly elevated in MM cell lines,
which was closely associated with disease prognosis. Bioinformat-
ics analysis demonstrated that several miRNAs interacted with
hsa_circ_0007841, suggesting that hsa_circ_0007841 may serve
as a novel biomarker for MM. Feng et al[161] indicated that hsa_-
circ_0000190 suppressed cell growth and promoted apoptosis in
MM by sponging miR-767-5P and regulating mitogen-activated
protein kinase 4. It was discovered by Liu et al[162] that circITCH
was downregulated in MM cells and circITCH acted as a sponge
for miR-615-3p.

6.7. Other types of cancer

The ectopic expression of circRNAs has been validated in multi-
ple types of cancer [163]. In bladder cancer, Zhong et al[164] spec-
ulated that the oncogenic circRNA circTCF25 could sponge miR-
103a-3p/miR-107 based on the multiple bioinformatics
approaches, which consequently increased 13 target genes associ-
ated with cell proliferation, migration and invasion. It was discov-
ered by Liu et al[165] that an oncogenic circRNA,
hsa_circ_0001361, was elevated in bladder cancer tissues. Hsa_-
circ_0001361 directly sponged miR-491-5p to elevate MMP9 and
subsequently promoted the occurrence and progression of bladder
cancer. In addition, circRNA circSLC8A1 has been reported to act as
a sponge of miR-130b/miR-494 in preventing bladder cancer pro-
gression by regulating PTEN[166]. In kidney cancer, a decreased
expression of circHIAT1 in clear cell renal cell carcinoma (ccRCC)
tissues was identified by Wang et al[167]. CircHIAT1 can directly
interact with miR-195-5p/29a-3p/29c-3p to elevate CDC42 expres-
sion. Androgen receptor (AR) inhibited circHIAT1 expression and
subsequently led to the suppression of CDC42. The AR-circHIAT1-
mediated miR-195-5p/29a-3p/29c-3p/CDC42 signaling pathway
might provide an effective strategy for a more effective inhibition
of ccRCC metastasis. It was found by Chen et al[168] found that
hsa_circ_001895 sequestrated miR-296-5p, subsequently inducing
ccRCC development. Dong et al[169] discovered that circNRIP1 was
overexpressed in renal carcinoma tumors and circNRIP1 played
oncogenic roles in the renal carcinoma cell lines by targeting
miR-505 through the activation of the AMPK and PI3K/AKT/mTOR
cascades. Collectively, the studies mentioned above demonstrated
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that circRNAs are potentially involved in tumorigenesis. However,
the clinical implications of the use of circRNAs as novel therapeutic
avenues require further research.
7. circRNAs are promising biomarkers in cancer

The clinical use of biomarkers is critical during all stages of can-
cer, and has become one of the major approaches for cancer diag-
nosis and prognosis. Different from linear mRNAs, the unique
covalently closed-loop structures make circRNAs avoid RNaseR
degradation and thus possess high stability[170]. In addition, cir-
cRNAs are widely distributed in the plasma, urine, tissue samples,
cell-free saliva and other human components in a cell-specific
manner[171,172]. The expression patterns and characteristics of
circRNAs (high and selective abundance, high stability, high con-
servation and specific expression)could partly explain the ability
of circRNAs as potential biomarkers or therapeutic targets. It was
found by Memczak et al[173] that circRNAs were elevated, as com-
pared with those of their linear counterparts in the blood. A diverse
set of circRNAs exhibited a high level in the blood, which can be
easily detected. However, the expression of their linear counter-
parts was very low. Therefore, blood circRNAs may offer disease-
related knowledge that canonical RNA analysis cannot provide.

