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Graft-vs.-host disease (GVHD) remains a significant cause of morbidity andmortality after

allogeneic hematopoietic stem cell transplantation (allo-HSCT). Significant progresses

have been made in defining the dichotomous role of dendritic cells (DCs) in

the development of GVHD. Host-derived DCs are important to elicit allogeneic T

cell responses, whereas certain donor-types of DCs derived from newly engrafted

hematopoietic stem/progenitor cells (HSPCs) can amply this graft-vs.-host reaction.

In contrast, some DCs also play non-redundant roles in mediating immune tolerance.

They induce apoptotic deletion of host-reactive donor T cells while promoting expansion

and function of regulatory T cells (Treg). Unfortunately, this tolerogenic effect of DCs is

impaired during GVHD. Severe GVHD in patients subject to allo-HSCT is associated with

significantly decreased number of circulating peripheral blood DCs during engraftment.

Existing studies reveal that GVHD causes delayed reconstitution of donor DCs from

engrafted HSPCs, impairs the antigen presentation function of newly generated DCs

and reduces the capacity of DCs to regulate Treg. The present review will discuss the

importance of DCs in alloimmunity and the mechanism underlying DC reconstitution after

allo-HSCT.

Keywords: graft-vs.-host, disease, dendritic cells, transcription factors, alloreactive T cells, immunostimulation,

immune tolerance

INTRODUCTION

Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for
many hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (1, 2).
This beneficial effect is largely derived from infused donor immune cells that can eliminate
malignant cells, a process known as graft-vs.-leukemia (GVL) response (3–5). However, the success
of the procedure is limited by the life-threatening complication graft-vs.-host disease (GVHD), in
which the gastrointestinal (GI) tract, skin and liver are preferentially damaged (2, 6–9).

GVHD is mediated by infused donor T cells that recognize and react to histocompatibility
differences between the host and donor (9–12). Host-derived antigen-presenting cells (APCs)
can directly present antigens to prime allogenic donor T cells, whereas donor-derived APCs can
present host antigens to donor T cells via indirect antigen presentation (10, 12, 13). Initial studies
demonstrate that host APCs are critical for donor CD8+ T cell-mediated GVHD. Subsequent
studies indicate that either host or donor APCs are sufficient to induce CD4+ T cell-dependent
GVHD (9–12, 14–17). Importantly, unlike T cell responses to pathogens in which hematopoietic
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APCs prime T cells, alloreactive T cell responses in the setting
of allo-HSCT may be primed by both hematopoietic and non-
hematopoietic APCs (9–12, 14–17).

DCs are the most potent professional APCs known to
elicit primary T cell responses (18–20). Based on their surface
phenotype, anatomical location and function, DCs at the
steady state are broadly categorized into conventional DCs
(cDCs) and plasmacytoid DCs (pDCs). Under inflammatory
condition, both DC subsets undergo profound changes in their
phenotype and functionality (21–25). For example, in response
to inflammatory stimuli, DCs may be primed selectively to
produce special types of cytokines (e.g., IL-12, IL-23) and Notch
ligands (e.g., Delta-like 1 (DLL1) and DLL4). These DC-derived
molecules are important to instruct antigen-activated T cells
to differentiate into distinct lineages of effector T cells, such
as T helper (TH)1, TH17 cells, and cytotoxic T cells (CTLs)
(26–33).

Over the past two decades, both clinical and preclinical studies
have demonstrated dichotomous roles of DCs in GVHD (9,
34, 35). While some DCs induce alloreactive T cell responses
mediating host tissue injury, other DC subsets induce donor T
cell tolerance against the host tissue. In this review, wewill discuss
these effects of DC-mediated immunogenicity and tolerogenicity
during GVHD.

DC INDUCTION OF GVHD

DCs are specialized APCs that play non-redundant roles in
regulating both immunity and tolerance (9, 18, 36–44). In the
setting of allo-HSCT, host-derived DCs are important for donor
T cell-mediated GVHD in the liver, colon and skin (9–12, 16,
17, 35, 45). De novo generated donor APCs, including DCs,
are also required to induce maximal GVHD through a complex
mechanism (9–11, 35).

Host DCs and Initiation of Alloreactive T
Cell Responses
Shlomchik and colleagues demonstrate, for the first time, that
host hematopoietic APCs are critical for induction of the
disease, and donor APCs can mediate maximal GVHD (10, 12).
Subsequent studies reveal that host DCs, which are activated
during preparative conditioning for allo-HSCT, present host
antigens to prime donor CD4+ and CD8+ T cells and promote
their proliferation and differentiation into alloreactive effector
cells (17, 46). Add-back of WT host-type cDCs or pDCs causes
severe GVHD in mice lacking MHC class-I or MHC class-II,
respectively (47), further strengthening the importance of host
DCs in mediating GVHD (Table 1). However, these studies do
not explain whether host DCs contribute to GVHD when all
the other types of host APCs, including B cells, macrophages
and non-hematopoietic APCs, are intact. For example, host B
cells produced high levels of IL-10 to modulate alloreactive T
cell responses in vivo (57), Recipient macrophages, which resist
the conditioning regimen, persisted in patients for several weeks
following allo-HSCT and limited the severity of GVHD (58).
In contrast, non-hematopoietic APCs activated by irradiation

induce potent allo-specific responses in peripheral tissues(14,
59).

