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Abstract: Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close
relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under
natural variation, we analyzed the physiological and proteomic differences between Shandong (SD)
and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more
conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence
or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28
differentially expressed protein spots were identified in shoots and roots, respectively. The proteins
identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses
to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-
molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our
data revealed the evolutionary differences at the protein level between these two ecotypes. Namely,
in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to
structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype
utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in
the Xinjiang region.

Keywords: Eutrema salsugineum; salt tolerance; natural variation; growth; senescence; molecular regulation

1. Introduction

Salt cress (Eutrema salsugineum, also known as Thellungiella salsuginea or Thellungiella
halophila in older literature) is a typical halophyte to study abiotic stress tolerance [1–5]. Not
only does it have a high tolerance to extreme salt stress, but it also has a high tolerance to
freezing, nitrogen deficiency, and drought stress [2,4,6,7]. From the perspective of genetic
research, E. salsugineum has the characteristics of small plant size, a short life cycle, a
large number of seeds, and strong self-pollination ability. In addition, E. salsugineum and
Arabidopsis thaliana show a high degree of sequence identity at both the cDNA and amino
acid levels [8–10].

The ubiquitous heterogeneity of natural habitats makes it difficult to extract plant
resources and seriously affects the growth, reproduction, and distribution of plants [11,12].
Phenotypic plasticity is an important ecological strategy for plants to adapt to hetero-
geneous habitats [13]. Plants growing in heterogeneous habitats have high phenotypic
plasticity, which can maximize resource acquisition and optimize resource allocation be-
tween organs and tissues, thereby improving resource utilization efficiency and ultimately
improving plant adaptability. Phenotypic plasticity can play a key role in the successful
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colonization of adaptive halophytes such as Eutrema, and this plasticity can lead to the
formation of ecotypes in geographical regions. Ecotypes are common in many plants and
are used to describe genetically distinct populations adapted to specific environmental
conditions [14,15]. Local selection of different habitats plays a crucial role in the generation
and maintenance of genetic diversity [16].

In China, salt cress is distributed from the Yellow River basin to the Yellow River
estuary in Dongying City, Shandong Province, resulting in many naturally occurring
ecotypes. Among them, Shandong and Xinjiang ecotypes grow in different natural habitats
and are typical representatives. Xinjiang is located inland and has a continental temperate
dry climate. Dongying City is located in the Yellow River Delta and has a temperate
monsoon climate with frequent rainfall [17]. To adapt to the different living environments,
the two salt cress ecotypes can adopt complex mechanisms, including developmental,
morphological, physiological, and biochemical coping and adaptation strategies.

Current research on salt cress has focused on comparing its response to abiotic stress
with that of A. thaliana [18]. However, comparative studies on the growth, development, and
responses to abiotic stress of different salt cress ecotypes are still sporadic, and comparative
studies on the proteomics of different salt cress ecotypes have not yet been reported. As
we know, proteome analysis can help us gain more intuitive and accurate knowledge to
uncover natural variations. In this study, two E. salsugineum ecotypes, Shandong (SD) and
Xinjiang (XJ), were selected to study their morphological and physiological differences.
In addition, proteomic comparisons were performed under optimal growth conditions to
reveal the evolutionary differences at the protein level between these two ecotypes.

2. Results
2.1. Morphological and Physiological Comparison

After culturing the two Eutrema ecotypes in a hydroponic system for 6 weeks, there
were significant differences in the morphology of shoots and roots between the two ecotypes.
The leaves of the SD ecotype Eutrema are dark green, short and flat; The leaves of the XJ
ecotype Eutrema are light green, long and curly (Figure 1A,B). Although the root system of
each ecotype is the taproot, there are major differences between root systems. SD Eutrema
ecotype has an obvious taproot, and XJ Eutrema ecotype has a short taproot and developed
lateral roots (Figure 1A). In addition, the SD ecotype Eutrema had longer taproots than
the XJ ecotype (Figure 1D). Biomass analysis showed that the fresh weight of shoots of
XJ Eutrema was higher, while the difference in fresh weight of roots was not significant
(Figure 1E). The average dry weight of the XJ ecotype was also larger than that of the SD
ecotype (Figure 1F). When comparing the leaf inclination angle of the two ecotypes, we
found that the leaf pitch angle of the SD ecotype Eutrema was significantly greater than that
of the XJ ecotype (Figure 1C,G). The IAA concentration of the SD ecotype was significantly
higher than that of the XJ ecotype, which may be closely related to leaf margin shape.
(Figure 1C,H) [19].

During hydroponics, we found that the XJ ecotype Eutrema showed clear signs of
senescence or leaf loss (Figure 2A). Therefore, we compared the degree of leaf senescence of
the two ecotypes and found that the number of etiolated leaves and the chlorosis extent of
same-position leaves of the XJ ecotype were higher than those of the SD ecotype, showing
obvious leaf yellowing symptoms (Figure 2B). Meanwhile, the chlorophyll content of the
SD ecotype leaves was about 1.7 times higher than that of the XJ ecotype (Figure 2C). This
result is consistent with the phenomenon of leaf senescence. Further comparing the leaf
area of the two Eutrema, we found that the leaf area of the XJ ecotype was significantly larger
than that of the SD ecotype (Figure 2D). To elucidate the role of phytohormones in Eutrema
leaf senescence, the cytokinin (CK) concentrations of the SD ecotype were measured, and
the results showed that the SD ecotype had significantly higher cytokinin concentrations
than the XJ ecotype. (Figure 2E). This result suggests that cytokinin (CK) plays an important
role in leaf senescence in both ecotypes. To further elucidate the mechanism of the leaf
senescence differences between the two ecotypes, the expression of leaf senescence marker
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genes senescence-associated gene 12 (SAG12) and SAG113 was analyzed. Additionally, we
found that the expression of these two genes was decreased in the SD ecotype (Figure 2F),
which reflected the molecular basis of the difference in leaf senescence between these two
ecotypes. Therefore, our results suggest that the XJ ecotype leaves are more susceptible to
age-dependent senescence.
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Figure 1. Growth and morphological analysis of SD and XJ plants cultured in a hydroponic system
for 6 weeks. (A,B) Growth status of SD and XJ plants. (C) Comparison of leaf inclination angles of
SD and XJ plants after 6 weeks of hydroponics. (D–F) The primary root length, fresh weight (FW),
and dry weight (DW) of two Eutrema were examined. (G) Leaf inclination angle measurements were
made between the central axis and the penultimate leaf of two Eutrema. (H) Concentration of IAA in
shoots. Data were expressed as means ± SD and t-test was used for statistical analysis. (* p < 0.05,
** p < 0.01 and *** p < 0.001). All experiments were tripled, and each experiment contained at least
9 plants.
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Figure 2. Senescence analysis of SD and XJ plants cultured in a hydroponic system for 6 weeks. (A)
The growth state of the shoots. (B) Comparison of SD and XJ plants with 9th–14th leaves. Bars = 1 cm.
(C) Total chlorophyll content in leaves of SD and XJ plants. (D) Leaf area values for SD and XJ plants.
(E) The concentration of CK in SD and XJ shoots. Concentrations of CK in SD and XJ. (F) Expression
of SAG12 and SAG113 in leaves of two ecotypes. Data are presented as means ± SD and t-test was
used for statistical analysis. (** p < 0.01 and *** p < 0.001).
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2.2. Identification of Differently Expressed Protein Spots from Two Ecotypes by 2-DE and
ESI-MS/MS