A large number of studies performed on HCC patients have
shown that hsa_circ_0000798[174] hsa_circ_0027089[175] and
hsa_circ_0058124[176] are upregulated in HCC tissues, whereas
some circRNAs are downregulated, including hsa_circSMARCA5
[177] hsa_circ_0068669[178] hsa_circ_0028502[179] and hsa_-
circ_0076251[179]. These circRNAs are supposed to serve as
potential biomarkers for HCC. Several circRNAs also serve as
biomarkers in patients with CRC. Increased plasma levels of hsa_-
circ_0082182 and hsa_ circ_0000370[180] were significantly con-
nected with lymph node metastasis, while the upregulation of
hsa_circ_0004585[181] was correlated with patient tumor size.
The downregulation of hsa_circ_0000567[182] was correlated with
TNM stage. In GC, hsa_circ_0003159[183] hsa_circ_0000096[184]
hsa_circ_002059[185] hsa_circ_0000190[133] and hsa_-
circ_0000181[186] were all downregulated and linked to distal
metastasis or invasion, which may predict tumor metastasis. In
addition, the expression level of hsa_circ_0000467 was higher in
the GC tissues, plasma and GC cells, as compared with the healthy
control, and was correlated with TNM stage in GC. The area under
the curve (AUC) of hsa_circ_0000467 was 0.799, which was much
higher than some already existing biomarkers. The sensitivity and
specificity of hsa_circ_0000467 were 70.5 and 64.8%, respectively
[187]. Furthermore, a circRNA downregulated in GC tissues,
circPSMC3, was negatively correlated with TNM stage and lym-
phatic metastasis, and exhibited a high AUC (0.933). The sensitivity
and specificity of circPSMC3 were 85.85 and 95.24%, respectively
[137]. The expression level of hsa_circ_0001895 was correlated
with GC cell differentiation, Borrmann type and carcinoembryonic
antigen level. The AUC, sensitivity and specificity of hsa_-
circ_0001895 were 0.792, 67.8 and 85.7%, respectively[188]. The
hsa_circ_0008673[189] increased in breast cancer patients, cir-
cASXL1[190] and hsa_circ_0137439[191] were increased in blad-
der cancer, and circBNC2 were decreased in ovarian cancer,
which confirmed the diagnostic value of the circRNAs in neoplastic
diseases. Other circRNAs serving as biomarkers in cancer are listed
in Table 3. Besides, the AUC, sensitivity and specificity of plasma
hsa_circ_0000520[192] (0.897, 82.4, 84.4%) were clearly higher
than those in the tissue (0.613, 53.6 and 85.7%) respectively, indi-
cating a relatively superior diagnostic value[192]. On the contrary,
tissue hsa_circ_0000190[133] and hsa_circ_0000181[186] both
exhibited a superior diagnostic value than their plasma counter-
parts in GC. In detail, tissue hsa_circ_0000190 was significantly



Table 3
The potential role of circRNAs as biomarkers in various cancers.

Cancer Name of
CircRNAs

Changes of
expression

Diagnostic significance ROC curve Numbers
of patients

Refs

HCC CircSMARCA5 Down Correlated with tumor differentiation, TNM stage,
cancer invasion and cancer diameter

Plasma circRNA;
AUC value: 0.938, 0.853,
0.711

133 [177]

Hsa_circ_0000798 Up Correlated with tumor size and cirrhosis Plasma circRNA;
AUC value: 0.703

102 [174]

Hsa_circ_0068669 Down Associated with microvascular invasion and TMN
stages

Tissue circRNA;
AUC value: 0.64; Sensitivity:
0.59;
Specificity: 0.71

100 [178]

Hsa_circ_0027089 Up – Plasma circRNA;
AUC value: 0.794; Sensitivity:
0.578;
Specificity: 0.848

239 [175]

Hsa_circ_0058124 Up Associated with tumor siz, tumor, node, TNM stage, and
vascular invasion

Tissue circRNA;
AUC value: 0.878

128 [176]

Hsa_circ_0028502 Down Related to TNM stage Tissue circRNA;
AUC value: 0.675; Sensitivity:
0.721;
Specificity: 0.580

200 [179]

Hsa_circ_0076251 Down Related to Barcelona Clinic Liver Cancer (BCLC) stage
and the presence of serum HbsAg

Tissue circRNA;
AUC value: 0.738; Sensitivity:
0.713;
Specificity: 0.640

200

Colorectal
cancer

Hsa_circ_0000567 Down Correlated with tumor size, lymph metastasis, distal
metastasis, and TNM stage

Tissue circRNA;
AUC value: 0.8653;
Sensitivity: 0.8333;
Specificity: 0.7647

204 [182]

Hsa_circ_0082182 Up Connected with lymph node
metastasis

Plasma circRNA;
AUC value: 0.7371

156 [180]

Hsa_circ_0000370 Up Connected with lymph node
metastasis

Plasma circRNA;
AUC value: 0.8152

156

Hsa_circ_0035445 Up Connected with the TNM stage Plasma circRNA;
AUC value: 0.7028