The role of host DCs in the development of GVHD in
the presence of functional macrophages and non-hematopoietic
APCs has been studied by several groups. Merad et al. examined
the role of host Langerhans cells (LCs), a distinct subset
of DCs located in the skin (19), in cutaneous GVHD (40).
Administration of donor T cells to bone marrow (BM)-chimeric
mice with persistent host LCs, but not to mice whose LCs had
been replaced, resulted in marked skin GVHD (40), suggesting
that host LCs are important for mediating the disease in the
skin. Intriguingly, other studies show that LCs were dispensable
for the induction of skin GVHD (48). In one of those studies,
donor T cells and BM cells were transferred into lethally
irradiated transgenic recipient mice in which epidermal LCs
expressed the Diphtheria toxin A (DTA) under the control
of the human Langerin locus (48). Deficiency of LCs did not
affect the development of either CD8+ T cell- or CD4+ T
cell-mediated GVHD (48). How to reconcile these observations
remains controversial.

Donor DCs Amplify GVH Reaction by
Cross-Presenting Host-Type Antigen
In the setting of allo-HSCT, de novo generated donor APCs are
also found to be important for GVHD (9–11, 35). Studies by
Markey et al. suggested that donor cDCs isolated from the spleen
were the most effective population in presenting alloantigens
and stimulating naïve donor T cell responses early after allo-
HSCT (49). Intriguingly, upon exposure to GVH inflammation,
donor CD103+CD11b− cDCs, which are independent of the
transcription factor IRF4 for their development (60, 61), captured
alloantigen in the colon and migrated into the mesenteric lymph
node to amplify alloreactive T cell responses (13). This suggests
that tissue resident DCs may play important roles in regulating
GVH reactions, which is supported by our early studies. We
found that selective depletion of both host- and donor-type
APCs, including DCs, in visceral organs led to significantly
reduced GVHD in the liver but not in the skin (11). These
observations suggest that donor DCs possess great capacity to
orchestrate the alloreactive T cell response both in the lymphoid
organ and non-lymphoid tissues, eliciting different types of
GVHD.

DC-Derived IL-12 and Notch Ligands
Shape Alloreactive T Cell Responses
DCs produce multiple molecules capable of shaping allogeneic
T cell responses (Figure 1). For example, IL-12 produced by
DCs drives expansion and differentiation of antigen-activated
T cells (13, 18, 27, 30, 62, 63). Donor BM cells lacking
IL-12 p40 had significantly decreased capacity to promote
effector differentiation and expansion in the mesenteric lymph
nodes of mice receiving allogenic T cells. IL-12 derived from
CD103+CD11b− cDCs promoted IFN-γ production in host-
reactive T cells (13). Notch signaling pathway is demonstrated
as an important regulator of alloreactive T cell responses. Using
a genetic approach, we reported that inhibition of pan-Notch

Frontiers in Immunology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 93

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yu et al. DC Regulation of GVHD

T
A
B
L
E
1
|
E
ff
e
c
t
o
f
d
iff
e
re
n
t
D
C
su

b
se

ts
in

G
V
H
D
.

D
C

s
u
b
s
e
t

E
ff
e
c
t
o
n

G
V
H
D

O
ri
g
in

M
e
th
o
d

G
V
H
D

m
o
d
e
l

O
u
tc
o
m
e

M
e
c
h
a
n
is
m

A
u
th
o
rs
/

R
e
fe
re
n
c
e
s

c
D
C
s
o
r

p
D
C
s

In
d
u
c
tio

n
H
o
st

A
d
d
-b
a
c
k
o
f
c
D
C
s
o
r
p
D
C
s

B
a
lb
/c

→
B
6

A
K
R
→

C
3
H

G
V
H
D
↑

P
rim

e
a
llo
-T

c
e
ll
re
sp

o
n
se

K
o
ya
m
a
e
t
a
l.
( 4
7
)

L
C
s

In
d
u
c
tio

n
H
o
st

D
e
p
le
tio

n
o
f
L
C
s

B
6
→

B
a
lb
/c

sk
in

G
V
H
D
↓

In
c
re
a
se

d
o
n
o
r
T
c
e
ll
in
fil
tr
a
tin

g
in

th
e
sk
in

M
e
ra
d
e
t
a
l.
( 4
0
)