To investigate the mechanisms underlying the morphological and physiological differ-
ences between the two Eutrema ecotypes, a comparative proteomic analysis of Eutrema was
performed. Proteins were extracted from the shoots or roots of 6-week-old seedlings of both
ecotypes and separated by IEF/SDS-PAGE, respectively. After image analysis, more than
900 protein spots were reproducibly detected and matched in the shoot gel, and more than
700 protein spots were reproducibly detected and matched in the root gel. A representative
2-DE gel image is shown in Figure 3. Proteins were well separated in both dimensions. The
isoelectric points (pI) of the spots range from 4 to 7, and the molecular mass ranges from
10 to 80 kDa. Only the protein spots exhibiting significant changes (>2 fold or <0.5 fold and
p-value < 0.05) between different ecotypes were employed for further analysis.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 23 
 

 

Interestingly, three proteins were identified in shoots in the Eutrema SD ecotype, 

such as 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase 1 (spots SS4 and 

5), plasma membrane-associated cation-binding protein 1 (spots SS6, 7, and 8), and 2-Cys 

peroxiredoxin BAS1 (spots SS11, 12). In the roots of the SD ecotype Eutrema, jaca-

lin-related lectin 34 (spots SR1, 2, and 3) and 2, 3-bisphosphoglycerate-independent 

phosphoglycerate mutase 1 (spots SR5, 6, and 7) were identified. Likewise, the 

2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 was found in the roots 

of the XJ ecotype Eutrema (spot XR2, 3, and 7). Further examination of the gel map shows 

that the experimental values of isoelectric point or molecular mass deviate from the the-

oretical values. This phenomenon may be due to the presence of different protein 

isoforms and post-translational modifications or degradation, which may alter the pro-

tein’s molecular weight and/or charge. Alternatively, proteins appearing at multiple sites 

may be due to the translation of alternatively spliced mRNAs [20]. 

 

Figure 3. The 2-DE profiles of SD and XJ Eutrema proteins under normal hydroponic conditions for 

6 weeks. The marked spots were identified by ESI-MS/MS. (A) 2-DE protein gel was from SD Eu-

trema shoots. (B) 2-DE protein gel was from XJ Eutrema shoots. (C) 2-DE protein gel extracted from 

SD Eutrema root. (D) 2-DE protein gel extracted from XJ Eutrema root. 

2.3. Functional Annotation of Different Proteins 

To further functionally classify differentially expressed proteins, GO enrichment 

analysis following biological processes was performed. Representative GO terms were 

involved in the cellular metabolic process (24%), response to stress (18%), response to 

abiotic stimulus (10%), and aging (4%), etc., in the two ecotype shoots (Figure 4A). In the 

root system, the stress response was the largest (18.6%), followed by the small molecule 

metabolic process (16.28%), oxidation-reduction process (13.95%), and the response to 

abiotic stimulus (13.95%) (Figure 4B). This finding suggests that metabolism-related 

Figure 3. The 2-DE profiles of SD and XJ Eutrema proteins under normal hydroponic conditions for
6 weeks. The marked spots were identified by ESI-MS/MS. (A) 2-DE protein gel was from SD Eutrema
shoots. (B) 2-DE protein gel was from XJ Eutrema shoots. (C) 2-DE protein gel extracted from SD
Eutrema root. (D) 2-DE protein gel extracted from XJ Eutrema root.

Quantitative image analysis revealed that 66 protein spots from shoot gels and 34 pro-
tein spots from root gels showed significant differences between the two ecotype samples
(Figure 3). Most proteins in shoots were completely absent in SD or XJ ecotype samples, and
some protein spots were increased or decreased in SD or XJ ecotype samples. While most
proteins in roots were characterized by the acid-base properties of pI, only 4 proteins ap-
peared in SD or XJ ecotype samples compared with each other. The differentially expressed
protein spots were excised, digested with trypsin, and identified by ESI-MS/MS. The iden-
tified protein has two or more peptide fragments (Supplementary Tables S1 and S2). The
results showed that 25 protein spots in shoots and 28 protein spots in roots were identified
by ESI-MS/MS (Tables 1 and 2).
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Table 1. Differentially expressed proteins identified in shoots of SD and XJ ecotype of Eutrema.

Spot NCBI Accession Exper. e Theor. f

No. a Locus. b No. c Protein Name. d pI/Mr pI/Mr Score. g NP. h Pattern. i

Cellular metabolic process
XS4 At3g58610 XP_006402768 ketol-acid reductoisomerase 5.8/56 5.64/57.3 20 2 appear
XS19 At5g27380 XP_024007192 glutathione synthetase 5.8/56 5.52/53.9 20 2 appear
XS8 At4g33680 XP_024005372 LL-diaminopimelate aminotransferase 5.6/44 6.38/46.5 20 2 appear

SS4 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent
phosphoglycerate mutase 1 5.45/59 5.32/60.5 78 7 decrease

SS5 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent
phosphoglycerate mutase 1 5.6/59 5.32/60.5 384 36 appear

SS27 At3g22890 XP_006406118 ATP sulfurylase 1 6/44 6.34/51.5 70 7 increase
XS28 At3g22890 XP_006406118 ATP sulfurylase 1 6/44 6.34/51.5 60 6 decrease
SS21 At1g12050 XP_006417270 fumarylacetoacetase 5.6/44 5.23/46.1 40 4 appear
XS33 At2g40010 XP_006411245 60S acidic ribosomal protein P0-1 5.3/34 5.19/33.7 100 9 equal

Response to stress
SS6 At4g20260 XP_006413890 plasma membrane-associated cation-binding protein 1 5/36 4.65/24.7 98 8 appear
SS7 At4g20260 XP_006413890 plasma membrane-associated cation-binding protein 1 5/36 4.65/24.7 66 5 appear
SS8 At4g20260 XP_006413890 plasma membrane-associated cation-binding protein 1 5/37 4.65/24.7 134 9 appear

SS10 At1g75040 XP_006390358 pathogenesis-related protein 5 5/25 4.65/22.8 200 20 increase
SS14 At2g43570 XP_006397529 endochitinase CHI 5.3/27 5.84/29.8 40 4 increase
SS29 At3g57270 XP_006409034 probable glucan endo-1,3-beta-glucosidase BG1 5.3/35 8.94/37.7 20 2 increase
XS15 At2g30860 XP_024004280 glutathione S-transferase F9 6.7/25 6.17/24.1 30 3 decrease

Response to abiotic stimulus
XS12 At5g20720 XP_024011493 20 kDa chaperonin 5.3/25 5.23/21.4 170 16 increase
SS11 At3g11630 XP_006407428 2-Cys peroxiredoxin BAS1 5/23 5.01/22.4 460 46 increase
SS12 At3g11630 XP_006407428 2-Cys peroxiredoxin BAS1 5.3/24 5.01/22.4 30 3 decrease
XS11 At3g11630 XP_006407428 2-Cys peroxiredoxin BAS1 5/24 5.01/22.4 88 9 decrease

Aging
XS6 At1g05010 XP_006418070 1-aminocyclopropane-1-carboxylate oxidase 4 5/37 5.24/36.7 60 4 appear

Unknown
SS26 At3g01500 XP_006408514 beta carbonic anhydrase 1 6.3/33 6.14/25.6 80 7 equal
XS27 At3g01500 XP_006408514 beta carbonic anhydrase 1 6.3/26.3 6.14/25.6 66 2 equal
SS30 At1g55480 XP_006392635 protein MET1 5.3/34 8.36/37.4 30 3 equal
XS32 At1g55480 XP_006392635 protein MET1 5.3/35 8.19/37.4 256 23 equal

a Assigned spot number as indicated in Figure 3. SS refers to the shoots of SD ecotype of Eutrema. XS refers to the shoots of XJ ecotype of Eutrema. SR refers to the roots of SD ecotype of
Eutrema. XR refers to the roots of XJ ecotype of Eutrema. b Gene symbol in Arabidopsis. c Database accession numbers of Eutrema from the NCBI database. d The identified proteins name
in Eutrema. e Experiment mass (kDa) and pI of identified proteins. f Theoretical mass (kDa) and pI of identified proteins. g The sequest score. h Number of peptides sequenced. i Pattern
of protein spots on 2D gel. “Appear” means that this spot appears in one ecotype, and there is no corresponding spot in the other ecotype. “Increase” means that the optical density of
the corresponding spot in the ecotype is greater than or equal to 2 times (p < 0.05). “Decrease” indicates that the optical density of the corresponding spot in the ecotype is less than
1/2 (p < 0.05). “Acid” means that the spot in one ecotype is more acidic than its corresponding spot in another ecotype. “Basic” means that the spot in one ecotype is more basic than the
spot in another ecotype.
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Table 2. Differentially expressed proteins identified in roots of SD and XJ ecotype of Eutrema.

