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a b s t r a c t 

• A detailed, practical description of a 2D lattice Boltzmann (LB) free-surface model and its coupling with a 1D 

LB shallow water model is provided. 
• A Python code is provided, that implements the Gaussian droplet benchmark of the research article 

(Thorimbert et al., 2019) corresponding to this method article. 
• Particular attention is given to the details of the free-surface implementation which, in the literature, vary 

among authors. These ambiguities must be addressed in order to build a reproducible scheme, as well as the 

exact implementation and parameters of the coupling model proposed in the associated research article. 
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ethod details 

The model presented in the associated research article [ 13 ] involves three distinct ingredients: a

2Q9 free-surface solver, a D1Q3 shallow water solver and the coupling model itself. Whereas the

mplementation of a single-phase LB solver (for Navier–Stokes equations as well as for shallow water

quations) is well-known by the community, the free-surface model is not free of ambiguities, as will

e shown below. For this reason, the implementation of a LB free-surface solver is first discussed.

n a second time, the implementation of the coupling scheme is presented. In this paper, code
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variables and file names are referred to by using a typewriter font (e.g. some_variable ). Python

implementations of the D2Q9 free-surface solver ( lbfs.py ), D1Q3 shallow water solver ( lbsw.py )
and the coupling scheme ( drop.py ) are provided along with this article. In order to illustrate the link

between the theoretical formulations of the coupling scheme and the practical implementation, this 

paper will refer to the code. The implementation of the Gaussian drop benchmark is also provided in

drop.py . 

Implementation of the lattice Boltzmann free-surface model 

The LB free-surface model is used to simulate the interaction between a heavy fluid (e.g. water)

and a light fluid (e.g. air), neglecting the dynamics of the light fluid, whose impact on the heavy

fluid is only modeled through a pressure at the interface. Hence, the particle distribution functions

in the cells belonging to the light fluid are ignored. The LB free-surface model constitutes an

interesting alternative to pseudo-potential [1] , color-gradient [2] or free-energy [3] approaches when 

the considered system is such that the difference of density and viscosity between the phases are

large. The latter assumption becomes necessary to express a closing formula for the lattice populations

streamed from the light fluid to the heavy fluid, as seen below. A free-surface flow in general is

characterized by the condition of zero perpendicular normal stress and zero parallel shear stress to

the interface, that is to say the forces at the interfaces are in equilibrium. This assumption is well

verified in many common systems; again, a typical example is the water–air interface. 

A D2Q9 free-surface model suitable for the lattice Boltzmann method (LBM) is presented in this

section, using a volume-of-fluid (VOF) method to track the interface. Indeed, different approaches are 

available [4] to compute the position of the interface between light and heavy fluids: as opposed to

interface-tracking techniques, which require the mesh to follow the interface along time, interface- 

capturing methods mark the location of the interface, whose shape is therefore deduced from these

markers, allowing us to use a fixed grid. In this regard, the VOF interface-capturing method appears

well suited for a LB free-surface solver, although the first VOF approach was proposed for a Navier-

Stokes solver [5] . 

The algorithm presented here follows the description of [6,7] , which itself finds its roots in the

model developed by Korner and Singer [8] to study metal foams. Some parts of the algorithm

(handling of interface artifacts, mass excess redistribution, completion of missing populations) used 

in this work, however, differ from the aforesaid sources. The aim of the present paper is to present a

reproducible and simple implementation rather than an optimized formulation of the model. The file 

lbfs.py provides a Python implementation of the free-surface model. 

Concepts of the LB free-surface volume-of-fluid model 

The free-surface model considers two-phase fluid compounds with a large density ratio, akin to 

water–air systems in normal atmospheric conditions. It simulates the physics of the heavy fluid only,

and replaces the effect of the light fluid onto the heavy one through a condition of zero parallel shear

stress along two-phase interface. In the LB VOF approach, additionally to the usual fluid variables,

every cell keeps track of the local mass m and volume fraction ε, which is related to the fluid density

on interface cells as 

ε = 

m 

ρ
, (1) 

where m is the mass of heavy fluid in the considered cell. In bulk cells of the heavy fluid, the volume

fraction takes the value ε = 1 . 

