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Abstract

Accelerated cognitive ageing (ACA) is an ageing co-morbidity in epilepsy that is diagnosed

through the observation of an evident IQ decline of more than 1 standard deviation (15 points)

around the age of 50 years old. To understand the mechanism of action of this pathology, we

assessed brain dynamics with the use of resting-state fMRI data. In this paper, we present

novel and promising methods to extract brain dynamics between large-scale resting-state net-

works: the emulative power, wavelet coherence, and granger causality between the networks

were extracted in two resting-state sessions of 24 participants (10 ACA, 14 controls). We also

calculated the widely used static functional connectivity to compare the methods. To find the

best biomarkers of ACA, and have a better understanding of this epilepsy co-morbidity we com-

pared the aforementioned between-network neurodynamics using classifiers and known

machine learning algorithms; and assessed their performance. Results show that features

based on the evolutionary game theory on networks approach, the emulative powers, are the

best descriptors of the co-morbidity, using dynamics associated with the default mode and dor-

sal attention networks. With these dynamic markers, linear discriminant analysis could identify

ACA patients at 82.9% accuracy. Using wavelet coherence features with decision-tree algo-

rithm, and static functional connectivity features with support vector machine, ACA could be

identified at 77.1% and 77.9% accuracy respectively. Granger causality fell short of being a rel-

evant biomarker with best classifiers having an average accuracy of 67.9%. Combining the fea-

tures based on the game theory, wavelet coherence, Granger-causality, and static functional

connectivity- approaches increased the classification performance up to 90.0% average accu-

racy using support vector machine with a peak accuracy of 95.8%. The dynamics of the net-

works that lead to the best classifier performances are known to be challenged in elderly. Since

our groups were age-matched, the results are in line with the idea of ACA patients having an

accelerated cognitive decline. This classification pipeline is promising and could help to diag-

nose other neuropsychiatric disorders, and contribute to the field of psychoradiology.
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1 Introduction

Cognitive impairment is a common comorbidity in epilepsy. It is estimated that 65% of all

patients show impairment in cognition, accounting for about half of the burden of disease [1].

Using fMRI, research has mainly focused on specific cognitive impairments, and correlated

them with aberrant functional connectivity in brain areas involved in focal epilepsy. For

instance, in rolandic epilepsy, language and motor-related functions are impaired, and were

linked to a reduced functional connectivity between sensorimotor network and Broca’s area

[2]. Also already at young age, children with frontal lobe epilepsy complicated by cognitive

impairment (memory) showed decrease in frontal lobe connectivity [3]. In an elderly popula-

tion, the decline in cognitive abilities is also clearly present, yet often neglected [4]. This more

general cognitive decline is often due to long-term accumulating effects, i.e. early onset and

chronic epilepsy, and heavy use of anti-epileptic drugs, which hinders healthy mental ageing

[5]. This is often described as a chronic/accumulative model of cognitive decline, and viewed

as a form of dementia [6]. More recently, another model of cognitive decline in elderly has

been presented. It is different from the chronic decline since it relates to epilepsy that has a late

onset, where the decline is more abrupt and occurs soon after the diagnosis of epilepsy. Also, it

does not seem to degrade the crystalized cognitive functions such as long-term memory and

language abilities; but rather the fluid intelligence: perceptual reasoning and processing speed.

This fast mental ageing is coined ‘accelerated cognitive ageing’, or ACA [7, 8]. Even though the

clinical characteristics of the ACA comorbidity has been described, the brain mechanism of

action of the pathology remains unclear. This is why in this study we assess, using fMRI, differ-

ent dynamic parameters of large-scale networks that could help describing neuronal mecha-

nisms behind the decline.

The brain has been proven to efficiently work in functionally connected networks, i.e. the

aggregation of multiple region of interests (ROIs) [9, 10]. Also, the links between brain activity

and behavior/cognition are often better analyzed through the use of large-scale networks [11–

14]. Therefore, the resting-state network (RSN) dynamics are informative features in neuro-

psychiatric disorders and can be used as neurobiomarkers. Between-network neurodynamics

analysis can be performed using network time series from a spatial independent component

analysis (ICA), a reliable data-driven method [15, 16]. In a seed-based approach (voxel-to-

voxel, or ROI-to-ROI), the seeds or ROIs have to be defined a priori, and this can be quite

inter-subject variable, especially for resting-state (task-free) fMRI. Hence the choice of ICA

decomposition for extracting the functional brain RSNs and their activity time courses is

favorable for robust rs-fMRI group analysis, and is preferred here.

After extracting the time series per network, diverse methods can be applied to estimate the

dynamics of these networks. Currently, to find the abnormalities in brain functioning of

patients with neuropsychiatric disorders, research has mainly focused on static functional con-

nectivity (sFC), i.e. pairwise correlations between the functional networks’ activity. It has been

shown that at rest the default-mode network is involved in the impairment in autism [17, 18];

and the attention and executive networks in attention deficit hyperactivity disorder (ADHD)

[19, 20]. But for more complex mental illnesses (e.g. depression or schizophrenia) dynamic

measures of the brain connectivity seem to be more robust biomarkers [21, 22].

In that regard, effective connectivity (EC) can be used [23, 24]. The EC, or measure of cau-

sality in brain connectivity, has already shown promising results for autism and depression

[25, 26]. However, in terms of cognitive decline in the ageing process, clear causal dynamics

indicators are missing. Liu et al. have shown links between cognitive decline and changes in

Granger causality (a measure of EC) of cognitive networks in mild cognitive impairment [27].

Using a different—more hypothesis driven—causal measurement, the dynamic causal
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modeling (DCM), Tsvetanov et al. showed that differences in between and within large-scale

resting-state networks were linked to cognitive performance in elderly [28]. More precisely

they demonstrated that the DCM of the default mode, dorsal attention and salience networks

(DMN, DAN, SN) where associates with increased influence on cognitive functioning—that

tends to decline—in healthy elderly. Another study showed the involvement of DMN and SN

in the cognitive decline in cognitively impaired elderly using also the DCM approach [29].

More recently, to assess neuro- and psycho-pathology, the dynamic functional connectivity

(dFC) methods have been used as well [21, 30–34]. These are similar to the sFC but when cor-

relation coefficients are calculated over different time windows. By sliding these windows

throughout the full time series, one can extract the dFC between the networks being assessed

[35, 36]. This method of analysis has been for example applied to extract abnormal brain states

in the study of schizophrenia, which has stronger classification power as compared to classic

static functional connectivity [37]. The same methods can also be applied in the frequency

domain, and the sliding windows approach can be applied on Fourier spectra, giving rise to

spectrograms. And similar spectro-temporal analysis of wavelet coherence has not been much

used in fMRI studies. Chang and Glover have shown added value in assessing non-stationarity

and time-varying anti-correlation between DMN and cognitive networks, using wavelet coher-

ence [38]. To relate to cognitive decline, only one study used wavelet coherence analysis of

near-infrared spectroscopic signals to infer changes in brain functional connectivity in respect

to performance in vigilance task, suggesting that decreased attention—a known phenomenon

in ageing, and probably associated to cognitive decline—was attributed to reduced phase

coherence between left prefrontal region and sensorimotor area. In a previous rs-fMRI study,

we have successfully shown that coherent patterns, using wavelet coherence, are also impaired

in autism; and the duration of these coherent patterns can be used as biomarker of the disorder

[39].