156

Hsa_circ_0004585 Up Correlated with patient’s tumor size Plasma circRNA;
AUC value: 0.731; Sensitivity:
0.851;
Specificity: 0.511

284 [181]

Hsa_circ-0004771 Up Correlated with TNM stage and distant metastasis Exosome circRNA;
AUC value: 0.90

135 [195]

Gastric
cancer

Hsa_circ_0003159 Down Associated with gender, distal metastasis and TNM
stage

Tissue circRNA;
AUC value: 0.75; Sensitivity:
0.852;
Specificity: 0.565

108 [183]

Hsa_circ_0000096 Down Associated with gender, invasion and TNM stage Tissue circRNA;
AUC value: 0.82

101 [184]

Hsa_circ_002059 Down Correlated with distal metastasis, TNM stage, gender
and age

Plasma circRNA;
AUC value: 0.73; Sensitivity:
0.81;
Specificity: 0.62

101 [185]

Hsa_circ_0000190 Down Tissue circRNA: Related to tumor diameter, lymphatic
metastasis, distal metastasis and TNM stage

Tissue circRNA;
AUC value: 0.75; Sensitivity:
0.721;
Specificity: 0.683;
Plasma circRNA;
AUC value: 0.6; Sensitivity:
0.414;
Specificity: 0.875

208 [133]

Hsa_circ_0000181 Down Correlated with tumor diameter, lymphatic metastasis,
distal metastasis

Tissue circRNA;
AUC value: 0.756; Sensitivity:
0.852;
Specificity:0.539
Plasma circRNA;
AUC value: 0.582; Sensitivity:
0.206;
Specificity: 0.99

115 [186]

Hsa_circ_0001895 Down Correlated with GC cell differentiation, Borrmann type,
and CEA level

Tissue circRNA;
AUC value: 0.792; Sensitivity:
0.678;
Specificity:0.857

257 [188]

Hsa_circ_0000467 Up Correleated with TNM stage Tissue circRNA;
AUC value: 0.799; Sensitivity:
0.705;
Specificity:0.648

102 [187]

(continued on next page)
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Table 3 (continued)

Cancer Name of
CircRNAs

Changes of
expression

Diagnostic significance ROC curve Numbers
of patients

Refs

CircPSMC3 Down Associated with TNM stage and lymphatic metastasis Tissue circRNA;
AUC value: 0.933; Sensitivity:
0.536;
Specificity:0.857

106 [137]

Hsa_circ_0000520 Down Tissue:associated with TNM stage
Plasma: linked with CEA expression.

Tissue circRNA;
AUC value: 0.613; Sensitivity:
0.852;
Specificity:0.539
Plasma circRNA;
AUC value: 0.897; Sensitivity:
0.824;
Specificity: 0.844

112 [192]

Oral squamous
cell
carcinoma

Hsa_circ_0003829 Down Correlated with lymph node metastasis status and TNM
stage

Tissue circRNA;
AUC value: 0.81; Sensitivity:
0.7;
Specificity:0.8

120 [197]

Hsa_circ_0001874 Up Correlated with TNM stage and tumor grade Salivary circRNA;
AUC value: 0.863; Sensitivity:
0.744;
Specificity:0.902

93 [196]

Hsa_circ_0001971 Up Correlated with TNM stage Salivary circRNA;
AUC value: 0.845; Sensitivity:
0.756;
Specificity:0.878

93 [196]

Lung
cancer

Hsa_circ_0001715 Up Correlated with TNM stage and distant metastasis Plasma circRNA;
AUC value: 0.871; Sensitivity:
0.8772;
Specificity: 0.7167

117 [198]

Hsa_circ_0005962 Up Related to EGFR mutations and gender Tissue circRNA;
AUC value: 0.73; Sensitivity:
0.719;
Specificity:0.722

153 [199]

Hsa_circ_0086414 Down Related to gender Tissue circRNA;
AUC value: 0.81; Sensitivity:
0.778;
Specificity:0.722

153

Hsa_circ_002178 Up – Exosome circRNA;
AUC value: 0.9956

210 [194]

Hsa_circ_0037515 Down – Tissue circRNA;
AUC value: 0.81; Sensitivity:
0.57;
Specificity:0.90