Spot NCBI Accession Exper. e Theor. f

No. a Locus. b No. c Protein Name. d pI/Mr pI/Mr Score. g NP. h Pattern. i

Small molecule metabolic process
SR5 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 5.68/65 5.32/60.6 68 7 basic
SR6 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 5.72/65 5.32/60.6 490 42 basic
SR7 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 6/65 5.32/60.6 80 7 basic
XR2 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 5.5/65 5.27/60.5 128 12 acid
XR3 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 5.6/65 5.27/60.5 154 14 acid
XR7 At1g09780 XP_006417539 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 5.4/65 5.27/60.5 80 6 acid
XR5 At5g08570 XP_006399365 pyruvate kinase 6.3/64 5.93/55 70 6 appear
SR16 At5g50850 XP_006402055 pyruvate dehydrogenase E1 component subunit beta-1 5.1/38 5.11/35.9 32 4 decrease acid
XR9 At5g50850 XP_006402055 pyruvate dehydrogenase E1 component subunit beta-1 5.3/36 5.11/35.9 58 5 increase basic
SR4 At2g45290 XP_024010889 transketolase-2 5.7/67 5.64/68.9 50 4 appear

Oxidation-reduction process
XR1 At5g37510 XP_006405867 NADH dehydrogenase [ubiquinone] iron-sulfur protein 1 6/68 5.72/77.9 70 6 appear
XR13 At5g54500 XP_006401566 NAD(P)H dehydrogenase (quinone) FQR1 6.3/25 5.96/21.8 136 11 increase
SR8 At5g03630 XP_024011589 monodehydroascorbate reductase 2 6.3/45 5.25/47.5 166 12 decrease basic
XR8 At5g03630 XP_024011589 monodehydroascorbate reductase 2 5.7/43 5.25/47.5 108 9 increase acid
XR6 At2g14170 XP_006409665 methylmalonate-semialdehyde dehydrogenase [acylating] 6.3/64 8.97/64.7 82 7 appear

Response to abiotic stimulus
SR9 At1g77120 XP_006390122 alcohol dehydrogenase class-P 6.5/45 5.83/41.2 120 12 increase
SR10 At2g30870 XP_006410185 glutathione S-transferase F10 5.5/25 5.49/24.1 50.11 5 decrease basic
XR10 At2g30870 XP_006410185 glutathione S-transferase F10 5.3/25 5.49/24.1 148 15 increase acid
SR11 At5g20720 XP_024011493 20 kDa chaperonin 5.5/25 5.23/21.4 284 26 decrease basic
XR11 At5g20720 XP_024011493 20 kDa chaperonin 5.2/25 5.23/21.4 262 21 increase acid
SR15 At1g66700 XP_006391421 paraxanthine methyltransferase 1 5/42 5.34/39.8 68 6 increase
SR1 At3g16460 XP_006406833 jacalin-related lectin 34 5.3/68 5.31/72.5 50 5 acid
SR2 At3g16460 XP_006406833 jacalin-related lectin 34 5.4/68 5.31/72.5 148 14 acid
SR3 At3g16460 XP_006406833 jacalin-related lectin 34 5.5/68 5.31/72.5 40 4 acid
XR4 At3g16460 XP_006406833 jacalin-related lectin 34 5.6/67 5.31/72.5 240 23 basic

Unknown
SR18 At1g48090 XP_006393484 uncharacterized LOC18010485 5.3/26 6.33/46.1 42 4 appear
XR14 At1g28680 XP_006415631 spermidine sinapoyl-CoA acyltransferase 6.1/56 5.65/49.7 34 3 appear
XR16 At5g43060 XP_006403303 probable cysteine protease RD21B 4.6/50 5.89/32.5 140 13 equal

a Assigned spot number as indicated in Figure 3. SS refers to the shoots of SD ecotype of Eutrema. XS refers to the shoots of XJ ecotype of Eutrema. SR refers to the roots of SD ecotype of
Eutrema. XR refers to the roots of XJ ecotype of Eutrema. b Gene symbol in Arabidopsis. c Database accession numbers of Eutrema from the NCBI database. d The identified proteins name
in Eutrema. e Experiment mass (kDa) and pI of identified proteins. f Theoretical mass (kDa) and pI of identified proteins. g The sequest score. h Number of peptides sequenced. i Pattern
of protein spots on 2D gel. “Appear” means that this spot appears in one ecotype, and there is no corresponding spot in the other ecotype. “Increase” means that the optical density of
the corresponding spot in the ecotype is greater than or equal to 2 times (p < 0.05). “Decrease” indicates that the optical density of the corresponding spot in the ecotype is less than
1/2 (p < 0.05). “Acid” means that the spot in one ecotype is more acidic than its corresponding spot in another ecotype. “Basic” means that the spot in one ecotype is more basic than the
spot in another ecotype.
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Interestingly, three proteins were identified in shoots in the Eutrema SD ecotype, such
as 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 (spots SS4 and 5),
plasma membrane-associated cation-binding protein 1 (spots SS6, 7, and 8), and 2-Cys
peroxiredoxin BAS1 (spots SS11, 12). In the roots of the SD ecotype Eutrema, jacalin-related
lectin 34 (spots SR1, 2, and 3) and 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase 1 (spots SR5, 6, and 7) were identified. Likewise, the 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase 1 was found in the roots of the XJ ecotype Eutrema
(spot XR2, 3, and 7). Further examination of the gel map shows that the experimental
values of isoelectric point or molecular mass deviate from the theoretical values. This
phenomenon may be due to the presence of different protein isoforms and post-translational
modifications or degradation, which may alter the protein’s molecular weight and/or
charge. Alternatively, proteins appearing at multiple sites may be due to the translation of
alternatively spliced mRNAs [20].

2.3. Functional Annotation of Different Proteins

To further functionally classify differentially expressed proteins, GO enrichment analy-
sis following biological processes was performed. Representative GO terms were involved
in the cellular metabolic process (24%), response to stress (18%), response to abiotic stimu-
lus (10%), and aging (4%), etc., in the two ecotype shoots (Figure 4A). In the root system,
the stress response was the largest (18.6%), followed by the small molecule metabolic pro-
cess (16.28%), oxidation-reduction process (13.95%), and the response to abiotic stimulus
(13.95%) (Figure 4B). This finding suggests that metabolism-related proteins and stress-
related and defense-related proteins might play important roles in the evolution of distinct
intrinsic traits of the two ecotypes.
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2.4. Analysis of Differentially Expressed Protein Spots from Two Ecotypes