Finally, evaluation of brain dynamics can be done through an evolutionary game theory

approach on brain networks (EGN). Madeo and his colleagues were first to implement the

methods on BOLD fMRI signals [40]. They demonstrated that EGN model is able to mimic

functional connectivity dynamics, which could then be used to simulate the impact of brain

network lesions onto the networks’ dynamics. This was done using simulated time series and

real fMRI data from healthy subjects. Here, we present the first fMRI study where the EGN

model is applied to a clinical population in order to see if network emulative powers (parame-

ters of the model) can be descriptors of ACA.

The goal of our research is to define the most informative fMRI neurobiomarkers for ACA

based on neurodynamics metrics. To achieve this, we use these metrics as features and train

classifiers for ACA detection. The features that lead to the best classification results can then

be considered the best descriptors of ACA. Therefore, in our study, the aforementioned neuro-

dynamics techniques are used to extract fMRI-base dynamic features of brain networks, which

are then fed to classifiers, to train and validate them. Decision tree, linear discriminant analy-

sis, the K-nearest neighbors and the support vector machine are common supervised machine

learning algorithms that divide the training data in two or more categories. Counting the num-

ber of correct binary classifications, in the validation dataset, leads to a certain amount of accu-

racy, i.e. the percentage of participants that has been correctly assigned to their respective label

(in our case, ACA or non-ACA/controls); which shows the descriptive power of the features,

and to a certain extent its usability in a clinical environment. Convolutional neural network

(CNN) can also be used to extract and test specific brain features using resting-state fMRI. It

has already been tested in order to help diagnosing neuropsychiatric disorders, such as autism

[41], ADHD [42], and schizophrenia [43]. An important drawback of this classification tech-

nique is that it usually needs a large amount of data to be trained upon; Moreover, the
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understanding and explanation of the feature maps obtained at different CNN layers can be

arduous and troublesome. This is why we used here the aforementioned supervised machine

learning algorithms and assessed the performance of classifiers using neurodynamics metrics,

in order to find the best biomarkers of the ACA comorbidity, which if replicated could help

describing the mechanism of action of the cognitive decline. Testing the classification pipeline

we describe here, in a bigger dataset stratified, e.g. through duration since onset of epilepsyor

age ranges, could even help predict the course of the decline and its severity.

2 Materials and methods

Fig 1 provides an overview of the Materials and methods section, and short descriptions of the

steps of the study pipeline. The study was approved by the Dutch Medical Research Ethical

Committee (MREC) of Maxima Medical Center. All subjects signed informed consent and

gave permission to use the clinical data for scientific purposes.

2.1 Dataset, preprocessing, and brain network extraction

The dataset contains two resting-state, RS1 and RS2, sessions acquired from 10 ACA patients

and 14 controls. Prior to RS2, a silent word generation task was performed for 7 min. Dynam-

ics features that show significant differences between the two populations in RS1 as well as in

RS2, would show robustness of the features as biomarkers. Indeed, since the task in-between

resting-states was cognitively demanding, such features would have discriminant power

regardless of the brain fatigue the participants experienced. On the contrary, the difference in

findings between RS1 and RS2 could shed light on the cognitive reserve capacity of the ACA

patients, which can be of interest too. Table 1 shows the demographics of the participants, the

type of epilepsy, and the deterioration scores, i.e. cognitive decline, for Full-Scale IQ, Percep-

tual Reasoning Index, and Verbal Comprehension Index (respectively FSIQ, PRI, and VCI).

Deterioration scores were calculated by subtracting the estimated premorbid IQ scores from

the actual scores, i.e. WAIS-IV (actual) IQ-scores—OPIE-IV (premorbid) IQ-scores [44, 45].

The T1-weighted anatomical images were acquired using a 3.0 T imaging system (Philips

Achieva) with a 3D Fast Field Echo (FFE) sequence: echotime (TE) = 3.8 ms, repetition time

(TR) = 8.3 ms; Inversion time (TI) = 1035 ms; field of view (FOV) = 240x240 mm2, with 180

sagittal slices; flip-angle (FA) = 8 deg.; and voxel size = 1x1x1 mm3; with SENSE factor of 1.5,

and scan duration of 6:02 min. Functional MRI-data were acquired using multi-echo echo-pla-

nar imaging (ME-EPI) sequences with 3 echoes: TEs = 12, 35, 58 ms, TR = 2 s; FA = 90 deg.;

SENSE factor = 2.7; 208 dynamics for a total of 7 minutes; 27 axial slices (with no gap), 64x64

matrix FOV, with a 3.5x3.5x4.5 mm3 voxel size. The raw multi-echo fMRI data were first

Fig 1. Overview of the methodology.

https://doi.org/10.1371/journal.pone.0250222.g001
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preprocessed following the pipeline of [46], using the python script meica.py (available at

www.bitbucket.org/prantikk/me-ica). Multi-echo- (ME)-ICA cleaning was applied in order to

denoise each individual fMRI scan [47]. ME-ICA cleaning has been proven to be the most

Table 1. Demographic and clinical information of the participants.

ACA Healthy controls

Age in years M (SD) range 61.3 (8.9) 62.2 (9.8)

50–74 y 47–79 y

Gender 70.0% male 35.7% male

Handedness 100.0% right-handed 92.9% right-handed

Age at epilepsy onset M (SD) + range 35.0 (14.6) -

15–59 y

Duration of epilepsy M (SD) + range 22.3 (15.2) -

1–50 y

Type of epilepsy 40.0% cryptogenic localization-related -

40.0% symptomatic

20.0% idiopathic

Dominant seizure type a 10.0% simple partial -

20.0% complex partial

20.0% absence

0.0% tonic-clonic

50.0% seizure free

Status epilepticus 50.0% yes

Seizure frequency 50.0% seizure (sz) free -

0.0% < 1 sz/y

20.0% 1–5 sz/y

20.0% 1 sz per 2 months

0.0% monthly sz

10.0% weekly sz

0.0% daily sz

Drug load b 1.5 (0.4) -

WAIS-IV indexes

FSIQ 76.7(8.7)� 108.4(13.4)

VCI 94.7 (10.6) 106.2 (12.2)

PRI 75.8 (6.9)� 103.2 (13.8)

WMI 79.6 (10.0)� 104.9 (13.3)

PSI 67.0 (14.4)� 114.6 (8.7)

Deterioration scoresc

Det-FSIQ -22.1 (5.0)� -1.3 (8.2)

Det-VCI -0.5 (8.9) 0.2 (6.0)

Det-PRI -21.0 (4.5)� 0.0 (8.7)

Memory scores

Auditory 93.9 (9.7)� 109.9 (12.6)

Visual 92.7 (7.0) 102.8 (10.9)

Delayed memory 93.5 (8.4)� 106.3 (10.9)