122 [200]

Hsa_circ_0037516 Down – Tissue circRNA;
AUC value: 0.82; Sensitivity:
0.65;
Specificity:0.84

122

Breast cancer Hsa_circ_0008673 Up Correlated with tumor size,distant metastasis, ER
positive and PR positive

Plasma circRNA;
AUC value: 0.833; Sensitivity:
0.550;
Specificity: 0.971

378 [189]

Ovarian Cancer CircBNC2 Down Associated with histological grade , serous subtype,
LNM, and distant metastasis

Tissue circRNA;
AUC value: 0.879; Sensitivity:
0.964;
Specificity:0.807

249 [201]

Bladder cancer Hsa_circ_0001136 Up Correlated with tumor grade, tumor stage, lymph node
invasion and distant metastasis

Tissue circRNA;
AUC value: 0.770; Sensitivity:
0.686;
Specificity:0.769

122 [190]

Hsa_circ_0137439 Up Correlated with tumor stage, tumor grade, lymph node
status

Tissue circRNA;
AUC value: 0.890; Sensitivity:
0.886;
Specificity:0.734

116 [191]

Papillary
thyroid
carcinoma

Hsa_circ_0137287 Down Correlated with extrathyroidal extension, lymph node
metastasis , advanced T stage and tumor size

Tissue circRNA;AUC value:
0.8973; Sensitivity: 0.792;
Specificity:0.900

120 [202]

Pancreatic
cancer

Circ-IARS Up Correlated with liver metastasis, vascular invasion and
TNM stage

Exosome circRNA 92 [193]
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linked to tumor diameter and TNM stage, whereas plasma hsa_-
circ_0000190 exhibited no linkage[133]. Hence, there is a need to
compare circRNAs detected in different human components to
identify a precise biomarker for distinguishing cancer patients
from healthy controls.
920
Li et al[193] was the first to identify that exosomes contained
large amounts of circRNAs, due to the fact that > 1,000 circRNAs
were found in human serum exosomes. Of note, circRNAs have
been found to be stably overexpressed in exosomes, by at least
2-fold, as compared to producing cells such as circIARS, circRASSF2



Fig. 3. Strategies of circRNA research (identification, validation, function and mechanism).
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and circPTGR1[172]. Therefore, circRNAs could be placed in the
novel category of exosomal cancer biomarkers [172]. In pancreatic
cancer tissues and plasma exosomes, the expression of exosomal
circRNA IARS was higher than that of the control group. The results
of the study indicated that the presence of exosomal circRNA may
be a useful diagnostic marker for pancreatic ductal adenocarci-
noma (PDAC)[193]. The amplification of hsa_circ_002178[194] in
the exosomes was found to function as a novel diagnostic biomar-
ker for lung cancer, with a reported AUC value of 0.9956. In addi-
tion, the AUC value of exosomal hsa_circ_0004771[195] is 0.9 in
CRC, serving as an invasive diagnostic biomarker for CRC
treatment.

A total of 422 salivary circRNAs were discovered by Bahn et al
[172] which were confirmed to play a key role in signal transduc-
tion and inflammatory response in human cell-free saliva. As the
occurrence and development of tumors are largely influenced by
inflammation, it is believed that circRNAs originating from saliva
could play an essential role in tumorigenesis; 2 such circRNAs
are hsa_circ_0001874 and hsa_circ_0001971[196] in oral squa-
mous cell carcinoma. In addition, circRNAs could also be found in
gastric juice. Shao et al[172] discovered that hsa_circ_0014717
have favorable stability in gastric juice. This team proved that
the expression levels of hsa_circ_0014717 in gastric juice did not
change under freeze–thaw for 8 h. Collectively, circRNAs may serve
as effective biomarkers for cancer diagnosis.

8. Available strategies in circRNA research

There are several challenges in cancer-related circRNAs
research that are often neglected. Most have to do with the fact
that most circRNA sequences are the same as the host gene
sequence. Therefore, circRNA identification, characterization,
quantification, overexpression and knockdownmethods all depend
on the specific junction site (Fig. 3)[197] .