Proteins associated with cellular metabolic processes such as ketoacid reductase iso-
merase (KARI) (spot XS4, Figure 5A), glutathione synthetase (GSH2) (spot XS19,
Figure 5A), and L-diaminopimelate aminotransferase (AGD2) (spot XS8, Table 1) appear
in shoots of the XJ ecotype. As a major bifunctional enzyme, KARI catalyzes a two-step
reaction in branched-chain amino acid biosynthesis to produce the precursors of valine,
leucine, and isoleucine [21]. Glutathione synthetase encodes the enzyme that converts
γ-glutamylcysteine (γ-EC) to glutathione. In plants, glutathione, as a powerful non-
enzymatic antioxidant, plays a key role in various physiological responses such as redox
homeostasis and ROS scavenging, detoxification of heavy metals, and development [22–24].
Under normal conditions, root growth is reduced due to impaired glutathione biosynthe-
sis [25]. LL-diaminopimelate aminotransferase plays a role in plant lysine biosynthesis [26].
Based on these results, we believe that the increase in metabolism-related proteins helps
XJ ecotype plants generate more energy from carbon and nitrogen assimilation, leading to
faster growth and increased biomass, which is consistent with our previous physiological
evidence. On the other hand, the contents of other proteins related to cellular metabolic
processes were also increased in SD ecotype plants. Among them, 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase 1 (iPGAM1) (spots SS4 and 5, Figure 5A) catalyzes
the reversible conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis.
ATP sulfurylase 1 (APS1) (spots SS27, Figure 5A) increased less than 2-fold in SD ecotype
plants shoot compared to XJ ecotype. APS catalyzes the first step of sulfate assimilation
in plant plastids and cytosol, activating inorganic sulfate to adenosine-5′-phosphosulfate,
which, in turn, is converted to a variety of sulfides such as cysteine (Cys), methionine (Met),
glutathione (GSH) associated with plant tolerance to various abiotic stresses [27]. Therefore,
we hypothesized that increasing APS1 in SD ecotypes would accelerate sulfur assimilation
and improve SD ecotype tolerance to abiotic and biotic stresses.

In addition, four proteins involved in the stress response were significantly elevated in
the SD ecotype, including plasma membrane-associated cation-binding protein 1 (PCAP1)
(spots SS6, 7, and 8, Figure 5B), pathogenicity-associated protein 5 (PR5) (spot SS10,
Figure 5B), endochitinase (CHI) (spot SS14, Figure 5B) and glucan endo-1,3-beta-glucosidase
(BG1) (spot SS29, Figure 5B). PCAP1 is a hydrophilic cation-binding protein that localizes
to the plasma membrane via N-myristoylation on glycine 2 and interacts with calmodulin
and phosphatidylinositol phosphate [28]. PR5, CHI, and BG1 are pathogenesis-related
(PR) proteins that are key components of the plant’s innate immune system, particularly
systemic acquired resistance (SAR) [29]. In addition to biotic stress, the PR gene can also
be induced by a variety of abiotic stresses such as salt, drought, and cold, which enhances
the resistance against abiotic stress [30]. In this study, the expression of three PR proteins,
PR5, CHI, and BG1, were upregulated in SD ecotype plants, suggesting that SD ecotype
plants may have a higher tolerance to biotic and abiotic stress than the XJ ecotype. In
addition to the SD ecotype, the XJ ecotype shoots also show a small increase in abiotic
stimulation-related proteins such as 20 kDa chaperonin (Cpn20) (spot XS12, Figure 5B).
Chloroplast Cpn20 is a plastid-specific co-chaperone that is essential for assisting Cpn60
in protein folding. Meanwhile, Cpn20 might be an iron chaperone for iron superoxide
dismutase (FeSOD) activation, independent of its co-chaperonin role in the Arabidopsis
chloroplasts [31,32]. Therefore, we speculate that the high expression of Cpn20 in leaves
may confer resistance to the abiotic environment in XJ ecotype plants, thereby promoting
the growth and accumulation of above-ground biomass in XJ ecotype plants.
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Figure 5. Expression patterns of representative differentially expressed proteins in shoots from
two Eutrema ecotypes under normal hydroponic conditions. (A) Quantitative analysis of differ-
entially expressed protein (DEPs) species spots related to cellular metabolic processes. (B) Quan-
tification of DEPs spots related to stress responses. (C) Changes in the expression of the ACO4
protein spot in the shoot. (D) ACO concentrations in SD and XJ shoots. Statistical analysis was
performed on the normalized volume percentage (% Vol) of protein spots in 3 replicate biological
samples using the mean ± SD method and statistical calculations were performed using the t-test.
(** p < 0.01 and *** p < 0.001). The abbreviations for Figure 5 were: SS, shoot of SD ecotype; XS,
shoot of XJ ecotype; KARI, ketoacid reductase isomerase; GSH2, glutathione synthetase; iPGAM1,
2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1; iPGAM1−1, spot SS4; iPGAM1−2,
spot SS5; APS1, ATP sulfurylase 1; PCAP1, plasma membrane-associated cation-binding protein 1;
PCAP1−1, spot SS6; PCAP1−2, spot SS7; PCAP1−3, spot SS8; PR5, pathogenesis-related protein 5;
CHI, endochitinase; BG1, glucan endo−1, 3-beta-glucosidase; Cpn 20, 20 kDa chaperonin; ACO4,
1-aminocyclopropane-1-carboxylate oxidase 4.

1-Aminocyclopropane-1-carboxylic acid oxidase (ACO), an aging-related protein, is
the rate-limiting enzyme for ethylene production in certain dedicated processes [33]. Ethy-
lene affects plant growth and development, including fruit ripening and leaf senescence [34].
In this report, we found that the expression of 1-aminocyclopropane-1-carboxylate oxidase
4 (ACO4) (spot XS6, Figure 5C) in shoots of the XJ ecotype was significantly higher than that
of the SD ecotype. Further analysis of ACO concentrations in both ecotypes also showed a
trend consistent with ACO4 expression (Figure 5D). These results suggest that upregulation
of ACO4 protein expression in leaves of the XJ ecotype may lead to earlier leaf senescence
and a shorter life cycle compared with the SD ecotype.

In the roots proteome, various proteins have been detected during the small molecule
metabolic process, such as 2,3-bisphosphoglycerate-independent phosphoglycerate mutase
1 (iPGAM1) (spots SR5, 6, and 7, spots XR7, 2, and 3, Figure 6A), pyruvate kinase (PK) (spot
XR5, Table 2) and pyruvate dehydrogenase E1 component subunit beta-1 (MAB1) (spots
SR16, XR9, Figure 6B). In our study, the differences in iPGAM1 were mainly reflected in
isoelectric point shifts between SD and XJ ecotypes. Phosphoglycerate mutase catalyzes the
interconversion of 3-phosphoglycerate to 2-phosphoglycerate [35]. This glycolytic enzyme
has been reported to be a key component in providing energy and/or metabolites for
multiple metabolic pathways [36]. Pyruvate kinase (PK) is a key metabolic enzyme that
catalyzes the final step of glycolysis, transferring a high-energy phosphate group from
phosphoenolpyruvate (PEP) to ADP to generate ATP and pyruvate [37]. In our study, PK
was present in the roots of XJ Eutrema but not in the roots of the SD ecotype. Likewise,
MAB1 also increased in the roots of the XJ ecotype. In plants, the mitochondrial pyruvate
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dehydrogenase complex consists of the following three structural components: E1, E2,
and E3. E1 (pyruvate dehydrogenase) is responsible for the oxidative decarboxylation of
pyruvate. Based on the above results, we speculate that the increase in root metabolic
proteins in the XJ ecotype may contribute to the uptake of sufficient inorganic elements to
maintain a higher aboveground biomass than the SD ecotype.
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Figure 6. Expression patterns of some root protein spots on the 2-DE map. Marked points are
differentially expressed proteins. (A) 2,3-bisphosphoglycerate-independent phosphoglycerate mutase
1 (iPGAM1) (spots SR5, 6 and 7, spots XR7, 2 and 3). (B) pyruvate dehydrogenase E1 component
subunit beta-1 (MAB1) (spots SR16, XR9). (C) monodehydroascorbate reductase 2 (MDAR2) (spots
SR8, XR8). (D) glutathione S-transferase F10 (GST PHI10) (spots SR10, XR10) and 20 kDa chaperonin
(Chaperonin 20, Cpn20) (spots SR11, XR11). (E) paraxanthine methyltransferase 1 (PXMT1) (spots
SR15, XR15) and (F) jacalin-related lectin 34 protein (JRL34) (spots SR1, 2, 3, and spots XR4). The
abbreviations for Figure 6 were: SR, root of SD ecotype; XR, root of XJ ecotype.