Note: � = p < 0.01 sign. difference between groups. WMI: Working Memory Index. PSI: Processing Speed Index.
a Dominant seizure type is determined for the two years preceding neuropsychological assessment.
b The prescribed daily dose of antiepileptic medication divided by the defined daily dose.
c The deterioration scores = [WAIS-IV (actual) IQ-scores—OPIE-IV (premorbid) IQ-scores]

https://doi.org/10.1371/journal.pone.0250222.t001
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robust denoising method for resting-state fMRI, and tend to improve substantially effect sizes

and statistical power [48, 49]. Multi-echo cleaned data were further processed using FEAT

(FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library, www.

fmrib.ox.ac.uk/fsl). The following pre-statistics processing was applied; spatial smoothing

using a Gaussian kernel of FWHM 5.0mm; grand-mean intensity normalization of the entire

4D dataset by a single multiplicative factor; high-pass temporal filtering (Gaussian-weighted

least-squares straight line fitting, with sigma = 50.0 s). The ME-ICA cleaning preprocessing led

to an average, among all participant/scans, of 18 activity-related independent components

(ICs or networks). Therefore, we chose 18 degrees of freedom for our group-ICA decomposi-

tion. The 18 spatial maps corresponding to functional resting-state networks (RSNs) were

extracted using group-ICA followed by dual regression as implemented in FSL [50, 51]. After

the dual-regression steps, we obtained all subject/session-specific RSN maps and their associ-

ated time series. This brain network extraction step is depicted in Fig 2.

After visual inspection and a goodness-of-fit function implementation [52], to match these

maps with the RSN template from [11], 4 noise-related RSNs were discarded, and 14 relevant

functional brain networks were kept for further analyses. The time series associated with these

14 RSNs were then used to extract our brain networks features as explained in the next section.

The 14 networks, or Independent Components (ICs), and their labelling are depicted in Fig 3.

2.2 Static connectivity, causality, phase-coherence and emulative power

First, static functional connectivity (sFC) analysis was performed on all pairs of brain network

signals, using Pearson correlation. This is applied for each participant’s RSN time series, and

each session (RS1 and RS2), leading to two times 24 (14 controls; 10 patients) correlation

matrices. The total amount of sFC features per subject/session (unique entries of sFC matrix)

was 91 (= 14x13/2; the connectivity matrix being symmetrical, and its diagonal discarded).

Second, using the same ICs (or RSNs) time series we calculated the Granger causality (GC)

matrices for each individual and resting-state session using the Matlab toolbox of [53]. A GC

connectivity matrix is defined as G = {gij} 2 RN × N (N = numbers of networks), where each

matrix entry gij represent the directed causal connectivity from network j towards network i.
More specifically gij = FY!X|Z, which is the GC between signal Y (time series of network j) and

X (time series of network i) conditional on Z (remaining time series of networks k 6¼ i 6¼ j)—
more details in [54]. The upper triangle of G, i.e. {gij}, 8 j> i represent the inward causal pair-

wise connectivity gij, while the lower triangle, i.e. {gji}, 8 i> j is all the outward causal connec-

tions of {gij}. Since GC matrices are asymmetrical (directed connectivity) by subtracting those

Fig 2. Brain networks (RSN) time series extraction.

https://doi.org/10.1371/journal.pone.0250222.g002
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triangular matrices, i.e lower-upper, we can extract the non-null net pairwise GC triangular

matrix NetGC = {netgij} = {gij—gji}, 8 i> j. We also extracted the In- and Out-causal degree of

each network by summing respectively the columns and rows of the G matrices, i.e.

DegIn ¼ f
XN

j¼1
gijg 2 R

N
, and DegOut ¼ f

XN

j¼1
gijg 2 R

N
. We finally derived the net (out-

in) causal degree of each network, i.e. NetDeg = DegOut—DegInT. Since we have N = 14 net-

works, the total amount of GC features was 315 (= 3x91 (in-, out-, net-GC triangular matrices)

+ 3x14 (DegIn, DegOut, and NetDeg vectors)). These GC feature matrices and vectors were

calculated per subject and session, and are illustrated in Fig 4B.

Thirdly, we applied the wavelet-coherence approach with the following processing steps: (i)

extraction of spectro-temporal maps (also called scalograms) of significant phase coherence,

i.e. localized (in time and frequency/scales) significant phase-locked correlation between pairs

of signals, as in [55]. The phasing between the signals is expressed in radians and extracted

from θ = arg(Wxy) where Wxy is a complex number defining the cross-wavelet transform

between the two network signals being assessed. The phase information are summarized in 4

categories: in-phase when θ � (-π/4, +π/4); anti-phase when θ � (3π/4, -3π/4); and signal 1 lead-

ing (or lagging) signal 2 when θ � (π/4, 3π/4) (or θ � (-3π/4, -π/4)); for simplification we col-

ored the phase information in the wavelet-coherence maps (see Fig 4C). For each of the 5

period scales ([4, 8) s; [8, 16) s; [16, 32) s; [32, 64) s; and [64, 128] s) we extracted the time of

coherence (in % of the scan duration) between the 91 pairs of networks. More details on the

time of coherence metric in [39]. The time of coherence extraction was performed for all of

the 4 aforementioned phases. Therefore, in total we obtained 1820 (= 4x5x91) coherence-

based features per subject’s session (Fig 4C).

Finally, the Evolutionary Game theory on Network (EGN) was implemented as in [40].

Instead of trying to predict brain signal (time series) dynamics and correlating them to the

original BOLD time series, we here simply took the EGN-connectivity matrix A = {aij} 2 RN ×

N (N = numbers of networks), and derived the vectors of emulative powers (EPs). Briefly, each

entry of A, aij, described the pairwise and directed (i!j) weight of the network i in its ability to

emulate (positive value, ai,j >0) or not (negative value, aij < 0) the activity of the network j. A
can be seen as similar to the GC connectivity matrices, albeit not in the sense of causality but

in terms of replication mechanism. From these matrices of similar size (N2) as the sFC and GC

matrices, we calculated our novel metrics, namely the In-EPs, Out-EPs, and Net-EPs, per par-

ticipants and session (Fig 4D). The Out-EP of each network, i.e. its power to emulate

Fig 3. 14 large-scale brain functional resting-state networks (RSNs) used in the study. LVISU–lateral visual

network; MVISU–medial visual network; DMN–default mode network; AUD–auditory network; VAN–ventral

attention network; LSM—lateral sensory-motor network; DAN–dorsal attention network; OVIS–occipital visual

network; SSM–superior sensory-motor network; CB–cerebellar network; FPL–left fronto-parietal network; FPR–right

fronto-parietal network; SN–salience network; CING–the cingulate network.

https://doi.org/10.1371/journal.pone.0250222.g003
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(replicate) the other networks’ activity is calculated by summing the columns of the EGN-con-

nectivity matrix, i.e. OutEPi ¼
XN

j¼1
aij. The power of one network to be emulated by the

other networks is represented by its in-EP, that is, the sum of the EGN-connectivity matrix

rows, i.e. InEPj ¼
XN

i¼1
aij. And the net replicative power of a network is defined by the Net-

EP, i.e. NetEP = OutEPT—InEP. Since N = 14, we ended up with three vectors of 14 EPs per

person’s rs-fMRI session, i.e. 42 features (Fig 4D). The network feature extractions were

repeated for the two resting-state sessions.