L
C
s

N
o
e
ff
e
c
t

H
o
st

D
e
p
le
tio

n
o
f
L
C
s

B
6
→

B
a
lb
/c

C
3
H
→

B
6

G
V
H
D

m
a
in
ta
in
e
d

-
L
ie
t
a
l.
( 4
8
)

c
D
C
s

In
d
u
c
tio

n
D
o
n
o
r

D
e
p
le
tio

n
o
f
C
D
1
1
c
+

c
D
C
s

B
6
→

B
a
lb
/c

C
3
H
→

B
6

B
6
→

B
6
D
2
F
1

G
V
H
D
↓

In
h
ib
it
d
o
n
o
r
T
c
e
ll
p
ro
lif
e
ra
tio

n
M
a
rk
e
y
e
t
a
l.
( 4
9
)

C
D
1
0
3
+

C
D
1
1
b
−
D
C
s

In
d
u
c
tio

n
D
o
n
o
r

D
e
p
le
tio

n
o
f

C
D
1
0
3
+
C
D
1
1
b
−

c
D
C
s

B
6
→

B
a
lb
/c

G
V
H
D
↑

In
d
u
c
e
e
xp

a
n
si
o
n
a
n
d

d
iff
e
re
n
tia
tio

n
o
f
d
o
n
o
r
T
c
e
lls

w
ith

in
th
e
m
L
N
s

K
o
ya
m
a
e
t
a
l.
(1
3
)

C
D
8
α
+

D
C
s

To
le
ra
n
c
e

H
o
st

D
e
p
le
tio

n
o
f
C
D
8
+

c
D
C
s

B
a
lb
/c

→
B
6

G
V
H
D
↑

R
e
d
u
c
e
n
u
m
b
e
rs

o
f
Tr
e
g
s
a
n
d

T
G
F
-
β
le
ve
ls

W
e
b
e
r
e
t
a
l.
( 5
0
)

C
D
8
α
+

D
C
s

To
le
ra
n
c
e

H
o
st

P
re
-t
re
a
tm

e
n
t
o
f
th
e

re
c
ip
ie
n
t
w
ith

F
lt3

L

B
6
→

B
6
D
2
F
1

G
V
H
D
↓

S
u
p
p
re
ss

d
o
n
o
r
T
c
e
ll
re
sp

o
n
se

s

to
h
o
st

a
n
tig

e
n
s

Te
sh

im
a
e
t
a
l.
( 4
1
)

C
D
8
α
+

D
C
s

To
le
ra
n
c
e

H
o
st

P
re
-t
re
a
tm

e
n
t
o
f
re
c
ip
ie
n
ts

w
ith

F
lt3

L

C
3
H
→

B
6

B
6
→

B
6
D
2
F
1

G
V
H
D
↓

F
u
n
c
tio

n
a
lly

d
e
le
te

o
f
th
e

a
llo
re
a
c
tiv
e
T-
c
e
ll

M
a
rk
e
y
e
t
a
l.
(5
1
)

C
D
8
α
+

c
D
C
s

N
o
e
ff
e
c
t

H
o
st

D
e
p
le
tio

n
o
f
C
D
8
+

c
D
C
s

C
3
H
→

B
6

G
V
H
D

m
a
in
ta
in
e
d

-
To

u
b
a
ie
t
a
l.
( 5
2
)

C
C
R
9
+

p
D
C
s

To
le
ra
n
c
e

H
o
st

Tr
a
n
sf
e
r
o
f
C
C
R
9
+

p
D
C
s

B
a
lb
/c

→
B
6

G
V
H
D
↓

P
ro
m
o
te

Tr
e
g
e
xp

a
n
si
o
n
a
n
d

fu
n
c
tio

n
S
u
p
p
re
ss

a
n
tig

e
n
-s
p
e
c
ifi
c
T
re
sp

o
n
se

s

H
a
d
e
ib
a
e
t
a
l.
( 5
3
)

S
A
H
A
tr
e
a
te
d

m
o
D
C
s

To
le
ra
n
c
e

H
o
st

Tr
a
n
sf
e
r
o
f
m
o
D
C
tr
e
a
te
d

w
ith

S
A
H
A

B
a
lb
/c

→
B
6

G
V
H
D
↓

P
ro
m
o
te

Tr
e
g
e
xp

a
n
si
o
n
a
n
d

fu
n
c
tio

n

R
e
d
d
y
e
t
a
l.
( 5
4
)