In addition to metabolism-related proteins, oxidation-reduction process-related pro-
teins were increased or present only in XJ ecotype roots, including NADH dehydrogenase
[ubiquinone] iron-sulfur protein 1 (CI76) (spot XR1, Table 2), NAD(P)H dehydrogenase
(quinone) (FQR1) (spot XR13, Table 2), monodehydroascorbate reductase 2 (MDAR2)
(spots SR8, XR8, Figure 6C). In particular, methylmalonate-semialdehyde dehydrogenase
(MMSDH) (spot XR6, Table 2) was highly expressed in XJ Eutrema roots but not in the
SD ecotypes. CI76 encodes the subunit of the 400 kDa subcomplex of the mitochondrial
NADH dehydrogenase (complex I), the first complex of the respiratory chain and the
main entrance site for electrons into the respiratory electron transfer chain, and plays a
role in maintaining redox balance in plant cells [38]. FQR1 belongs to the family of flavin
mononucleotide-binding quinone reductases, catalyzes the electron transfer of NADH and
NADPH to multiple substrates, and functions as a quinone reductase in plants. Its gene,
FQR1, is the main gene of the auxin response. Hence, it is speculated that FQR1 might
be involved as a detoxification enzyme in the auxin-induced redox process [39]. As a key
component of the ascorbate-glutathione cycle, MDAR2 plays a role in scavenging toxic
reactive oxygen species, such as H2O2, a byproduct of aerobic metabolism in plant chloro-
plasts, mitochondria, and peroxisomes [40]. Aldehyde dehydrogenases (ALDHs) represent
a protein superfamily of NAD(P)+-dependent enzymes that oxidize various endogenous
and exogenous aliphatic and aromatic aldehydes to the corresponding carboxylic acids.
ALDHs play an important role in regulating aldehyde homeostasis, and overexpression
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of some ALDHs can improve abiotic stress tolerance in plants [41]. Different expression
patterns of ALDH7B4 and ALDH10A8 in Arabidopsis and E. salsugineum contribute to salt
tolerance [42]. MMSDH (ALDH6B2), a member of the ALDH family, plays an important
role in root development and leaf sheath elongation in rice [43]. Collectively, these an-
tioxidant proteins play an important role in maintaining root redox homeostasis in the XJ
ecotype and providing protection for root adaptation to the environment.

Some proteins that respond to abiotic stimuli are also found in the root proteome, such
as alcohol dehydrogenase class-P (ADH1) (spot SR9, Table 2), glutathione S-transferase
F10 (GST PHI10) (spots SR10, XR10, Figure 6D), 20 kDa chaperonin (Cpn20) (spots SR11,
XR11, Figure 6D), paraxanthine methyltransferase 1 (PXMT1) (spot SR15, Figure 6E) and
jacalin-related lectin 34 (JRL34) (spots SR1, 2, 3 and spot XR4, Figure 6F). The protein
expression levels of ADH1 and PXMT1 in the SD ecotype were higher than those in the
XJ ecotype, while GST PHI10 and Cpn20 were up-regulated in the roots of the XJ ecotype.
ADH1 catalyzes the reversible conversion of acetaldehyde to ethanol while simultaneously
oxidizing NADH to NAD+ in response to hypoxic stress. This is essential for Arabidopsis
survival under hypoxic conditions and contributes to other biotic and abiotic stress reac-
tions [44]. Plant glutathione S-transferases (GSTs) are a class of multifunctional proteins
that are induced by a variety of stimuli. GST PHI10 is a member of the Phi subfamily,
particularly in plants [45]. Furthermore, we found in our study that the isoelectric point
of JRL34 is significantly different between the two Eutrema ecotypes. Studies have shown
that this protein is a phosphorylated protein [46], so we speculate that post-translational
modifications may contribute to the isoelectric point difference of this protein between the
two ecotypes. In addition, jacalin-related lectins (JRLs) are a subset of proteins binding
carbohydrates and having one or more jacalin domains. Many JRLs have been shown to be
associated with resistance to abiotic and biotic stresses and are induced by stress hormones
such as ABA, SA, and JA [47]. Therefore, we speculate that changes in JRL34 may partly
determine the differences in the responses of the two ecotypes to different abiotic stimuli.

2.5. Comparison the Expression Patterns of Genes Encoding Some Differential Proteins

To examine changes in gene expression at the mRNA level, qRT-PCR analysis was
performed on randomly selected genes encoding some differently expressed proteins in
6-week-old seedlings under hydroponic conditions.

Compared with the XJ ecotype, we found that under normal conditions, the SD ecotype
had increased the expression of two genes in plants, namely, PR5 and CHI. In contrast,
five genes, KARI, ACO4, AGD2, GSH2, and BG1, were significantly up-regulated in XJ
ecotype plants. Among them, the abundance of ACO4 transcripts in XJ ecotype shoots was
significantly higher than that in SD shoots, which was consistent with the expression of
ACO4 at the protein level (Figure 7A).

Changes in genes encoding root differential proteins were compared at the mRNA
level. As shown in Figure 7B, genes and proteins such as ADH1, PXMT1, MMSDH, GST
PHI10, and Cpn 20 had similar patterns of alteration. However, some root DEPs showed
inconsistent expression patterns at the mRNA and protein levels. Our results confirm
that gene expression at the transcriptional level does not correlate well with expression
at the protein level [48], underscoring the importance of using the proteome to reveal the
biochemical mechanisms of natural variation between the two Eutrema ecotypes.
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Figure 7. Relative transcript levels in two Eutrema plants under normal hydroponic conditions
for 6 weeks. (A) Differentially expressed genes in shoots. (B) Differentially expressed genes
in roots. Data are presented as mean ± SD obtained from 3 biological replicates. t-test was
used to analyze the changes in the gene expression (* p < 0.05, ** p < 0.01, and *** p < 0.001).
The abbreviations for Figure 7 were: PR5, pathogenesis-related protein 5; CHI, endochitinase;
ACO4, 1-aminocyclopropane-1-carboxylate oxidase 4; AGD2, LL-diaminopimelate aminotrans-
ferase; GSH2, glutathione synthetase; PCAP1, plasma membrane-associated cation-binding protein 1;
BG1, glucan endo-1,3-beta-glucosidase; KARI, ketoacid reductase isomerase; ADH1, alcohol dehydro-
genase class-P; PXMT1, paraxanthine methyltransferase 1; CI76, NADH dehydrogenase [ubiquinone]
iron-sulfur protein 1; MMSDH, methylmalonate-semialdehyde dehydrogenase; FQR1, NAD(P)H
dehydrogenase (quinone); MDAR2, monodehydroascorbate reductase 2; GST PHI10, glutathione
S-transferase F10; Cpn20, 20 kDa chaperonin; MAB1, pyruvate dehydrogenase E1 component
subunit beta-1.

3. Discussion

Salt cress is an extremophile that has been proposed as a model for studying the
mechanism of abiotic stress tolerance and is widespread throughout the world [1]. The
broad geographic distribution encompasses substantial variation in growth environments,
and phenotypic variation among accessions is expected to reflect the genetic variation that
is important for adaptation to specific conditions. In recent years, research based on the
analysis of the natural genetic variation of species has received increasing attention [49,50].
Until recently, the physiological mechanisms adopted by two ecotypes of SD and XJ Eutrema
to perceive and acclimate to their environment were seldom discussed in a biochemical
context or from a biochemical perspective. In this study, a proteomic approach was used
to compare the morpho-physiological properties of two different Eutrema ecotypes and
their protein expression profiles in shoots and roots. Through the comprehensive analysis
of these differentially expressed proteins, we have a preliminary understanding of the
protein-level regulatory mechanism behind the phenotypic differences between the two
ecotypes and provide important information for understanding the natural mechanism of
variation of Eutrema.