2.3 Selection of the most relevant features, and classification analysis

After obtaining the subject-/session-specific sFC, GC, time of phase-coherence matrices, and

EP vectors, we performed non-parametric permutations tests (5000-permutations) for each

entry of the mentioned matrices/vectors. The resulting matrices and vectors were then thre-

sholded at 5% level (p<0.05), giving us the list of pairs of networks where the sFC, GC, time of

coherence, and EPs were significantly different between the two groups (ACA and Controls).

This statistical analysis was performed to reduce the total number of fMRI-based features to be

Fig 4. Network feature extraction and statistical analysis. A: extraction of the static functional connectivity features. B: computation of the Granger causality

matrices and vectors. C: Emulative power vectors derived from the EGN method; D: Wavelet coherence approach and the time-of-coherence metric extraction.

https://doi.org/10.1371/journal.pone.0250222.g004
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used by the classifiers, which was initially 2268 (91 sFC, 315 GC, 1820 WCoh, 42 EGN). This

statistical analysis to obtain the best features is depicted in Fig 4.

In order to assess the strength of the abovementioned neurodynamics methods in describ-

ing an ACA in patients with epilepsy, classifiers were trained and validated. We used 4 types of

machine learning, namely, the support vector machine (SVM), the linear discriminant analysis

(LDA), the k-nearest neighborhood (KNN), and the decision tree (DT) algorithms. To validate

the classifiers, 5 methods were used: validation on RS2 features (with classifiers trained on

RS1’s); validation on RS1 features (with classifiers trained on RS2’s); leave-on-out cross-valida-

tion (LOOCV) in RS1 (24-folds cross-validation); LOOCV in RS2 (24-folds); LOOCV in RS1

and RS2 concatenated (48-folds). 5 validation methods are used to allow us to fully trust the

performances of the classifiers. It is also more robust: we can assess consistency and avoid

depicting unreproducible ‘chance’ performances. For each of the classifier types of training

and validation, different set-ups of features were used. First, we tested the classifiers using the

best features (after statistical analyses) from one type of dynamics at a time, i.e. only best fea-

tures from sFC analysis, then only significant features from GC analysis, and so on. Next, we

refined these set-ups to the use of features that fell into two categories: (i) features/predictors

that were used in the DT algorithm, i.e., selected by the Classification And Regression Trees

(CART; default split predictor selection technique for classification trees in Matlab); (ii) fea-

tures that involved the DMN, DAN or SN, since these networks are often mentioned in ageing

and cognitive decline literature Then we reiterated refinements of the classifier setups by

removing or adding features that still comply with the aforementioned criteria (i and ii), if

they were improving classification accuracy in the previous refinement iterations. Such a

search for the best combinations of features led us to a dozen of classification analyses per

dynamics metrics. Finally, we tested classifiers with combined network features, e.g. using the

best GC-based features combined with the best WCoh-based features. We refined the classifi-

cation models the same way it was performed in the classification analyses per network con-

nectivity metric. We also tried the combination of all best features, i.e. combining all features

selected by the statistical analyses of all static and dynamics metrics. In the combined network

features setups, a dozen (through refinements) classifiers were also tested. For each of the clas-

sifier setup tested (~60 = 5x12), we reported the accuracy, sensitivity and specificity. For clar-

ity, in the Results section, only the best classifiers performances per feature type, and per

machine learning algorithms are reported: by looking at the highest average accuracy of the

classifiers over the 5 validation methods—mentioned at the beginning of this paragraph.

3 Results

3.1 Selection of the best network features

After extracting all static and dynamic features (sFC, GC, WCoh, EGN), 5000-permutation

tests between the two groups’ features were applied and thresholded at (uncorrected) p<0.05,

giving us the most significant differences between the groups, i.e. the ‘best’ features. The results

of the significant permutation tests for sFC-, GC- and EGN-based features are shown in Sup-

porting Information (S1-S4 Figs in S1 File).

Regarding the WCoh-based features, namely the time-of-coherence measurements, the per-

mutation tests gave us an average of more than 50 significant features per phase (in-phase,

anti-phase, leading, and lagging). In order to avoid an overfitting problem, we reduced the

number of best features even further, as follows: (i) discarding features that also showed signif-

icant differences in controls when comparing RS1 and RS2; (ii) keeping features that showed

robustness, i.e. significant in several scales, or in multiple phases; or (iii) time-of-coherence

with higher evidence of between-group differences (p<0.01). This led us to having an average
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of 10 best features per phase. An example of a pairwise in-phase time-of-coherence that com-

plied with the aforementioned criteria is depicted in Fig 5.

All of the best features for each neurodynamics metric and their labels are summarized in

Table 2.

3.2 Classification performances

After static (sFC) and dynamic analyses (GC, WCoh, EGN) followed by the statistical permu-

tation testing we obtained the best descriptors (features) for each metric. All and subsets of

these best features were used for training and validating classifiers. In Table 3, the best perfor-

mances of each individual feature type are shown. For wavelet-coherence, the in-phase time of

coherence were the best descriptors of ACA, reaching an average 77.1% accuracy with the

decision-tree algorithm, using DMN, SN and visual networks. Using 4 DMN-based and 2 SN-

based static connectivity features, the average classification accuracy was 77.9%, with LDA

algorithm. With the emulative powers (EGN-based dynamics metric) of the DMN and the

DAN we could reach 82.9% accuracy, also using LDA algorithm. Note that the Out-EP and

Net-EP of the DAN were not part of selected best features (Table 2), but interestingly

improved the classification accuracy when added. This phenomenon can be explained by the

fact that, even though Out- and Net-EPs of the DAN are not statistically significant (p>0.05),

the way they are pooled with their significant counterparts (In-EPs) in SVM and LDA algo-

rithms, can allow classifiers to be more discriminative. GC-based features, however, led only to

67.9% accuracy with DT algorithm. Overall the metrics giving the best results for classification

can be ranked as EPs> sFC> in-phase coherence > GC.

After assessing the best features of each metric, we also trained and tested classifiers with

combinations of the features. This gave us the best performances for each classifier type. LDA

reached 85% average accuracy using all 86 best features (Table 2). KNN led to an average of

80.8% accuracy with a mix of 82 features that is the 86 best features minus 4 EPs: Out-EPs of

DMN and OVIS; and Net-EPs of DMN and CING. DT algorithm reached 80.0% with only 6

features (3 Coherence, 2 EGN, and 1 sFC). And SVM had the best results with 15 features (2

in-phase coherences, 4 in-EPs, 3 GC, and 6 sFC) reaching average accuracy of 90.0%. In the

latter SVM set-up, it is worth noting that the independent training and validation, i.e.

RS1-trained RS2-validated, and vice-versa, could classify ACA at 91.7% accuracy; the 48-fold

LOOCV had 95.8% accuracy. Finally, the overall best average accuracy (81.0%), over all the

Fig 5. Boxplots of the time of in-phase coherence (in % of scan duration = 7min) for the network pair MVISU-DMN. red boxplot–ACA; blue boxplot–

controls; left–RS1; right–RS2. Middle line in the box–median value; box size– 25th to 75th percentiles; whisker limits–most extreme values that are not outliers;

‘+’–outliers.

https://doi.org/10.1371/journal.pone.0250222.g005
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machine-learning algorithms, was obtained using even fewer features (10: 2 in-phase coher-

ence, 2 in-EPs, and 6 sFC). These results are depicted in Table 4. Looking at the classifier algo-

rithms, in general, SVM was performing the best. With few features (< 10), DT was

performing quite well, but still not as good as SVM and LDA. KNN was overall the least accu-

rate classification algorithm. It is worth noting that in some set-ups DT algorithm reached

100% accuracy, such as for the LOOCV of RS2 with the mix of 6 features (Table 4); but this

was not consistent, since in the same set-up, the RS1-trained-and-RS2-validated classifier

reached only 66.7% accuracy.