p
re
-p
D
C
s

To
le
ra
n
c
e

D
o
n
o
r

D
e
p
le
tio

n
o
f
p
re
-p
D
C
s
fr
o
m

B
M

g
ra
ft
s

B
6
→

B
a
lb
/c

B
6
→

B
6
D
2
F
1

G
V
H
D
↑

In
h
ib
it
T
c
e
ll
p
ro
lif
e
ra
tio

n
in
a

c
o
n
ta
c
t-
d
e
p
e
n
d
e
n
t
fa
sh

io
n

B
a
n
o
vi
c
e
t
a
l.
(5
5
)

p
re
-p
D
C
s

To
le
ra
n
c
e

D
o
n
o
r

Tr
a
n
sf
e
r
o
f
B
M

p
re
-p
D
C
s

B
6
→

B
1
0

G
V
H
D
↓

In
c
re
a
se

Tr
e
g
s
a
n
d
d
e
c
re
a
se

a
llo
re
a
c
tiv
e
e
ff
e
c
to
r
T
c
e
lls

L
u
e
t
a
l.
( 5
6
)

Frontiers in Immunology | www.frontiersin.org 3 February 2019 | Volume 10 | Article 93

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yu et al. DC Regulation of GVHD

FIGURE 1 | DC stimulation of allogeneic T cell responses. Preparative conditioning regimens before the allo-HSCT induce host tissue injuries, leading to the release of

DAMPs and PAMPs. Consequently, DCs are activated by DAMPs and PAMPs through multiple receptors, capable to present antigens and prime the T cells. While

DAMPs activate DCs mainly through TLRs (i.e., TLR 1-13), PAMPs activate DCs through RAGE, P2X7, etc., in addition to the TLRs. Both costimulatory molecules

(e.g., CD28) and cytokines (e.g., IL-12, IL-23) synergize with the TCR signaling to promote proliferation and expansion of antigen-activated T cells. DCs also produce

higher levels of Notch ligands (e.g., DLL1 and DLL4) to trigger Notch signaling in the T cell, instructing differentiation into distinct lineages of effector cells.

receptor signaling in donor T cells significantly reduced severity
and mortality of GVHD in mouse models (32). Notch-deprived
T cells proliferated and expanded in response to alloantigen in
vivo, but failed to produce inflammatory cytokines, including
IFN-γ, IL-17, and TNF-α (31, 32). In a separate study, we
further observed that host DCs expressing DLL4 (named DLL4+

DCs), one of the ligands of Notch receptors, had greater ability
to stimulate the generation of alloreactive effector T cells that
produced IFN-γ and IL-17 compared to DLL4− DCs (64–66).
Studies byMaillard et al. have shown that blockade of DLL4 could
abrogate this effect and prevented GVHD while preserving anti-
tumor activity (67, 68). Intriguingly, recent studies demonstrate
that chemokine CCL19-expressing host cells, including both
fibroblastic reticular cells and follicular DCs, were also the
essential source of DLL4 for shaping alloreactive T cell response
inmice subject to allo-HSCT (69). Collectively, DC-derived IL-12
andDLL4 are important for the generation of alloreactive effector
T cells during GVHD.

Activation of DCs After the Conditioning
Regimens for Allo-HSCT
DCs express pattern recognition receptors (PRRs), such as
Toll-like receptors (TLRs), and nod-like receptors (NLRs) to
respond to pathogen-associated molecular patterns (PAMPs)
(70–72). In addition, DCs are also capable to detect certain
intracellular molecules, called damage-associated molecular
patterns (DAMPs), that are released from cells stressed, damaged
and/or dying in the local tissue (73).When PAMPs or DAMPs are
present, DCs are stimulated to migrate to lymphoid tissues and

present both antigen and costimulatory molecules to T cells (73–
75). Preparative conditioning regimens for allo-HSCT, including
high-dose chemotherapy and/or total body irradiation, cause
host tissue injuries. This leads to the release of proinflammatory
cytokines (e.g., TNF-α, IL-1β, and IL-6) as well as DAMPs and
PAMPs (74, 76).

Both PAMPs and DAMPs activate DCs through stimulating
TLRs (i.e., TLR1-13) (Figure 1) (1, 8, 76–78). TLR expression
among DC subsets is heterogeneous: pDC mainly express TLR1,
7 and 9; CD8α+ DCs preferentially produce high levels of
TLR3; whereas other cDC subsets express certain TLR subtypes
but TLR9 (73–75, 79–85). Data from our studies and others
suggested that Notch ligands DLL1 and DLL4 played non-
redundant roles in activating Notch signaling to drive alloreactive
T cell responses (32, 64–66, 68). LPS (TLR4 agonist) rapidly
induces Dll4 expression in human and murine DCs (65, 66, 81–
83). Combined stimulation of human DCs with LPS with TLR7
agonist R848 further increases the expression of DLL4 (65, 83).
TLR3 is critical for presentation of viral double-stranded RNA
(83, 86). Reddy and colleagues found that TLR3 stimulation
enhanced GVL response without exacerbating GVHD in mice
(52). These observations explain, at least in part, how different
pro-inflammatory stimuli induce distinct types of immune
responses.