To summarize, the cells of the fluid mesh are split into three categories: 

Fluid cells are completely occupied by the heavy fluid: ε = 1 . 

Empty (or gas) cells are completely occupied by the light fluid: ε = 0 . 

Interface cells are partially occupied by the heavy fluid: ε ∈ [0 , 1] . 

A condition for the algorithm to work is that the interface layer between fluid and empty cells

must be closed, so that an empty cell is never in the direct neighboring of a fluid cell (here,
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Fig. 1. Flags in a free-surface VOF simulation. Blue cells denote heavy fluid, green cells denote interface, white cells denote 

light fluid and gray cells are walls. The dashed line is a schematic view of the reconstructed surface. 

Fig. 2. Schematic representation of the key steps of the LB FS-VOF method. 
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neighboring’ has to be understood in the sense of the vicinity defined by the LB velocity set used).

ig. 1 depicts a typical free-surface flags field. 

The different steps of the LB free-surface algorithm are discussed below. Fig. 2 summarizes these

teps, that are clearly indicated in the method iterate of the LatticeFS class. 

ompletion of the missing populations from the empty cells 

The populations from the empty cells cannot be streamed to the interface cells, since their value

s arbitrary and meaningless. Assuming that the light fluid follows the motion of the heavy one, one

equires that the kinematic viscosity of the heavy fluid is lower, and its density higher than that of

he light fluid (again, think of a water–air interface). A possible completion scheme then (see [9] for

urther details), motivated by the conservation of the off-equilibrium populations at the interface,

eads 

f out 
I ( � x + 

�
 c i �t) = f 

eq 
i 

(ρE , � u ( � x )) + f 
eq 
I 

(ρE , � u ( � x )) − f out 
i ( � x ) , (2)

here f out 
I 

( � x + 

�
 c i �t) is the missing population coming from an empty cell, the superscript out denote

he post-collision populations (before streaming), I denotes the population opposed to i and ρE is

he fictitious density of the light fluid, accounting for the pressure of the gas on the surface and set



4 Y. Thorimbert, B. Chopard and J. Lätt / MethodsX 8 (2021) 101338 

 

 

 

 

 

 

 

 

 

 

 

 

 

•

•

 

 

 

 

 

 

 

 

 

 

to 1 in all the simulations of this work. In the free-surface code, this step is done in the method

gas_streaming of the LatticeFS class. After this completion step has been applied to all the

neighboring empty cells of the interface, a standard streaming step can be applied to the whole

domain, without any flag-dependant treatment of the cells. 

Note that the accuracy of Eq. (2) depends on the accuracy of the assumption of low viscosity, high

density heavy fluid (compared to light fluid), since the fictitious equilibrium populations of the empty

cell are computed using the velocity of the heavy fluid (i.e. it is assumed that the light fluid follows

the heavy fluid at the interface). 

It is also worth noting that in the reference algorithm from [10] , the populations streamed from

a direction that is normal to the interface are also treated as missing populations, even though the

source cell is not an empty cell. In this work, this step of the scheme has been ignored, since no

significant difference has been observed for the types of simulations targeted. 

Mass update 

The change of mass �m i due to the populations exchange in a given direction i reads 

�m i ( � x , t + �t) = 

ε( � x ) + ε( � x + 

�
 c i �t) 

2 

⎡ 

⎢ ⎣ 

f I ( � x , t) ︸ ︷︷ ︸ 
entering mass 

− f i ( � x + 

�
 c i �t, t) ︸ ︷︷ ︸ 

leaving mass 

⎤ 

⎥ ⎦ 

, (3) 

where I denotes the population in the opposite direction of i . It the above expression, an average of

the volume fraction of the cells implied in the mass exchange is done in order to account for the

amount of fluid in the cells. Finally, the mass of a cell is updated as 

m ( � x , t + �t) = m ( � x , t) + 

Q ∑ 

i =0 

�m i ( � x , t + �t) . (4)

This step is performed in the method mass_update of the LatticeFS class. 