8.1. circRNA identification

8.1.1. RNA-seq
By using algorithms designed to examine ‘‘out-of-order” splic-

ing, a variety of circRNAs, such as exonic, intronic and intergenic
circRNAs, have been broadly discovered according to the total
RNA-seq data[198]. The methodologies used included find_circ,
circRNA_finder, CIRCexplorer and CIRI[198]. However, the accurate
quantification of circRNAs from the total RNA-seq datasets fre-
quently requires a high sequencing depth, and at least 100-bp
sequencing was recommended to ensure the accurate prediction
of circRNAs[199]. Currently, there are regular advancements in
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novel bioinformatics algorithms, as they are attractive tools for
identifying circRNAs. For instance, the analysis of circRNAs can
be performed by 6 algorithms: ACSF, CIRCexplorer2, CIRI2, DCC,
KNIFE and Uroborus[199]. In addition, the mapper like STAR is cap-
able of annotating more complex RNA sequence arrangements
with the features of a high accuracy and speed, such as chimeric
and circRNA[200]. Alternatively, the BWA-MEM algorithm has
been found to detect circRNAs with fast and low RAM require-
ments[201]. Segemehl, which exploited an improved suffix array
for seeding, was found to outperform its competitors on splice site
validation[202].

8.1.2. Microarrays
The application of microarrays is an attainable supplement to

RNA-seq for validating circRNAs, since they require less bioinfor-
matics expertise[203]. The first commercial microarrays were
manufactured from Arraystar Inc. (https://www.arraystar.com/ar-
raystar-human-circular-rna-microarray), which contains > 10,000
circRNAs that have been selected from publications. Microarray
analysis can eliminate the uncertainty of RNA-Seq analysis, due
to lack of generalization. As previously reported, when manufac-
turers ensure reproducibility and efficiency, the process is highly
targeted, and relevant standard analysis methods can be used
regardless of the type of hybridized[202]. In a recent study,
87,935 circRNA sequences covering most circRNAs characterized
to date in circBase have been integrated to design microarray
probes, which is clearly more accurate than RNA-seq. Furthermore,
the majority of circRNAs measured by this microarray could be fur-
ther confirmed through reverse transcription (RT)-qPCR or RNA-
seq[204].

8.2. circRNA validation and characterization

8.2.1. RT-qPCR
RT-qPCR of circRNAs has been broadly employed for the detec-

tion, validation and sometimes even quantification of circRNAs
[205]. However, detecting the putative circRNA junction by har-
nessing qPCR does not guarantee the existence of a circRNA, as cer-
tain linear RNAs share the same sequences through junction sites.
Currently, divergent primers are particularly designed to extend
the circRNA back-splice junction (BSJ) sequence, which was found
to exhibit high specificity on the amplification of the circRNAs and
not target the linear RNA, allowing direct and precise detection and
quantification of circRNAs[205]. In detail, total RNA was digested
by RNaseR, reverse-transcribed into cDNA, and subsequently
amplified by divergent and convergent primers. In a previous
study, RNase R could degrade most linear RNAs, but had no effect

https://www.arraystar.com/arraystar-human-circular-rna-microarray
https://www.arraystar.com/arraystar-human-circular-rna-microarray
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on circRNAs[206]. Both divergent and convergent primers could
produce a band in the RNaseR(-) group. In the RNaseR(+) group,
divergent primers produce a band, while the convergent primers
did not. Furthermore, the amplification product should be detected
by sanger sequencing to ensure its true presence.

8.2.2. Droplet digital PCR (ddPCR)
ddPCR is a novel technology for the accurate quantification of

RNA, which exhibits a higher sensitivity. A previous study tested
the application of ddPCR in circRNA quantification and determined
the stability of circRNA, as well as compared RT-qPCR with ddPCR
[207]. It was observed that a prolonged RT incubation time would
result in the circRNA accumulating a variety of PCR products,
which would lead to a relatively low accuracy of RT-qPCR in the
quantification of circRNA. DdPCR can overcome this shortcoming
and be used instead of qPCR for the quantification of circRNA
[207]. In addition, it has been shown that plasma levels of secre-
tory circRNAs are detectable by RT-ddPCR in advanced lung can-
cers[208].