DC-MEDIATED DONOR T CELL
TOLERANCE AGAINST HOST TISSUES

Self-tolerance can be induced and maintained in different
compartments of the immune system. During thymopoietic
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development, self-reactive T cells are clonally deleted in the
thymus as a result of negative selection (8, 23, 36, 87).
However, thymopoiesis is impaired during GVHD (88, 89),
which is associated with generation of alloreactive T cells
that mediate chronic-like GVHD in mice (90, 91). Considered
as a supplemental mechanism to central tolerance, peripheral
tolerance however, is important to prevent autoimmunity (8,
23, 36, 87). DCs are the crucial players mediating peripheral
tolerance (27, 36, 37, 44, 87). Therefore, we will review the
tolerogenic role of DCs in the context of allo-HSCT.

cDCs
Both host and donor DCs may contribute to the induction of
donor T cell tolerance against host tissues in mice undergoing
allo-HSCT. Early studies by Teshima et al. reported that Flt3
ligand (Flt3L) treatment of recipient mice induced expansion
of CD8α+ DCs that were poor stimulators of allogeneic T
cells in cultures and had great ability to suppress donor T
cell responses to host antigens in vivo (Table 1) (41). These
Flt3L-treated recipient mice developed much less severe GVHD
compared to untreated controls (41). However, whether these
in vivo expanded CD8α+ DCs have direct effects on reducing
GVHD was not examined in this study (41). Subsequent studies
show that deletion of host CD11c+ cells in CD11c. DTR
(diphtheria toxin receptor) transgenic recipient mice caused a
strong increase in GVHD-related mortality (50). Since CD11c
is also expressed on the surface of some macrophages (18, 19,
62), the possibility that DT treatment might delete CD11c+

macrophages that mediate immune suppression cannot be ruled
out. Other studies examined the impact of deleting CD8α+ DCs
on GVHD development in recipient mice lacking Batf3 (50),
which is a transcription factor crucial for the generation of
CD8α+ DCs and migratory CD103+ cDCs (92, 93). Recipient
mice lacking Batf3 developed more severe GVHD compared to
WT mice and marked increase of proliferative donor T cells
(50). This finding is further supported independently by studies
from Hill and colleagues (51), but not from Reddy’s group (52).
However, whether transfer of CD8α+ DCs may directly suppress
GVHD in mice has never been reported. Thus, the exact DC
subset induced upon Flt3L treatment capable to reduce GVHD
has never been clearly addressed.

pDCs
The important role of pDCs in modulating GVH response
was initially shown in a mouse model of GVHD. Transfer of
host-type CCR9+ pDCs inhibited GVHD in mice receiving
MHC- or miHA-mismatched donor T cells (53). CCR9+

pDCs migrate to the GI tract through chemotaxis via their
own chemokine receptor CCR9 and the ligand CCL25 in
the environment. Upon stimulation with TLR9 agonist CpG
ODNs, CCR9+ pDCs rapidly downregulate CCR9 from the
original immature state and decrease the capacity to attenuate
GVHD in vivo (53). Furthermore, precursor pDCs (pre-
pDCs) were found to modulate GVHD in mouse models
(55, 56). In vivo depletion of pre-pDCs using the antibody
specific to PDCA-1, which is expressed on the surface of
pDC lineage, significantly increased the severity of GVHD

FIGURE 2 | DCs induce donor T cell tolerance via both T-cell intrinsic and

extrinsic mechanisms. Tolerogenic DCs produce high levels of PD-L1 and

CD80/CD86, which, respectively, bind PD-1 and CTLA4, leading to inhibition

of antigen-activated T cells and generation of Treg. Treg further suppress the

proliferation and survival of those antigen-activated T cells. In addition,

tolerogenic DCs produce high levels of IDO, which can inhibit antigen-reactive

T cells and promote Treg expansion and function.

compared to recipient mice with intact donor pre-pDCs (55).
Mechanistic analysis reveals that CCR9+ pDCs and pre-pDCs
are capable to promote Treg expansion and function, as well
as to suppress antigen-specific immune responses both in
vitro and in vivo (55, 56). These observations identify the
tolerogenic effect of pDCs on inducing donor T cells against host
tissues.

Molecular Mechanisms by Which DCs
Induce Donor T Cell Tolerance
Emerging evidence indicate that the mechanism responsible for
DC-induced peripheral T cell tolerance can be broadly classified
into two categories: intrinsic and extrinsic (18, 23, 62, 87, 94). T
cell intrinsic signal acts directly on the responding T cells, such
as inhibition or deletion of specific T cells, while T cell extrinsic
signal acts through additional cells or factors, such as Treg or
suppressive cells (Figure 2).