Overall, EGN-based net emulative powers are the best descriptors, especially when using

DMN and DAN features. And when those are combined with specific time of in-phase coher-

ence and static connectivity (correlation) values, SVM algorithm outperforms the other algo-

rithm with an average of 90.0% accuracy; with peaks at 91.7% for the RS-independent

training/validation classifications, and 95.8% in the 48-folds LOOCV. For a more intuitive

visualization of the results presented above, we graphically summarize Tables 3 and 4 in Fig

6A and 6B respectively.

4 Discussion

4.1 Clinical relevance

We have shown that the emulative powers (Eps) of the default mode network and the dorsal

attention networks are biomarkers of ACA. Combining these features with DMN and SN-

Table 2. 86 best features used in the classification analyses.

Wavelet-coherence Granger-causality static FC EGN

in-phase time-of-coherence leading time-of-coherence net1!net2 GC net1 net2 GC net1$net2 EPs
ip_LVISU-OVIS_s1 lead_AUDI-FPR_s1 MVISU->LVISU MVISU<-LSM sFC-DMN-VAN In-EP_DMN

ip_LSM-CING_s1 lead_MVISU-DMN_s1 MVISU->FPL MVISU<-FPR sFC-MVISU-DMN In-EP_DAN

ip_OVIS-SN_s2 lead_MVISU-OVIS_s2 MVISU->CING LVISU<-AUDI sFC-DMN-LSM In-EP_SSM

ip_CB-SN_s2 lead_DMN-OVIS_s2 DMN->AUDI LVISU<-SSM sFC-DMN-CB In-EP_CING

ip_MVISU-DMN_s2 lead_LSM-OVIS_s2 DMN->SN LVISU<-SN sFC-AUDI-CING Out-EP_DMN

ip_OVIS-SN_s3 lead_LSM-OVIS_s3 VAN->CING VAN<-DAN sFC-LSM-OVISU Out-EP_OVIS

ip_CB-SN_s3 lead_OVIS-CB_s3 DAN->FPR VAN<-AUDI sFC-DAN-SN Net-EP_DMN

ip_DMN-DAN_s4 lead_LVISU-VAN_s4 AUDI->SN DAN<-CING sFC-OVISU-SN Net-EP_CING

ip_MVISU-DMN_s4 lead_DMN-VAN_s4 LSM->CING AUDI<-SSM sFC-CB-FPL

anti-phase time-of-coherence lead_FPL-SN_s4 FPL->FPR net pairwise GC sFC-CB-CING

ap_AUDI-FPR_s1 lagging time-of-coherence FPL->CING netgc_MVISU->LVISU

ap_VAN-FPL_s1 lag_LVISU-DAN_s1 network DegIn, DegOut, netgc_MVISU->CING

ap_AUDI-SSM_s1 lag_OVIS-SSM_s1 and netDeg netgc_LVISU->LSM

ap_DMN-VAN_s2 lag_OVIS-SN_s2 GC_DegOut_LSM netgc_LVISU->SN

ap_OVIS-SN_s2 lag_OVIS-FPL_s2 GC_NetDeg_DAN netgc_DMN->VAN

ap_LVISU-VAN_s3 lag_CB-FPR_s2 GC_NetDeg_AUDI netgc_DMN->AUDI

ap_OVIS-SN_s3 lag_CB-FPL_s2 GC_NetDeg_LSM netgc_DAN->CING

ap_VAN-SN_s4 lag_LSM-OVIS_s3 netgc_FPL->FPR

ap_DMN-AUDI_s5 lag_VAN-CB_s3

ip–in-phase; ap–anti-phase; lead–leading; lag–lagging; s1 –scale 1 = [4, 8] s; s2 –scale 2 = [8, 16] s; s3 –scale 3 = [16, 32] s; s4 –scale 4 = [32, 64] s; s5 –scale 5 = [64, 128] s;

!( )–direction of GC; netgc–net pairwise GC (out-in); GC_DegOut–GC out degree of a network; GC_DegIn–GC in degree of a network; sFC–pairwise static

function connectivity;$ –bidirectional connectivity for sFC; EGN–evolutionary game theory on network; EPs–emulative powers; In-, Out-, Net-EP–in, out, net

emulative power of a network; net1(2)–network 1 (or 2).

https://doi.org/10.1371/journal.pone.0250222.t002
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related in-phase coherence, and static functional connectivity would allow diagnosing the dis-

order at an overall 81.0% accuracy (average of all machine-learning algorithms tested). Adding

CING- and SSM-related EPs and DAN-, AUDI-, and LSM-related GCs, could even improve

SVM accuracy up to 95.8%. This shows the following: (i) dynamics metrics performs better

than correlation and causal metrics at classifying an ACA in patients with epilepsy; and (ii)

combining them with static functional connectivity improves the classifications. This is in line

with a recent meta-analysis on the merit of using dynamic functional connectivity to describe

psychological outcomes, especially when performance is assessed with objective measures such

as IQ tests—as compared to more subjective (self-reported) psychological assessment—[33].

In the clinical context, the default mode, dorsal attention networks, and the salience net-

work being involved and informative to distinguish neuropsychiatric patients from controls is

already shown in previous research. In ageing the DMN and DAN are often mentioned and

know to be challenged [56–58]. Also the dynamics in terms of causality is shown to correlate

Table 3. Summary tables of the best classifier performances for each network connectivity measures: EGN, coherence, sFC, and GC.

SVM LDA KNN DT

List of feature used Validation methods acc sens spec acc sens spec acc sens spec acc sens spec

EGN In-EP_DMN tRS1_vRS2 0.917 0.900 0.929 0.917 0.900 0.929 0.708 0.500 0.857 0.750 0.700 0.786

In-EP_DAN tRS2_vRS1 0.708 0.700 0.714 0.833 0.800 0.857 0.708 0.600 0.786 0.583 0.600 0.571

Out-EP_DMN Loocv_RS1 0.750 0.700 0.786 0.750 0.700 0.786 0.375 0.300 0.429 0.583 0.600 0.571

Out-EP_DAN Loocv_RS2 0.750 0.700 0.786 0.833 0.800 0.857 0.625 0.500 0.714 0.542 0.300 0.714

Net-EP_DMN Loocv_conca_RS 0.771 0.750 0.786 0.813 0.750 0.857 0.708 0.600 0.786 0.771 0.700 0.821