8.2.3. Northern blot
Evidence has demonstrated that northern blot hybridization is

the gold standard for circRNA analysis, convincingly indicating
the circular configuration of putative circRNAs[209]. Strictly, cir-
cRNA validation generally requires the northern blots to be com-
bined with other tools, such as RNase R and RNase H treatments
[210]. In the RNaseR(-) group, both circRNA and linear mRNA could
be detected, while in the RNaseR(+) group only the band of circRNA
could be found, due to linear mRNA digestion[189]. However,
northern blotting is not without drawbacks, including the require-
ment of a very large number of RNA, and the amount required and
frequency of radioactively-labelled probes[199]. Nowadays, vari-
ous northern gels and detection systems are under investigation,
so they can be improved.

8.2.4. Fluorescence in situ hybridization (FISH)
Visualizing circRNAs in cells is extremely critical for studying

their biology. An oligonucleotide probe coupled with alkaline
phosphatase, fluorescent dyes or an antigen can be used to visual-
ize an circRNA in fixed and permeabilized cells, as shown by the
use of digoxigenin in ISH[199]. In a previous study a simple smRNA
FISH protocol was used to measure the circRNAs produced from
identical genetic loci and coexisted with overlapping, non-
circular mRNA isoforms[211]. Most importantly, the BSJ site needs
to be extended by the designed hybridization probe.

8.2.5. NanoString technology
NanoString, a relatively new digital counting technology, is pre-

cise in quantifying linear mRNAs without any enzymatic reactions.
Recent studies have found that after designing color-coded probes
spanning the specific back-spliced junctions of circRNAs, Nano-
String technology was used for the detection of circRNAs in both
high- and low-quality RNA samples from cell lines and samples
from patients with B-cell malignancies, a method that is sensitive,
specific and quantitatively accurate[212].

8.3. Overexpression of circRNAs

The biological functions of circRNAs can be investigated by
overexpressing the selected circRNAs. circRNAs could be produced
in vitro using self-splicing introns or splint ligation methods
[31,213]. To construct stable cell lines overexpressing the selected
circRNA, cells could be transfected using a linearized circRNA-
producing plasmid[35]. However, this approach often leads to the
random insertion of a circRNA expression locus. The change of
intronic sequences could make circRNA circulation more accurate
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under certain circumstances[214]. Therefore, the amount of cir-
cRNA generation is supposed to be detected and confirmed by
Northern blotting.

8.4. circRNA-knockdown

The key means of investigating the biological function of cir-
cRNAs is a loss-of-function study by RNA interference. Gene-
knockdown through the use of siRNAs specifically targeting the
BSJ is widely used as a method of reducing the expression of cir-
cRNAs. Of note, the design space is extremely restricted when tar-
geting the BSJ, and the passenger disabled siRNA could be
beneficial [215]. The construction of siRNAs relies on a high trans-
fection efficiency, since these RNAs merely knock down the targets
transiently. The more stable knockdown method is the use of AGO
shRNAs or vectors expressing shRNAs [216,217]. The RNA-
targeting Cas13 system is a useful tool for degrading circRNAs
[218,219]. The Cas13 enzymes belong to the class 2 type VI
CRISPR/Cas effectors. Efficient Cas13 knockdown requires 28–30-
nt long spacers and is intolerant to mismatches in spacers. There-
fore, CRISPR RNAs carrying spacers that specifically target and span
the BSJ site, in principle, should be able to discriminate circular and
linear RNAs.

8.5. Mechanistic study

For mechanistic studies, bioinformatics prediction, luciferase
reporter assay, RNA immunoprecipitation and RNA pull-down fol-
lowed by mass spectrometry are conducted to explore circRNA-
miRNA and circRNA-protein interactions. For instance, circRNA-
miRNA interactions can be predicted by employing Arraystar’s
homemade miRNA target prediction software based on TargetScan
and miRanda to establish a circRNA-miRNA-mRNA coexpression
network of hsa_circ_0044556[220]. In the study performed on
the role of circSLC8A1 in bladder cancer, RNA pull-down and luci-
ferase reporter assays were performed to explore the interactions
between the specific circRNA, miRNA and mRNA[166]. In addition,
it has been shown that researchers from the South China Univer-
sity of Technology determined circRNA-miRNA interactions via
AGO cross-linking and immunoprecipitation, along with CLIP-Seq
and RNA-Seq data. However, these techniques do not distinguish
between circRNA and linear RNA. Therefore, the circRNAs should
be further quantified using a circRNA-specific method, such as
RT-qPCR, with a divergent primer[199]. It was reported in recent
studies that the RNase protection assay can be employed to map
protein-RNA interactions, which will block the cleavage of cir-
cRNAs via RNase H [209]. A site of interaction between the protein
and RNA is then illustrated under the condition of a protein bind-
ing to the RNA at the target sequence[221]. An RNA pull-down
assay is another attractive method of investigating putative
protein-binding partners by employing probes for known cir-
cRNAs, followed by confirmation by western blotting and mass
spectrometry. As compared with the RNA pull-down assay, the
RBP immunoprecipitation assay discovers the RNAs by targeting
the protein[222]. In order to study the circRNA protein-coding abil-
ity, circRNA N6-methyladenosin, IRES and ORF should be predicted
by bioinformatic analysis[70,104,171].
9. Challenges and future perspectives