Whether to induce immune activation or tolerance was
initially correlated to the maturation state of DCs (62). Immature
DCs generated frommurine BM induced T cell unresponsiveness
in vitro and prolonged cardiac allograft survival (43, 95). The
immune tolerance induced by immature DCs was associated with
their low expression of CD40 (which is essential to activation
of CD4+ T cells) and the capacity to produce high levels of
IL-10 (which inhibits T cell response). Probst et al. reported
that resting DCs induced peripheral CD8+ T cell tolerance
through activating the inhibitory signals PD-1 and CTLA4
on the T cell via PD-L1 and CD80/86, respectively (96–104).
Under physiological conditions, these inhibitory molecules keep
autoreactive T cells in check without causing autoimmunity.
Blocking either PD-1 or CTLA4 abrogated CD8+ T cell tolerance
induction and enhanced T cell priming while blocking both
resulted in an synergistic effect on inducing CD8+ T cell
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tolerance (96). These observations suggest that DC-derived PD-
L1 may promote T cell tolerance through triggering the T-cell
intrinsic mechanism.

Treg and suppressive cells (e.g., myeloid-derived suppressive
cells) play crucial roles in establishing andmaintaining peripheral
tolerance and are known to be important for reducing GVHD
(105–108). Waller and colleagues have demonstrated that
transfer of donor BM pre-pDCs attenuated GVHD in mice
(56). They identified that donor pDCs activated donor T cells
to produce IFN-γ, which then enhanced pDC synthesis of
indoleamine 2,3-dioxygenase (IDO). Increased production of
IDO by pDCs altered the balance between donor Treg and
alloreactive effector T cells, thereby limiting the severity of
GVHD (56). Other studies showed that GVH reaction also
impaired the antigen presentation function of de novo generated
donor cDCs, leading to dramatically decreased Treg expansion
and function, leading to severe chronic GVHD (109). These
observations suggest that reconstitution of tolerogenic DCs
from engrafted donor hematopoietic cells may be crucial for
preventing the occurrence of severe GVHD.

RECONSTITUTION OF DONOR DCS
AFTER ALLO-HSCT

Clinical studies indicated that impaired reconstitution of donor
DCs correlates with the occurrence of severe GVHD (110–115).
Wingard and colleagues examined the number of donor DCs in
the circulating peripheral blood from a group of 50 allo-HSCT
patients. They found that low number of circulating DCs was not
only associated with significantly increased risk of relapse and
acute GVHD, but also predicative of patient death after allogeneic
HSCT (110). Notably, clinical studies from 39 children with allo-
HSCT indicated that while normal cDC numbers were observed
by 300–400 days after transplantation, pDC numbers were always
lower than those of age-matched control patients during the
entire follow-up period of up to 7 years (112). In contrast,
patients with high pDC recovery profile often had improved
overall survival (114). Data from preclinical studies also showed
a marked deficit in all lineages of DCs (CD8+ DCs, CD11b+

DCs, and pDCs) in GVHD compared with non-GVHD mice
(55, 109, 116, 117). Thus, the recovery of DCs from engrafted
HSPCs in allo-HSCT patients may predict the occurrence of
severe GVHD and non-relapse mortality.

Donor DCs Mediate Protective Immunity
DCs are critical for eliciting T cell immune responses, protecting
the host against viral infection (18, 19, 118). Viral infection
remains a major challenge for the success of allo-HSCT.
Clinical studies have shown that after allo-HSCT, patients
with lower numbers of circulating peripheral blood DCs often
have increased risk of infections (1, 110). Cytomegalovirus
(CMV) is a major cause of post-transplant mortality in
patients subject to allo-HSCT, with ∼25% of CMV-seropositive
recipients developing CMV-related disease within 3 months after
transplantation (119–121). It is well-established that induction of
adaptive T cell immunity is critical to control CMV replication

and resolve viral reactivation-mediated disease (100, 122, 123).
cDCs are essential to the generation of effector T cells reactive
to CMV, especially during a primary response. However, GVHD
induces a profound DC defect that leads to a failure in the
generation of CMV-specific CD8+ T-cells and dramatically
decreased antiviral immunity (116). Collectively, improving the
reconstitution of DCs following allo-HSCT may represent an
effective strategy to re-establish the protective immunity in the
recipient. Since pDCs produce high levels of IL-12 and IFN-α
upon activation (29, 124–126), improving pDC recovery after
allo-HSCT may also provide efficient antiviral immunity.