3.1. Variations in Morpho-Physiological Traits

The two ecotypes of salt cress seedlings had great differences in morphological and
physiological characteristics. The biomass and leaf area of XJ ecotype plants are larger than
those of SD ecotype plants. While the primary root system of SD ecotype plants is more
significant than that of XJ ecotype plants, the leaf inclination angle is larger, and the serrated
leaf margin is even more evident (Figure 1). These differences may be due to long-term
adaptation to different natural habitats, resulting in intrinsic differences in gene expres-
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sion, metabolic pathways, and hormone levels between the two ecotypes. Furthermore,
we found that the expression and concentration of 1-aminocyclopropane-1-carboxylic
acid oxidase 4, a key enzyme in ethylene synthesis, was increased in the XJ ecotype
(Figure 1C,G and Figure 5C,D), which could be related to leaf senescence and leaf inclina-
tion. The previous study indicates that higher levels of ethylene stimulate a more vertical
orientation of the petioles (hyponasty) and enhance elongation [51]. There is evidence
that differences between species and ecotypes in the effects of ethylene on growth may
be related to the altitude of the original habitat [51]. Furthermore, our data suggest that
the SD ecotype plants have higher IAA concentrations than the XJ ecotype (Figure 1H)
and that intrinsic differences in auxin levels may be reflected in differences in leaf mar-
gin shape to a certain extent (Figure 1C) [19]. These changes suggest that morpholog-
ical and physiological changes between SD and XJ ecotypes are triggered by different
regulatory mechanisms.

3.2. Stress and Defense-Related Proteins in Shoots

Biological or abiotic stresses reduce crop yields worldwide. Many attempts have
been made to confer pathogen resistance and increase abiotic stress tolerance on agro-
nomically valuable plants. Defense-related proteins have been used to alter plant resis-
tance to pathogens and other environmental challenges. In our study, some stress- and
defense-related proteins, such as PCAP1 (spots SS6, 7, and 8, Figure 5B), PR5 (spot SS10,
Figure 5B), CHI (spot SS14, Figure 5B), and BG1 (spot SS29, Figure 5B), were highly ex-
pressed in SD ecotype plants, which may improve plant resistance to various pathogens
and abiotic stresses. PCAP1 is a hydrophilic cation-binding protein with the ability to
bind Ca2+, Mg2+, and Cu2+. At the same time, it can be fixed to the plasma membrane by
N-myristoylation [28,52,53], and participate in intracellular signal transduction by inter-
acting with PtdInsPs and calmodulin [54]. Thus, PCaP1 has multiple physiological roles,
including partial involvement in stoma closure [55] and inhibition of microtubule polymer-
ization by binding to tubulin [56]. The occurrence of PCAP1 in SD ecotype Eutrema shoots
suggests that SD ecotype Eutrema may have increased stress tolerance. PR5 is an important
defense-related protein in plants and is involved in various stress responses [30]. Chitinases
are part of the plant defense system, are nontoxic to plants and higher vertebrates, and are
involved in plant defenses against pathogens [57,58]. Previous reports have shown that the
expression of chitinase genes increases resistance to various fungal diseases [59–61]. Recent
studies have shown that chitinase is also involved in the abiotic stress responses of plants,
helping plants survive in stressful environments [62]. Beta-1,3-glucanase, also known as
pathogenesis-related protein (PR) and found in many plant tissues, catalyzes the hydrolysis
of beta-1,3-glucan. β-1,3-glucanase has been shown to participate in defenses against
fungal pathogens and abiotic stresses such as salt and drought stress [63–65]. In conclusion,
compared with the XJ ecotype, the SD ecotype of Eutrema strongly expresses some key
components of the plant’s innate immune system, especially systemic acquired resistance,
thereby improving the plant’s resistance to biotic and abiotic stresses. However, this plant’s
fight against stress upsets the balance between energy production and energy expenditure
and reduces the plant’s ability to grow [66]. The SD ecotype salt cress, naturally situated
in the Yellow River Delta, where most of the soils are salinized to different degrees, may
need to adopt this strategy to form and maintain its intrinsic adaptive mechanism to the
environment. Therefore, even under normal growth conditions, the SD ecotype salt cress
still highly expresses resistance-related proteins that require more metabolites and energy,
thereby slowing down its growth. A balanced mechanism between plant growth and stress
resistance helps plants develop, maintain growth, and yield in stressful environments.

3.3. The Mechanism of Natural Variation of Leaf Senescence between Two Eutrema Ecotypes

Senescence is the final step in leaf development and is usually accompanied by a
color change from green to yellow or brown [67]. Leaf yellowing is not only related to age,
but can also be caused by many other factors, including biotic stress, mechanical damage,
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harvesting, darkness, nutrient deficiencies, environmental stress, and phytohormones. The
results showed that the rosettes of XJ ecotype Eutrema appeared more marked by senescence
with aging than those of the SD ecotype (Figure 2A,B). Furthermore, our previous work
revealed that the protein expression level and concentration of 1-aminocyclopropane-1-
carboxylic acid oxidase 4 (ACO4) were higher in XJ ecotype shoots than in SD ecotype
plants (Figure 5C,D). ACO, a key enzyme in ethylene biosynthesis, catalyzes the conversion
of 1-aminocyclopropane-1-carboxylic acid to ethylene [68,69], suggesting that XJ ecotype
plants have higher ethylene content than SD Eutrema. Ethylene is an important gaseous
phytohormone that promotes fruit ripening and leaf senescence [34]. Ethylene can only
induce leaf senescence from a certain age but cannot directly regulate the onset of leaf senes-
cence [70,71]. Furthermore, glutathione can induce ethylene biosynthesis by regulating the
transcription and protein levels of its key enzymes ACS2, ACS6, and ACO1 [72]. Here, we
found that GSH2 (spot XS19, Figure 5A) is also present in the XJ ecotype but not in the SD
ecotype. As with ACO1, the appearance of ACO4 may be related to glutathione synthetase,
leading to increased ethylene synthesis and earlier leaf senescence in XJ ecotype leaves.
In a sense, the differences in ethylene content caused by ACO4 and/or GSH2 between
the two ecotypes Eutrema are the result of their developmental diversity, and conversely,
differences in ethylene content boost their distinctions in the leaf senescence process. In
addition to ethylene, other plant hormones such as cytokinins and auxins also affect leaf
senescence. However, unlike ethylene, both cytokinin and auxin can delay leaf senes-
cence [73,74]. The results also showed that the levels of cytokinin and auxin (IAA) in the XJ
ecotype leaves were significantly lower than those of the SD ecotype leaves, consistent with
their different leaf senescence symptoms (Figures 1H and 2E). In addition, studies have
shown that 2,3-bisphosphoglycerate-independent enzyme 1 (iPGAM1) is also involved in
chlorophyll synthesis, photosynthesis, and chloroplast development. The deficiency of a
2,3-bisphosphoglycerate-independent enzyme leads to chlorosis, chloroplast deformities,
and impaired photosynthesis [75]. Our result that iPGAM1 is only present in shoots of the
SD ecotype (spots SS4 and 5, Figure 5A) can interpret the physiological differences between
the two ecotypes, namely, the SD ecotype plants have higher chlorophyll content and a
slower rate of aging than the XJ ecotype.