The functions and properties of circRNAs have been elucidated
little by little through the advances in high-throughput screening
[20]. A plethora of circRNAs have been found to participate in
tumorigenesis through multiple molecular mechanisms, such as
their interaction with RBPs, which serve as miRNA sponges that
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translate into small peptides and regulate the expression of paren-
tal genes[69,104]. Despite the fact that great progress has been
made in the study of circRNAs, there are several aspects of cir-
cRNAs need to be investigated before it can be incorporated into
clinical practice.

A noteworthy characteristic of circRNAs is subcellular distribu-
tion. circRNAs are mainly distributed in the cytoplasm [15,49]. Of
note, certain circRNAs exhibit a modulated switch in their nucleo-
cytoplasmic localization during their development [223]. The dis-
tribution of circRNAs at synaptosomes, dendrites and axons is
appealing [224,225]. It remains unclear whether the accumulation
of circRNA is due to a directed transport or diffusion of the mole-
cules in the spots (e.g. by binding to membrane proteins). Further
studies are required to investigate what drives the subcellular dis-
tribution of circRNAs. Since circRNAs and mRNAs share 50UTR
regions in most cases[19] it is conceivable that these sequences
show that the distribution of both the circular and linear forms
originate from a given locus. In addition, mRNA and circRNA may
compete for the interaction with effector or transport proteins,
which is a way for circRNAs to modulate gene expression. Further
studies are required to verify these assumptions and screen cir-
cRNA biogenesis and transportation using live-cell imaging. In
addition, this area is still lacking an accurate description of the
amount and classification of circRNAs.

Emerging evidence confirms that epigenetics is associated with
tumorigenesis. To date, several circRNAs have been proven to reg-
ulate epigenetic changes, such as histone modifications and DNA
methylation[226]. However, little is known about how circRNAs
are transported inside the cells and their degradation mechanisms
of circRNAs. First, although circRNA may serve as a miRNA sponge,
miRNA-mediated circRNA degradation has rarely been explored.
The expression of CDR1as is regulated by miR-671 via AGO2-
mediated degradation[29]. Meanwhile, CDR1as levels are modu-
lated by miR-7 possibly through slicing [55]. Secondly, variations
in the m6A modifications of circRNAs may have an effect on RNA
stability, cell-specific expression and the length of single exons
[227]. Furthermore, m6A modification identified the binding of
YTHDF2 to the molecular target and interacted with HRSP12 to
regulate the cleavage of circRNA, indicating its positive effect on
the degradation of circRNAs[228]. In addition, in a study by Chen
et al[229] the m6A modification of circNSUN2 was found to facili-
tate its export from the nucleus to the cytoplasm.

It’s worth noting that circRNAs are enriched in extracellular
vesicles, so that cells can eliminate circRNAs through extracellular
vesicles[230]-[231]. In addition, extracellular vesicles or
microvesicles may have an impact on the tumor microenviron-
ment through intercellular communication [232,233]. For example,
in a study by Li et al[234] it was found that tumor-excreted cir-
cPDE8A diffused into blood circulation by exosome transportation,
and plasma exosomal circPDE8A was strongly associated with
tumor invasion in pancreatic ductal adenocarcinoma (PDAC). This
suggested that exosome communication indeed occurs in PDAC
cells. In addition, UAP56 or URH49 were confirmed to play a key
role in the nuclear exportat of circRNAs in HeLa cells [235,236].
In addition, exosomal circRNAs also existed in platelet-derived
extracellular vesicles[237] pancreatic cancer cells[193,238] and
hepatic cells[238]. Exosomes can be received by many types of
cells, including macrophages, and they could function as messen-
gers for cell-to-cell communication. Collectively, the extracellular
transport and degradation of circRNAs should be studied in detail
in future studies, which will contribute to a novel insight of cir-
cRNAs biology.