GVHD Impairs the Generation of DC
Progenitors
GVHD-associated inflammatory responses may influence the
reconstitution of donor DCs via a complex mechanism. DCs
developed from HSPCs through successive steps of lineage
commitment and differentiation: HSCs → multiple potent
progenitors (MPP)→ common DC progenitors (CDP)→ cDCs
and pDCs (22, 42, 125, 127–132). Inflammatory cytokines, such
as TNF-α and IFN-γ, directly inhibit the proliferation of HSPCs
and their generation of DCs (117). In addition, Matsushima
and colleagues have shown that GVHD induced damage to
the BM niche, leading to dramatically decreased hematopoiesis,
including the reduction of CDP (133). However, the specific
cellular component(s) within the niche that are responsible for
the generation of DC progenitors have yet to be determined.

Transcriptional Regulation of DC
Development
The generation of DCs is regulated by a group of functionally
distinctive transcription factors (TFs). Analysis of gene-targeted
mice has identified many critical TFs in DC development. Some
of these TFs, such as Pu.1 and Stat3, influence the generation
of all DC subsets. HSPCs lacking Pu.1 showed defective DC
differentiation potential (134, 135). Targeted deletion of Stat3
impaired the generation of both cDCs and pDCs in vivo (128,
136). Thus, both Pu.1 and Stat3 are pioneer TFs in the regulation
of DC commitment and differentiation fromMPP (42, 128, 130).

DC subset-specifying TFs are required for committed CDP
to become functionally distinct DC lineages (42, 127, 128, 130).
For example, Batf3 has a non-redundant role in CD103+ cDC
development and partial effect on inducing CD8α+ DCs in
lymph organs (52, 92, 127). Irf8-deficient animals lack spleen-
resident CD8α+ cDCs and nonlymphoid tissue CD103+ cDCs
(42, 127, 137). Other TFs, such as Irf4, Klf4, Notch2, and Relb,
also play important roles in the regulation of other types of
cDCs localized in different tissues (94, 138). Among them, Irf4
is required for cDCs to prime CD4+ T cells and promote
Th17 differentiation in both the lung and intestine (60, 139). In
addition, several TFs, such as Tcf4, Irf8, and Spib, are known to
regulate pDC differentiation (140–142). The absence of Tcf4 leads
to the loss of pDCs in mice (142).

There are limited number of studies investigating how
GVH reactions influence the expression and function of
these TFs required for DC development. Notably, a recent
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study revealed that inflammation cascades in GVH reaction
favor the development of CD103+D11b− DCs in the GI
tract (42), which require the presence of functional Irf4
(93). These data indicate that distinct TFs in DCs and their
progenitors may have different susceptibility to the regulatory
effect of inflammatory environments. This may result in a
skewed expression and activation of transcriptional programs,
promoting the generation of specific subset(s) of DCs and
feed-forward action on alloreactive T cell responses during the
GVHD progression. Delineating the mechanisms underlying this
dysregulated donor DC reconstitution during GVH reaction
will be important for understanding the pathophysiology of
GVHD and the development of effective treatments for the
disease.

DC MODULATION OF ALLOIMMUNITY

Manipulation of DC precursors in the HSPC graft may facilitate
the establishment of a balance between GVHD and GVL effects
(2, 9, 16, 34, 35, 56). Preclinical studies have shown that
transfer of donor pre-pDCs derived from donor mice treated
with Flt3L induced markedly augmented GVL activity of donor
T cells without aggravating GVHD (56). These donor pre-
pDCs persisted long in that they expanded in vivo for 2 weeks
after transplantation (56). These findings perfectly supported
the clinical value of donor DCs in modulating alloimmunity to
improve the efficacy and safety of allo-HSCT.

Use of Tolerogenic DCs to Reduce GVHD
The capacity of DCs to induce tolerance has led to numerous
therapeutic studies using these cells in an effort to control
harmful immune responses in models of allograft rejection,
GVHD and autoimmune disorders (18, 27, 34, 36, 37, 62,
87, 143). While transfer of immature CCR9+ pDCs reduced
GVHD, transfer of mature donor pDCs did not as expected
(144). Furthermore, transfer of highly purified immature pDCs
derived from donors was technically challenging and typically
required in vivo expansion step to generate the number enough
for modulating GVH reaction in vivo (53, 56, 144).

With this technical bottle neck, many studies had to assess
the therapeutic effect of ex-vivo-generated DCs. Tolerogenic
DCs were tried to be generated through propagating human
monocytes in vitro in the presence of various agents, such
as IL-10, Vitamin D3, and immunosuppressive drugs (e.g.,
dexamethasone and rapamycin) (34, 36, 37, 87, 143). Yet, none
of the approaches generated the best clinically applicable DCs
with the expected tolerogenic capacity to modulate alloreactive T
cells (34, 36, 37, 87, 143). Reddy and colleagues report that upon
pre-treatment with the HDAC inhibitor SAHA, these moDCs
produced high levels of IDO and promoted Treg expansion and
function in vivo, leading to attenuated GVHD inmice (54). These
findings indicate that targeting epigenetic regulators in DCs may
prove to be an effective strategy to induce the generation of DCs
with tolerogenic properties for reducing GVHD.