Net-EP_DAN Average 0.779 0.750 0.800 0.829 0.790 0.857 0.625 0.500 0.714 0.646 0.580 0.693

acc sens spec acc sens spec acc sens spec acc sens spec

WCoh tRS1_vRS2 0.417 1.000 0.000 0.917 0.800 1.000 0.583 0.700 0.500 0.750 1.000 0.571

ip_OVIS-SN_s2 tRS2_vRS1 0.417 1.000 0.000 0.708 0.700 0.714 0.750 0.900 0.643 0.667 0.500 0.786

ip_MVISU-DMN_s2 Loocv_RS1 0.417 1.000 0.000 0.417 1.000 0.000 0.625 0.600 0.643 0.708 0.800 0.643

Loocv_RS2 0.417 1.000 0.000 0.792 0.700 0.857 0.875 0.900 0.857 1.000 1.000 1.000

Loocv_conca_RS 0.417 1.000 0.000 0.729 0.650 0.786 0.729 0.750 0.714 0.729 0.750 0.714

Average 0.417 1.000 0.000 0.713 0.770 0.671 0.713 0.770 0.671 0.771 0.810 0.743

acc sens spec acc sens spec acc sens spec acc sens spec

sFC tRS1_vRS2 0.875 0.700 1.000 0.875 0.700 1.000 0.875 0.800 0.929 0.458 0.400 0.500

sFC-DMN-VAN sFC-DMN-CB tRS2_vRS1 0.750 0.900 0.643 0.792 0.900 0.714 0.750 1.000 0.571 0.542 0.700 0.429

sFC-MVISU-DMN sFC-DAN-SN Loocv_RS1 0.667 0.600 0.714 0.667 0.600 0.714 0.583 0.400 0.714 0.625 0.500 0.714

sFC-DMN-LSM sFC-OVISU-SN Loocv_RS2 0.833 0.700 0.929 0.750 0.600 0.857 0.750 0.500 0.929 0.833 0.700 0.929

Loocv_conca_RS 0.771 0.700 0.821 0.750 0.700 0.786 0.750 0.550 0.893 0.583 0.500 0.643

Average 0.779 0.720 0.821 0.767 0.700 0.814 0.742 0.650 0.807 0.608 0.560 0.643

acc sens spec acc sens spec acc sens spec acc sens spec

GC DMN->AUDI VAN<-DAN tRS1_vRS2 0.417 1.000 0.000 0.542 0.300 0.714 0.500 0.200 0.714 0.667 0.400 0.857

DAN->FPR VAN<-SN tRS2_vRS1 0.417 1.000 0.000 0.708 0.700 0.714 0.500 0.400 0.571 0.667 0.600 0.714

MVISU<-AUDI FPR<-CB Loocv_RS1 0.417 1.000 0.000 0.417 1.000 0.000 0.625 0.600 0.643 0.708 0.600 0.786

MVISU<-FPR netgc_MVISU->CING Loocv_RS2 0.417 1.000 0.000 0.458 0.600 0.357 0.542 0.600 0.500 0.750 0.800 0.714

LVISU<-OVIS netgc_LVISU->SN Loocv_conca_RS 0.417 1.000 0.000 0.729 0.700 0.750 0.563 0.500 0.607 0.604 0.550 0.643

LVISU<-FPR netgc_DMN->AUDI Average 0.417 1.000 0.000 0.571 0.660 0.507 0.546 0.460 0.607 0.679 0.590 0.743

OVIS<-AUDI netgc_FPL->FPR

Grey highlight–accuracy values; yellow highlight–best averages accuracy in each set-up; blue highlight–accuracy > 80%. SVM–support vector machine; LDA—linear

discriminant analyses; KNN—K-nearest neighbours; DT–decision tree. Acc–accuracy; sens–sensitivity; spec–specificity; tRS1(2)_vRS2(1)–trained on RS1(or 2) and

validated on RS2 (or 1); Loocv–leave one-out cross-validation; conca_RS–concatenation of RS1 and RS2 features.

https://doi.org/10.1371/journal.pone.0250222.t003
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with psychological performances [28]. Static and dynamic functional connectivity of the DMN

and DAN might be explained by the compensatory mechanism observed in aging, as described

in the CRUNCH model [59, 60]. This compensatory mechanism is defined as the cognitive

reserve in the study of [61] wherein DMN and DAN are also involved. Other studies have

Table 4. Summary of the best performances of each classifier algorithm: SVM, LDA, KNN, and DT.

List of features Validation

methods

acc sens spec acc sens spec acc sens spec acc sens spec

EGN

+ WCoh

+ sFC

ip_OVIS-SN_s2 sFC-DMN-VAN tRS1_vRS2 0.792 0.500 1.000 0.750 0.600 0.857 0.833 0.800 0.857 0.833 1.000 0.714

ip_CB-SN_s2 sFC-MVISU-DMN tRS2_vRS1 0.792 0.600 0.929 0.792 0.900 0.714 0.792 0.800 0.786 0.667 0.500 0.786

ip_MVISU-DMN_s2 In-EP_DMN Loocv_RS1 0.833 0.700 0.929 0.833 0.700 0.929 0.833 0.900 0.786 0.750 0.600 0.857

Loocv_RS2 0.708 0.300 1.000 0.708 0.600 0.786 0.667 0.600 0.714 1.000 1.000 1.000

Loocv_conca_RS 0.792 0.600 0.929 0.792 0.700 0.857 0.750 0.650 0.821 0.750 0.700 0.786

Average 0.783 0.540 0.957 0.775 0.700 0.829 0.775 0.750 0.793 0.800 0.760 0.829

acc sens spec acc sens spec acc sens spec acc sens spec

EGN

+ WCoh

+ GC + sFC

82 features = All best features tRS1_vRS2 0.917 0.800 1.000 0.792 0.600 0.929 0.750 0.800 0.714 0.750 0.400 1.000

without tRS2_vRS1 0.917 0.800 1.000 0.833 0.800 0.857 0.833 0.700 0.929 0.667 0.500 0.786

Out-EP_DMN Loocv_RS1 0.750 0.700 0.786 0.750 0.700 0.786 0.750 0.700 0.786 0.458 0.300 0.571

Out-EP_OVIS Loocv_RS2 0.792 0.700 0.857 0.958 0.900 1.000 0.917 0.800 1.000 0.958 1.000 0.929

Net-EP_DMN Loocv_conca_RS 0.938 0.850 1.000 0.833 0.750 0.893 0.792 0.700 0.857 0.542 0.450 0.607

Net-EP_CING Average 0.863 0.770 0.929 0.833 0.750 0.893 0.808 0.740 0.857 0.675 0.530 0.779

acc sens spec acc sens spec acc sens spec acc sens spec

EGN

+ WCoh

+ GC + sFC

tRS1_vRS2 0.750 0.600 0.857 0.792 0.600 0.929 0.750 0.700 0.786 0.750 0.400 1.000

tRS2_vRS1 0.667 0.800 0.571 0.875 0.800 0.929 0.750 0.700 0.786 0.667 0.500 0.786

All best 86 features Loocv_RS1 0.833 0.700 0.929 0.833 0.700 0.929 0.583 0.400 0.714 0.458 0.300 0.571

Loocv_RS2 0.875 0.800 0.929 0.917 0.800 1.000 0.583 0.400 0.714 0.917 0.900 0.929

Loocv_conca_RS 0.917 0.800 1.000 0.833 0.750 0.893 0.688 0.500 0.821 0.542 0.450 0.607