Flag update 

After the mass and volume fraction of the interface cells are updated, two lists of coordinates can

be built: 

List i2f (interface to fluid): interface cells for which ε > 1 + κ . 

List i2e (interface to empty): interface cells for which ε < −κ . 

The small parameter κ allows for a slight inertia in the process of flag update, preventing fast

switching of phase in locations where the volume fraction is near from the transition values. Indeed,

the mass excess redistribution (discussed below) does not take into account the value of κ, hence this

method introduces a slight delay, preventing the cells to change of type immediately. 

The cells belonging to i2f will be converted to fluid cells, whereas cells belonging to i2e will be

converted to empty cells. 

An important point during this step is to properly handle mass excess; indeed, when a cell

becomes empty, its mass is actually lower than 0, whereas it is larger than 1 when it becomes totally

filled. The mass excess ( m e = m − ρ in the case of a cell becoming fluid, and m e = m in the case of a

cell becoming empty) must be redistributed somewhere else in the domain, in order to preserve the

total mass of the fluid. 

Different heuristics can be chosen for the mass redistribution. In this work, one simply counts the

number of adjacent interface cells and equally redistribute the mass excess among these candidates. 

As already noted by Thürey [10] , a more elaborated scheme would stream the mass excess according

to the local flow direction. 
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onversion of cell types 

Depending on the type of conversion, the process to change the type of cell can be of different

omplexity, as the information beared by the cell must either be compressed or created. Note that

his process cannot be asynchronous because of the nature of the mass redistribution scheme. Hence,

n a first pass, the mass excesses are collected and the flags updated, before the mass is redistributed

o the non-empty cells during a second pass. The following changes can occur: 

Empty to interface: as no information is contained in an empty cell, an average over all its non-

empty adjacent cells is taken to determine the local macroscopic variables. The populations are

then initialized at equilibrium, whereas the mass and volume fraction are initialized to zero, as this

value is not used until the next update of the cell’s properties, taking place after the collision and

streaming (see Fig. 2 ). Note that, to be consistent with the completion scheme of the streaming

through the interface, one could consider to initialize the populations with the average deviation

from equilibrium of the adjacent non-empty cells. The flag of the cell is updated to “interface”. 

Interface to empty: the mass excess is collected as m e = m . The volume fraction and mass are then

set to zero, and the density is set to ρE . The flag of the cell is updated to “empty”. 

Interface to fluid: the mass excess is collected as m e = m − ρ . The volume fraction and mass are

then set to the unity, and the flag of the cell is updated to “fluid.”

Fluid to interface: The volume fraction and mass are set to unity (remind that the collision step

occurs right after the flag update step). The flag of the cell is updated to “interface”. 

Although very rare, some artifacts can happen and cause instabilities, among which: 

Interface cells surrounded by interface cells only. In this case, if ε > 1 / 2 the cell is converted to a

fluid cell, otherwise it is converted to an empty cell. 

Interface cells surrounded by no empty cells. In this case the cell is converted to a fluid cell. 

Interface cells surrounded by no fluid cells. In this case the cell is converted to an empty cell. 

In the free-surface code, the identification of the cells to update is performed in the

ethod get_updates of the LatticeFS class, whereas the cell type conversion and the mass

edistribution process are done in the method update_flags . 

mplemention of the coupling scheme 

In order to couple the shallow water and free-surface models presented above, the coupling

trategy described in the associated research article has been implemented in the Python module

rop.py , which makes use of the previously discussed free-surface implementation. 

eneral scheme 

Following the notation of the article, four points (A, B, C and D on Fig. 3 ) determine the different

ubdomains of the simulation. For the sake of simplicity, the shallow water domain actually spreads

ver the whole domain, although its values are ignored where the free-surface fluid is simulated. It

as been shown in the article that the impact of this simplification on the performance is negligible

or two reasons. First, the shallow water model is intrinsically more efficient than the free-surface one,

or obvious reasons of dimensionality as well as complexity of the model. Second, the typical aim of

uch a coupling is to use the free-surface simulation over a restricted area, whereas the shallow water

odel simulates the vast majority of the system. 