DC Induction of GVL Effects After
Allo-HSCT
Emerging evidence indicated that DCs were required for
optimal GVL response without aggravating GVHD. Reddy and
colleagues report that as compared to allogeneic wild-type (WT)
hosts, allogeneic Batf3-deficient recipient mice developed severe
GVHD but with significantly reduced GVL response (52). This
indicates the importance of CD8α+ DCs in GVL response.
Indeed, co-transfer of WT host-type spleen DCs (which contain
CD8α+ DCs) and T cells into allogeneic B2m−/− recipients,
which are functionally deficient in antigen presentation, induced
a significant CD8+ T cell-mediated GVL response, leading to
prolonged survival of recipients without tumor. In contrast, all
of the B2m−/− mice receiving Batf3−/− spleen DCs, which lack
CD8α+ DCs (92), died from tumor despite the presence of other
DC subsets (52). This confirms the crucial role of CD8α+ DCs in
eliciting anti-tumor immunity. However, these experiments did
not examine the direct effect of CD8α+ DCs on T cell-mediated
GVL response.

In human recipients of unrelated donor BM grafts, but
not granulocyte colony-stimulating factor (G-CSF)-mobilized
peripheral blood grafts, a higher number of donor pDCs is
associated with increased survival and reduced GVHD (145).
Data from experimental studies indicate that transfer of pDC-
enriched BM grafts preserved GVL effects without aggravating
GVHD in mice (56, 146). pDCs produce high levels of IFN-α and
IL-12 (147, 148), cytokines important to promote differentiation
and expansion of antigen-specific effector cells (149). In these
studies, Waller and colleagues have demonstrated that in vivo
administration of Flt3L to donor mice induced 5-fold increase
in pDC content without significant changes in the number of
HSCs, T cells and B cells. Most importantly, transfer of pDC-
enriched BM graft from Flt3L-treated donors decreased GVHD
while retaining GVL effects in allogeneic recipient mice (146).

We have recently established a novel platform to produce
Dll4+ DCs from murine BM using Flt3L and TLR agonists (64).
Upon allogeneic Dll4+ DC stimulation, CD4+ naïve T cells
underwent effector differentiation and produced high levels of
IFN-γ and IL-17 in vitro, depending on Dll4 activation of Notch
signaling. Adoptive transfer of these Dll4+ DC-induced T cells
eliminated leukemic cells without causing severe GVHD, leading
to significantly improved survival of leukemic mice undergoing
allo-HSCT. This strategy may potentially improve the anti-
leukemic response after HSCT and overcome some barriers to the
GVL response such as high disease burden and pharmacologic
immunosuppression (64). Since DC activation of naïve T cells
allows them to be primed with antigens, Dll4+ DCs loaded
with leukemia-associated antigens may facilitate the selective
expansion of leukemic cell-reactive T cells and specifically boost
the anti-leukemia activity.

CONCLUSION

While traditional therapies have been targeting T cells, extensive
research inmurineHSCTmodels convincingly showed the ability
of DCs to preserve GVL response without aggravating GVHD.
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Targeting donor DCs in vivo or ex vivo may potentially subvert
alloreactive T cell responses and reduce GVHD (53). Given the
role of DCs in maintaining Treg after allo-HSCT (56, 109), co-
transfer of tolerogenic DCs and Treg could be more effective on
reducing GVH reactions in vivo. A randomized Phase I study
has shown the safety of infusing the host tolerogenic DCs into
diabetes patients (150). It will be interesting to test whether
these ex vivo generated tolerogenic DCs given in the peri-
transplant period may prevent GVHD while preserving GVL
effects.

One major challenge is to produce large number of
donor-type tolerogenic DCs that can persist sufficient time
to execute their function following adoptive transfer to
modulate alloimmunity. We propose that donor-type DCs have
several advantages compared to host-type DCs. For example,
donors are healthy, and their hematopoietic system is not
compromised by accompanied disease state and treatment
conditions. Furthermore, available data from both clinical and
pre-clinical studies suggest that donor-derived pDCs have potent
capability to modulate GVH reactions (55, 56, 145, 146). These

data provide a proof of concept that in vivo administration of
pDCs is promising for enhancing GVL response without causing
severe GVHD.

Most recent studies have shown that the fate of pDCs is
determined early at the stage of HSCs (127, 130, 136, 151–
153). This suggests that induction of tolerogenic DCs should
start from the HSPC stage. Better understanding how the fate
of tolerogenic DCs are determined and regulated may have
significant implication in the production of DCs for efficiently
modulating alloimmunity.
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