Leaf senescence is also genetically controlled and requires differential expression
of specific genes. Among them, a large number of age-related genes, SAG12, SAG13,
and SAG113, are upregulated during aging. SAG12 encodes a cysteine protease and is
an important aging-related reference gene, and its encoding protein or mRNA level is
significantly increased in aging tissues [76]. SAG113 encodes a member of the Golgi protein
phosphatase 2C family involved in chlorophyll degradation, abscisic acid (ABA) regulation
of stomatal motility, and water loss during leaf senescence [77]. Therefore, SAG12 and
SAG113 play a central role in the aging process. In particular, transcripts of SAG12 and
SAG113 were also significantly increased in XJ Eutrema leaves compared to SD ecotypes
(Figure 2F). These results explain the molecular mechanism underlying the different rates
of leaf senescence between the two Eutrema ecotypes. Combined with previous research
and our experimental data, we speculate that ethylene, cytokinin, and auxin signaling may
connect other genetic regulators to form a complex regulatory network that regulates the
natural variation in leaf senescence in the two Eutrema ecotypes.

3.4. Proteins Related to Energy Metabolism in Roots

Plant roots need water and nutrients to grow through the soil, which is an important
resource for plant growth and productivity [78]. Root growth requires substantial amounts
of energy, and this energy comes mainly from the carbohydrates’ catabolism. In addition,
aerobic oxidation of carbohydrates is one of the major catabolic pathways, including
glycolysis, oxidation of pyruvate to acetyl-CoA, and the tricarboxylic acid (TCA) cycle and
subsequent oxidative phosphorylation at the inner membrane of mitochondria [36,79].

Among the many enzymes involved in catabolic processes, 2,3-biphosphoglycerate-
independent phosphoglycerate mutase (iPGAM1) is widespread in plants, algae, many
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invertebrates, fungi, and bacteria, and is relatively conserved among these species, sug-
gesting it plays a key role in maintaining normal glycolysis [80,81]. In glycolysis, iPGAM1
catalyzes the reversible conversion of 3-phosphoglycerate to 2-phosphoglycerate, a precur-
sor generating phosphoenolpyruvate (PEP), a high-energy compound [36]. The difference
in iPGAM1 isoelectric points between the two ecotypes may indicate some intrinsic differ-
ences in the amino acid sequence or modification state of the two enzymes. Pyruvate kinase
(PK) is one of the three rate-limiting enzymes in glycolysis, which catalyzes the transfer
of phosphoenolpyruvate to ADP, yielding one molecule of pyruvate and one molecule of
ATP [37]. Pyruvate enters the mitochondria to generate ATP via the tricarboxylic acid (TCA)
cycle and oxidative phosphorylation [82]. Increasing evidence suggests that PK may play
an important role in cell growth [83]. In plants, PK is an enzyme present in cytoplasmic
(PKc) and plastid (PKp) isozymes [84]. Downregulation of PKc in T-DNA insertion mutants
affects the glycolytic pathway, leading to dwarfism [85]. Therefore, the occurrence of PK
only in the roots of XJ plants is of great importance for growth and development. The mito-
chondrial pyruvate dehydrogenase complex consists of the following three components:
E1, E2, and E3 in all organisms and is the main entry point for carbon into the tricarboxylic
acid cycle. The E1 component of the pyruvate dehydrogenase complex consists of an E1α
catalytic subunit and an E1β regulatory subunit. In the experimental results, we found
that one of the important components of this complex, the pyruvate dehydrogenase E1
component subunit β-1 (MAB1), was more strongly expressed in XJ roots than in SD roots,
indicating that MAB1 has an important role in the XJ ecotype root metabolism.

Glycolysis and the tricarboxylic acid (TCA) cycle are two important pathways for the
aerobic oxidation of carbohydrates, which are responsible for providing energy and carbon
skeletons, and are essential for various physiological activities and morphogenesis in plants.
The above-mentioned proteins involved in the aerobic oxidation of carbohydrates play an
important role in both energy production and plant growth and development. Therefore,
the accumulation of these proteins in the roots of the XJ ecotype can help roots absorb
enough inorganic elements from the external environment to support the growth of the
aerial parts.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

About 100 seeds were surface sterilized using a sodium hypochlorite solution
(0.7% available chlorine) containing 0.1% (v/v) Tween 80 for 10 min. The seeds were
washed 6 times, then spread on solid MS medium (MS + 3% sucrose (w/v) + 0.7% (w/v)
agar, pH 5.8) and stratified in the dark at 4 ◦C for 7 days. After stratification, MS plates
were transferred into a growth chamber (20 ± 2 ◦C, 75% relative humidity, 16 h/8 h
light-dark regime, under an optimal light intensity of 110 µmol m−2 s−1). Four-day-old
seedlings were transferred from MS plates onto the hydroponic culture system (the detail
see Supplementary Method).

4.2. Growth Parameter Measurements and Morphological Analysis

After 6 weeks of growth in the hydroponic system, the primary root lengths of SD
group and XJ group were measured, respectively. The fresh weights (FW) of shoots
and roots were determined immediately after sampling. The dry weight (DW) was then
determined after drying the shoots and roots at 80 ◦C for 48 h. Nine plants were used
for each biological replicate and 3 independent biological replicates were produced for
each ecotype. To analyze the morphological characteristics of each ecotype, we measured
leaf inclination and leaf area. After the hydroponic seedlings were grown for 6 weeks, the
shoots of SD and XJ plants were taken out and cut into two longitudinally with the central
axis of the seedling as the center. The angle between the central axis and the penultimate
leaf blade was measured (Figure 1C). At the same time, the leaves of 9th–14th were peeled
with tweezers, and the leaf area was measured by the ImageJ to the collected images.
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4.3. Determination of Chlorophyll Content

After 6 weeks of growth in the hydroponic system, the 9th–14th leaves were collected,
washed, and cut into small pieces. Chlorophyll (Chl) was extracted from about 0.1 g of
leaves with 5 mL of 80% (v/v) acetone. The absorbance of the extracted chlorophyll a (Chl a)
and chlorophyll b (Chl b) was measured at 645 nm and 663 nm, respectively. The levels of
Chl a, Chl b, and total Chl (Ct) in the samples were calculated as previously described [86].

4.4. Phytohormone Analysis

After 6 weeks of growth under hydroponic conditions, all shoots of the SD and XJ salt
cress ecotypes were collected, snap-frozen with liquid nitrogen, and stored at −80 ◦C. The
concentrations of cytokinins (CKs) were determined by Enzyme-linked Immunosorbent
Assay (Suzhou Keming Biotechnology Co., Ltd., Suzhou, China), and indole-3-acetic acid
(IAA) was measured by Agilent 1100 high-performance liquid chromatograph and Kromasil
C18 column (250mm × 4.6mm, 5 µm).

4.5. The Measurement of ACO Concentration

Similarly, whole shoots from 6-week-old SD ecotype and XJ ecotype seedlings were
collected, and the concentration of 1-aminocyclopropane-1-carboxylate oxidase (ACO)
was determined by Enzyme-Linked Immunosorbent Assay (Shanghai Enzyme-Linked
Biotechnology Co., Ltd., Shanghai, China) using the RT-6100 Microplate Reader (Rayto,
Shenzhen, China).

4.6. Protein Extraction and 2-DE Analysis

Total protein was extracted from plant tissue as described by Giavalisco [87], with
minor modifications. Frozen plant tissue was ground to a fine powder under liquid
nitrogen, and then proteins were extracted in ice-cold extraction solution [10% (w/v) tri-
carboxylic acid (TCA) in acetone with 0.07% (v/v) β-mercaptoethanol] for 1 h at −20 ◦C.
Homogenates were centrifuged at 40,000× g for 30 min at 4 ◦C. After removing the su-
pernatant, the precipitate was suspended in 100% acetone solution, cooled at −20 ◦C for
1 h and centrifuged at 40,000× g for 30 min at 4 ◦C. This process was repeated 2–3 times
until the supernatant was colorless. The precipitate was then vacuum dried and stored
at −80 ◦C or proceeded to the next step. The remaining pellets were dissolved in lysis
buffer [7 M urea, 2.5 M Thiourea, 65 mM DTT, 4% (w/v) CHAPS] at room temperature for
1 h, and centrifuged at 40,000× g for 30 min at 4 ◦C. The supernatant was collected and
stored at−80 ◦C. The protein concentration of each extract was determined by the Bradford
method [88].