Average 0.808 0.740 0.857 0.850 0.730 0.936 0.671 0.540 0.764 0.667 0.510 0.779

acc sens spec acc sens spec acc sens spec acc sens spec

EGN

+ WCoh

+ GC + sFC

ip_MVISU-DMN_s2 sFC-DMN-VAN tRS1_vRS2 0.917 0.800 1.000 0.917 0.800 1.000 0.708 0.500 0.857 0.708 0.600 0.786

ip_MVISU-DMN_s4 sFC-MVISU-DMN tRS2_vRS1 0.917 0.800 1.000 0.583 0.500 0.643 0.708 0.600 0.786 0.667 0.600 0.714

GC_NetDeg_DAN sFC-DMN-LSM Loocv_RS1 0.833 0.700 0.929 0.833 0.700 0.929 0.500 0.300 0.643 0.708 0.600 0.786

GC_NetDeg_AUDI sFC-DMN-CB Loocv_RS2 0.875 0.800 0.929 0.708 0.500 0.857 0.875 0.800 0.929 0.792 0.800 0.786

GC_NetDeg_LSM sFC-DAN-SN Loocv_conca_RS 0.958 0.900 1.000 0.875 0.850 0.893 0.729 0.550 0.857 0.792 0.800 0.786

sFC-OVISU-SN Average 0.900 0.800 0.971 0.783 0.670 0.864 0.704 0.550 0.814 0.733 0.680 0.771

In-EP_DMN In-EP_SSM

In-EP_DAN In-EP_CING

acc sens spec acc sens spec acc sens spec acc sens spec

EGN

+ WCoh

+ sFC

ip_CB-SN_s2 sFC-DMN-VAN tRS1_vRS2 0.875 0.700 1.000 0.917 0.800 1.000 0.875 0.700 1.000 0.833 1.000 0.714

ip_MVISU-DMN_s2 sFC-MVISU-DMN tRS2_vRS1 0.917 0.800 1.000 0.792 0.800 0.786 0.792 0.600 0.929 0.792 0.600 0.929

sFC-DMN-LSM Loocv_RS1 0.750 0.500 0.929 0.750 0.500 0.929 0.625 0.700 0.571 0.792 0.700 0.857

In_EP_DMN sFC-DMN-CB Loocv_RS2 0.875 0.800 0.929 0.708 0.500 0.857 0.792 0.700 0.857 0.667 0.500 0.786

In-EP_DAN sFC-DAN-SN Loocv_conca_RS 0.917 0.800 1.000 0.875 0.850 0.893 0.854 0.750 0.929 0.813 0.700 0.893

sFC-OVISU-SN Average 0.867 0.720 0.971 0.808 0.690 0.893 0.788 0.690 0.857 0.779 0.700 0.836

overall average =

0.810

Grey highlight–accuracy values; yellow highlight–best averages accuracy in each set-up; blue highlight–accuracy > 80%. SVM–support vector machine; LDA—linear

discriminant analyses; KNN—K-nearest neighbours; DT–decision tree. Acc–accuracy; sens–sensitivity; spec–specificity; tRS1(2)_vRS2(1)–trained on RS1 (or 2) and

validated on RS2(or 1); Loocv–leave one-out cross-validation; conca_RS–concatenation of RS1 and RS2 features.

https://doi.org/10.1371/journal.pone.0250222.t004
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linked cognitive decline with changes in static and dynamic functional connectivity between

the DMN and DAN [56, 62, 63]. The salience network (SN), which was part of our sFC best

features, and its overall decreased in functional connectivity, is also a marker of brain ageing

[57, 59]. SN has also a pivotal role in predicting age and cognitive performances (ranging from

episodic memory to executive functions), in healthy elderly with cognitive decline [64].

Regarding mild cognitive impairment, which is a disorder wherein symptoms resemble the

deficit in ACA patients, the sFC showed also disturbed network activity in the aforementioned

brain regions [27, 65]. Finally in a review paper, from 81 fMRI studies where elderly had a sig-

nificant cognitive decline, 50% of the studies showed changes in brain activation occurring in

the DAN, and 15.3% in the DMN [66].

Sensorimotor networks are also implicated in the process of cognitive ageing [67]. That

explains the involvement of the LSM-DMN sFC, the Net GC degree of the LSM, and the In-EP

of the SSM, in our best classifier set-up. Finally, the time of in-phase coherence between the

pair MVISU-DMN often helped the performances of our classifiers. This might be explained

by the anterior-posterior shift observed in ageing in the PASA model of the ageing brain [68].

This shift involved an over-recruitment of the posterior brain functional network (here

DMN-MVISU connectivity) in order to compensate for the ‘normal’ decline in ageing of the

visual abilities. And this correlates negatively with the cognitive performances, similar to the

increase of in-phase coherence in ACA patients with deterioration in IQ.

Fig 6. Graphical summary of the classification results. A: best performances of each network connectivity metric. B: best performances of each classifier

algorithm.

https://doi.org/10.1371/journal.pone.0250222.g006
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ACA patient suffers more specifically from a deterioration in fluid intelligence, which is

described as the ability to think logically and solve problems with a limited amount of task-

related information [69]. The aforementioned DMN, CING (for cognitive control), and senso-

rimotor (LSM/SSM) networks have been shown to be linked to this type of intelligence/cogni-

tive processing [70]. The fluid intelligence might come from the ability to switch from

perceptive network to processing network, and the ability to switch and hold attention. The

DMN, SN and DAN are the 3 networks involved in self-referential processes, dynamic switch-

ing between rest and task, and the voluntary allocation of attention [71–73]. Having less copy-

ing mechanism here (as shown by the EGN dynamics) in those networks, might reflect a more

rigid brain processing, i.e. less fluidic integration, which might explain the poor results in Per-

ceptual Reasoning Index (PRI; fluid intelligence test).

Overall, the DMN, DAN, SN and their dynamic and static functional connectivity to multi-

ple sensory-related networks (visual, sensorimotor) could, no matter the resting-state, help

classify correctly patients from healthy subjects. And the involvement of these networks are in

line with current research on cognitive decline in ageing, and brain functional connectivity

[28, 29, 59, 62, 64, 66, 74, 75].

4.2 Technical insights

Evolutionary game theory on networks and its derived emulative powers were the best at

describing ACA (highest classifying performances) as compared to the other metrics used in

this study. More specifically the In-emulative power of the DMN and DAN were strong bio-

markers of ACA. In general, for RS1 and RS2, the DMN In-EPs of the patients were negative,

whereas those of the controls, positive. This shows that patients’ DMN tends to have a non-

emulative (non-replicative) attitude, i.e., all other networks do not tend to copy the DMN

activity. For the DAN both groups showed negative in-EPs (non-emulative attitude), but with

stronger negative power in ACA patients. The involvement of those networks make sense as

seen in the previous paragraph on the clinical relevance. However, the rational for why this

novel dynamics metric show stronger discriminatory power as compare to, say, the In or Out-

degree of Granger-causality of the DMN and DAN remains unclear. It is indeed difficult to

conceive that the replication mechanism between signals do not equate to some degree to a

correlation (for sFC) or causal (with GC) effect. In a side study, we actually tried to find simili-

tude between EPs and Deg. GC, which gave us non-significant correlation (between the two

metric values). A hypothesis is that, since EGN model is based on differential equations, the

emulative values between the networks are influencing not by the network signal directly, but

rather by their rate of change in activity (
dxðtÞ

dt ; where x(t) = RSN activity signal). More details

about the EGN model, and its replicator dynamics, in [40].