Despite the aforementioned exciting progress in circRNA
research, there are still challenges in the clinical application
of exosomal circRNAs. Firstly, it is difficult to detect circRNA
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exosomes due to its low abundance. Secondly, the conforma-
tion and sequence of circRNA overlap with linear mRNA coun-
terparts, making the accurate assessment of circRNA expression
challenging. In addition, the mechanism through which cir-
cRNAs are enriched during exosomal formation remains
unclear.

Most reports of circRNAs as essential regulators of cancer have
provided limited information about their function. CeRNA could
not represent the primary function of circRNAs, since most cir-
cRNAs are short in length and low in abundance[239]. The function
of circRNAs in cancer pathogenesis is still not fully understood,
particularly with regards to drug resistance. The functional study
of these newly selected circRNAs may not only broaden our knowl-
edge of the non-conding RNA and eukaryotic transcriptome, but
also offer new insights into the diagnosis and treatment of cancer.
circRNAs could be appropriately modified to change the key bind-
ing sites associated with cancer, and specific targeting molecular
drugs can be developed to alter downstream gene expression for
the purpose of treating cancer.

Meanwhile, improved methods of artificially overexpressing or
silencing circRNAs make it possible to regulate the expression of
circRNAs, which is crucial to further investigating the functions
of circRNAs. In addition, nanoparticles are closed spherical lipid
vesicles and have been widely used in the clinic as drug carriers.
For instance, due to passive targeting of drug carriers, stable
nucleic acid lipid particles accumulate in the tumor tissue, so
nanocarriers of a suitable size can easily pass through the tumor
[240]. Of note, it was found by Du et al[18] that circFoxo3 can be
delivered through plasmid conjugated with gold nanoparticles to
induce tumor apoptosis. Future research, in combination with
materials science, should focus on delivering circRNA to target cells
in an efficient manner. Furthermore, a way in which to control
therapeutic circRNAs once they have been delivered, as well as a
mechanism of blocking the functions of an circRNA once it has
completed exerting its therapeutic effects need to be identified.
Stimulus-responsive nanoparticles may be a potential approach
for delivering circRNAs. Presumably, circRNAs could be delivered
as a promising drug for the clinical treatment of cancer in the next
few years.

Despite the natural sponges acting as efficient miR sponges in
tumor cells, synthetic circRNA sponges are also worth investigat-
ing. The synthetic circRNA sponges can obtain therapeutic loss-
of-function targeted against miRNAs more conveniently and stea-
dily, thereby controlling tumor progression. It has been shown that
synthetic circRNA can function as an miR-21 sponge to hamper
gastric carcinoma cell proliferation, which indicates the potential
broad application of synthetic circRNA in the treatment of human
cancer [80]. In addition, a new type of artificial circular multi-miR
sponge exhibiting miR-21 and miR-93 loss-of-function was syn-
thesized to inhibit cellular proliferation and migration in esopha-
geal carcinoma cells[241]. However, the synthetic technology is
not complete and still has drawbacks, such as a limited number
of miR binding sites, an altered yield of ligation for RNA circulariza-
tion and an appearance of potential toxicity, which require further
investigations.

circRNA is a new important player in the ncRNA network, which
has been identified as a key regulator of various types of cancer.
Furthermore, circRNAs have been confirmed to participate in anti-
cancer drug resistance. The latest studies on circRNAs in anticancer
drug resistance were summarized by Xu et al[242] ranging from
traditional chemotherapeutic drugs to targeted and immunothera-
peutic drugs, which will expand their clinical potential and serve
as a research hotspot. Hence, the appropriate and precise use of cir-
cRNAs is essential in the field of cancer studies, as well as the new
foothold for precision medicine in the near future.
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10. Conclusions

The study of circRNAs is a novel research field that has emerged
with the rapid development of technology. Research on circRNAs
has led to several surprising findings, indicating that circRNAs gov-
ern a wide spectrum of physiological and pathological processes,
particularly in tumorigenesis. What we know so far suggests that
circRNA-based diagnostic and therapeutic strategies may play
promising role in cancer management.
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