For each sample, 1.5 mg protein dissolved in lysis buffer was adjusted to a final volume
of 450 µL with rehydration buffer containing 8 M urea, 15 mM DTT, 2% (w/v) CHAPS,
0.5% (v/v) IPG buffer (pH 4–7), and then it was loaded onto linear 24 cm dry IPG strips
(pH 4–7, GE Healthcare Life Science, USA). These strips were then used for the IEF of
the Ettan IPGphor II isoelectric focusing system using the following settings according to
the manufacturer’s instructions (Amersham Biosciences, Uppsala, Sweden): 150 V for 1 h,
30 V for 6 h, 60 V for 6 h, 200 V for 1 h, 500 V for 1 h, 1000 V for 1 h, gradient to 8000 V for
1 h, and finally 8000 V for 7 h. Before separation in the second dimension, the strips
were equilibrated twice for 15 min in equilibration buffer (50 mM Tris-HCl, pH 8.8,
6 M urea, 30% glycerol (v/v), 2% SDS (w/v), and 0.002% (w/v) bromophenol blue) with
1% DTT for first time, and for second time, 2.5% iodoacetamide instead of 1% DTT in
the equilibration solution). The second dimensional SDS-PAGE was performed on a
1 mm thick 12.5% SDS-PAGE gel [89]. The 2-DE experiment was repeated 3 times using
protein samples prepared from SD and XJ Eutrema, respectively. Proteins were visualized by
Coomassie brilliant blue R250 staining, and gel images were taken using an image scanner
(GE Healthcare, Chicago, IL, USA). Image analysis was performed using Image Master 2D
Platinum software version 5.0 (Amersham Biosciences, Uppsala, Sweden). The experimen-
tal Mr (kDa) for each protein was estimated by comparison to protein markers, and the
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experimental pI was determined by its migration across the IPG strip. The frequency of
each protein spot was estimated in percent by volume (% Vol). Only those proteins with
significant and reproducible changes were considered as differentially expressed proteins.

4.7. Protein Digestion and Identification via ESI-MS/MS

Digestion and identification of protein were performed according to the method
of Peng et al. [90] with some modifications. Selected protein spots were manually ex-
cised from each 2-DE gel, cut into 1 mm3 gel slices, placed in 1.5 mL centrifuge tubes,
and destained with 50 mM ammonium bicarbonate and 50% (v/v) methyl alcohol for
5–6 times until the gel slices are transparent. After the destaining solution was completely
discarded, acetonitrile (ACN) was added to shrink the gel pieces. The acetonitrile (ACN)
was then removed, and the shrunken gel pieces were vacuum dried. The dried gel slices
were swollen at an ice bath in 50 mM ammonium bicarbonate (pH 8.0–8.5) containing gel
sequencing grade trypsin (10 µg/mL; Promega, Madison, WI, USA), then digested at 37 ◦C
for 16–18 h. The digested peptides were extracted from the gel slices with 50% acetonitrile
containing 5% formic acid. The pooled peptides were lyophilized and then resuspended
in 0.1% formic acid (FA) to a final volume of 50 µL. The 50 µL peptide fragments were
automatically injected into the strong cation exchange column of the multidimensional
liquid chromatography system by the autosampler of the ProteomeX workstation (Thermo
Finnigan, USA). Peptides were eluted from the SCX column (0.32 × 100 mm, Thermo
Hypersil-Keystone BioBasic) by salt steps with increasing NH4Cl concentration (0, 50, 70,
100, 150, 400, 700, 1000 mM NH4Cl). These peptide fractions were collected and desalted
onto two reverse-phase C18 columns (0.18 × 100 mm, Thermo Hypersil-Keystone BioBasic)
and then treated with a gradient of acetonitrile solvent B (ACN in 0.1% FA) from 5 to 65%
screened over 31 min, from 65 to 80% for 5 min, then hold 5 min at 80%, reset 5% for 1 min,
rebalance 5% for 15 min. SCX and RP gradients were alternately synchronized over 140 min.
The eluted peptides were directly loaded into an LCQ-Deca XP plus mass spectrometer
(Thermo Electron, USA) for ESI-MS/MS detection. MS/MS data with default parameters
were searched using the SEQUEST algorithm. The TurboSEQUEST program in Bioworks
3.0 software retrieved Arabidopsis data from the SWISS-PROT/TrEMBL proteome database.
The identified peptides were further evaluated by charge state and cross-correlation
number (Xcorr). Peptide matching criteria for cross-correlation scores were as follows:
Xcorr > 1.5 for singly-charged ions, Xcorr > 2.0 for doubly-charged ions, and Xcorr > 2.5 for
triply-charged ions and a correlation score (∆Cn) > 0.100. Only the best matching peptides
are considered [91].

4.8. Quantitative Real Time PCR

Total RNA was extracted from two ecotypes of Eutrema plants by the method of
Chomczynski and Sacchi [92]. In total, 2 µg of total RNA was reverse transcribed, and
cDNA was generated using the FastQuant RT kit (with gDNase, TIANGEN). The collected
cDNA was used as a template for quantitative real-time PCR (qRT-PCR). The actin 2
gene served as a control to normalize target gene quantities [93]. The gene-specific qRT-
PCR primers are listed in Supplementary Table S3. qRT-PCR was performed in a Light
Cycler® 96 thermal cycler Instrument (Roche Applied Science, Penzberg, Germany) using
SYBR Green I (Roche): for the following reactions: 94 ◦C 30 s; 94 ◦C 5 s, 60 ◦C 30 s for
40 cycles and 95 ◦C 15 s, 60 ◦C 60 s, 95 ◦C 1 s. All reactions were replicated from three
independent experiments. The formula for calculating the relative expression is as follows:
ratio = 2−∆∆Ct = 2 −(∆Ctt–∆Ctc) [94].

4.9. Functional Annotation

Protein spots identified by mass spectrometry were amplified in A. thaliana NCBI. The
enriched GO terms of Arabidopsis homologues of these protein stains were detected using
Goatools [95].
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4.10. Statistical Analysis

All data obtained in this study were performed with at least three biological replicates.
SPSS 17.0 software was used for statistical analysis and t-test and the significance level was
5%. Data are presented as mean ± standard deviation.

5. Conclusions

By comparing the proteome of shoots or roots of Eutrema SD and XJ ecotypes, this
study identified several proteins that are closely related to defense and stress, aging, and
energy metabolism. In China, Eutrema is distributed in Xinjiang along the Yellow River to
the mouth of the Yellow River (Dongying, Shandong). Located in the Yellow River Delta,
Shandong has a temperate monsoon climate, and its rainfall is 4–5 times that of Urumqi,
Xinjiang. It can be seen that there are some proteins related to defense and stress resistance
in the Eutrema SD ecotype. The relationship between defensive resistance and stress
avoidance mechanisms is further explored. Xinjiang is a landlocked area with a temperate
continental dry climate with little rainfall and seasonal concentrated precipitation. XJ
Eutrema has evolved into a short life cycle xerophyte with a stress avoidance mechanism
due to its high expression of senescence and metabolism-related proteins. Proteomic
studies of Eutrema will help us to understand the specificity of extremophile physiological
and metabolic devices, summarize the evolutionary process of halophytes, and provide a
valuable resource for further deciphering the genetic mechanisms of local adaptation in
this model plant.
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