The global scheme (function iterate_system of the class Coupling ) includes the following

teps: 

1. Iterate the shallow water lattice. 

2. Iterate the free-surface lattice. For sake of simplicity, the extrapolated velocity profile at the

interface column with the shallow water lattice is recomputed, though it is the same as the

one used in the last coupling step. This velocity is then imposed to the free-surface sites as a

Zhou-He boundary condition [11] . 

3. Coupling from shallow water to free-surface lattice. 

4. Coupling from free-surface to shallow water lattice. 
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Fig. 3. Configuration of the lattices and their coupling. The points A, B, C and D define the limits of the different, overlapping 

domains. The configuration is symmetric. 

 

 

 

 

 

 

•
 

 

 

•
 

 

•

 

Shallow water to free-surface coupling 

In the function sw2fs_generic of the class Coupling , a loop runs over the cells of the

interface column of the free-surface lattice. The type (empty, interface or fluid) of each cell is checked

to ensure the consistency with the water height prescribed by the overlapping shallow water cell.

Denoting h the water height to be imposed and y the height of the current cell examined ( y = 0

denotes the bottom of the domain), the theoretical density of each cell is computed as 

ρ(y ) = 1 + g(h 0 − y ) , (5) 

where h 0 is the still water level. Similarly, the velocity u (y ) depends on the depth. In the

implementation proposed, this velocity has a quadratic form: 

u (y ) = 

3 ̄u y 

h 

(
1 − y 

2 h 

)
, (6) 

where ū in this case corresponds to the velocity in the corresponding shallow water site. 

The following cases are treated, where f loor(x ) denotes the rounding down of x to the next

integer: 

If y = f loor(h ) then the cell must be an interface cell. If not, its tag is updated and its mass and

volume-of-fluid values are set as h − f loor(h ) . If the cell was an empty cell prior to the conversion,

then its populations are initialized at equilibrium using ρ(h ) and u (h ) ; otherwise they are left

unchanged. 

If y < f loor(h ) then the cell must be a fluid cell. If not, its tag is updated and its mass and volume-

of-fluid values are set to unity. Again, the populations are initialized at equilibrium using ρ(h ) and

u (h ) in case the cell was tagged as empty. 

If y > f loor(h ) then the cell is emptied. 

The water level and the flow velocity are also stored at this point in order to be used in the next

velocity profile extrapolation. 
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Fig. 4. Configuration of the initial perturbation in the gaussian drop benchmark along with the different variable names. 
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ree-surface to shallow water coupling 

This step is essentially implemented inside the function fs2sw of the class Coupling . The height

f the water column at the interface is computed along with its average velocity. The populations of

he shallow water lattice are then set accordingly. Another important point here is to rescale the

opulations of the shallow water cell next to the interface as prescribed in [12] : 

f i = 

h F S 
h SW 

f i , (7)

or each population i, where h SW 

is the water height at this cell computed from the pre-scaling

opulations, and h F S is the height at the free-surface site that overlaps the considered cell: 

h F S = 

H ∑ 

y =0 

ε(y ) , (8)

ith H the number of wet cells (i.e. cells that are either “fluid” or “interface”) in the considered

olumn of fluid. 

et up of a simulation 

The initial configuration of the system in the Gaussian drop benchmark is illustrated in Fig. 4

long with the variable names corresponding to the different parameters of the initial perturbation

n drop.py . 
The function save_plot provided in the same file allows for the visualization of the water

levation at different time steps. The function write_height writes the water elevation in a file

n the form of a list of values separated by white spaces, from x = 0 to x = n x ( n x being the total

umber of cells, not taking twice into account the overlapping cells). As indicated in the article, a

inearly interpolated value is used where the lattices are overlapping. 
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