Regarding SVM and LDA approaches, their ranking in our study is in line with the way

these algorithms work. Indeed, in a setup with features having co-variability, and normally dis-

tributed, LDA will perform better, with is shown when using many of our most relevant fea-

tures, and trying to find overall separable (with all of the features) means/centroids. On the

contrary SVM, which considers all training data points to find the values (vectors) that help to

maximize margin between pools of features, is more robust to outliers—which are clearly pres-

ent in our small dataset. However, we can expect that with a larger multi-dimensional dataset,

the two algorithms (LDA and SVM) would not have substantial differences in performance. In

order to increase their performances, a solution might be to combine the two algorithms [76,

77]. The decision tree algorithm is attractive in its simplicity: sequential splitting of the features

with thresholds, but might be too dependent on the training sample—as shown by our strong

variance in classification accuracy over the 5 validation methods. Regarding KNN, a more
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thorough testing with different K values might have been of benefit. Other type of classifier

such as elastic net, logistic regression, or naïve Bayes classifier could possibly be applied as

well. However, they have shown in general a substantial lower power at classifying neuropsy-

chiatric disorders, as seen in the summary tables of [78].

Finally, for all classifiers presented here, the Matlab default set-ups of each of the machine

learning algorithm were used. We only tried, on our best SVM classifiers, to change the kernel,

from Gaussian to polynomial; but this had given us less accurate results. More hyper-parame-

ter optimization could be investigated. Also, the worst—but simplest to explain—algorithm,

namely decision tree (best at 80%, using only 6 features, with GC), could further be optimized.

For instance, by changing node splitting rules from an ascending impurity gain (of Gini’s

Diversity Index) to descending one; or by changing directly the predictor selections (which

features are used in the nodes of the tree) with curvature tests, or interaction tests.

However, since the results are quite robust in SVM, the first step might be to reproduce the

results with new (unseen) data, and see if these classifiers continue to provide high perfor-

mances. Other neuropsychiatric disorders could also be tested with the same pipeline. E.g.

autism could be investigated using the rs-fMRI datasets of ABIDE repository (http://fcon_

1000.projects.nitrc.org/indi/abide/). With such a large dataset, the reliability of the accuracy

obtained using our pipeline is much greater, and the optimisation would be more worthy.

As mentioned in the introduction, a few fMRI research attempt similar classification of

neuropsychiatric disorders using more advanced machine learning algorithms, such as convo-

lutional neural networks, or deep auto-encoder [79, 80]. The added value is that those algo-

rithms can be used not only in the supervised multi-labels classification process, but also

directly in an unsupervised feature extraction. Though, an important drawback of these

advanced classification techniques is that they usually need an important amount of data to be

trained upon, which are often not available in case of rs-fMRI data of neuropsychiatric disor-

ders. Also, the understanding and explanation of the feature maps obtained at different CNN

layers can be arduous more computationally intensive and troublesome to be clearly explained

and descriptive.

Even though research in advance AI for psychoradiology seems promising in many fields,

especially segmentation and auto-labelling of cancer or lesion for instance, common machine

learning algorithms such as LDA or SVM make the results more understandable and explain-

able for the clinicians, radiologists and ultimately the patients. For instance, the linear combi-

nation of static and dynamic functional connectivity between a handful of well-described

networks, can be easily display, and showing how the algorithm split the populations (patients

vs controls) is readily feasible. Such simple design and visualization of the process make possi-

ble targetable treatment that must be less complicated to design. And following the evolution

of such dynamic or static fMRI-based brain features is rather simple, and thus can greatly help

to refine classification models to a prognostic level; or to assess lasting effects of different treat-

ments of psychiatric disorders.

4.3 Limitations

There are several limitations in this study. First, as mentioned in the previous paragraph, the

study would benefit from a larger dataset. Testing the classifiers on new and unseen data

extracted from another scanner (different parameters, e.g. TR or duration of the rs-fMRI), and

from another site (different medical centre, or country) would also provide insight regarding

the robustness of the methods and the features presented here. However, gathering more fMRI

data from ACA patients is not an easy task, since this epilepsy co-morbidity is only recently

described, and acquiring systematic rs-fMRI data from elderly patients with epilepsy is not

PLOS ONE Resting-state fMRI dynamics as neurobiomarkers of Accelerated Cognitive Ageing in epilepsy

PLOS ONE | https://doi.org/10.1371/journal.pone.0250222 April 16, 2021 16 / 22

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
https://doi.org/10.1371/journal.pone.0250222


common practise yet. Moreover, having a bigger in-house dataset of participants would not

mean getting lower performances, but rather more stable. Indeed, it has been proven by testing

pools of data of different sizes, that the accuracy of SVM classification gets simply more reliable

less variability in performances as the training sample size increases, in case of data from

schizophrenic patients acquired with the same protocol [81]. Nevertheless, the cross-center

robustness still needs to be tested.

Second, with high performances of binary classification, we showed a strong diagnostic

power of the dynamics features. However, the ACA patients were already diagnosed with ACA

based on a clear loss of fluid IQ after psychological assessment. Hence, having an automated

tool that diagnoses ACA with lower accuracy than diagnoses based on psychological tests are

not needed. In that regards, our goal was not to show the highest performance, but to rank the

dynamics features, and show the benefit of combining different dynamic features, using solely

rs-fMRI data. Also, with refinement, this analysis could extrapolate from the two class (binary)

classification/diagnosis to a multi-class separation, and show prognostic power, for example in

order to predict mental ages, or rate of decline in intelligence of patients with ACA (based on a

stratified approach, through severity of the ACA for instance).

Despite those limitations, we are confident that the emulative powers, and the times of in-

phase coherence of large-scale resting-state networks are informative descriptors of neuropsy-

chiatric disorders, and that combining them with known metrics such as sFC and GC can lead

to accurate diagnoses. One could expect similar performance, when testing the new metrics

upon schizophrenic, autistic, or depressive patients for example. And this pipeline to train data

and validate clinical diagnoses of (neuro)psychiatric disorders can be of great help in clinics

and contribute to the field of psychoradiology [82].

5 Conclusions

We presented a novel metric for neurodynamics extracted from the evolutionary game theory

on network approach: The emulative power of brain networks, i.e. the propensity of a network

for replicating another network activity. The emulative powers of the default mode network

and dorsal attention network seem defective in ACA; and using these features combined with

in-phase coherence measurements, and static functional connectivity yield to an average diag-

nostic accuracy of 90%, using the SVM algorithm. With regard to the field of neuropsychora-

diology, other neuropsychiatric disorders could be tested using similar fMRI-based dynamics

features, and could lead to better understanding, and subsequently better treatments of mental

disorders. Also, with refinements of the models and the classification pipeline, we could envis-

age that the fMRI-based neurodynamics presented here would have a prognostic value, for

example if labels are not simply binary (stratified models), other feature types are added (mul-

timodal approaches), and using cohort study design (longitudinal cross-sectional studies).

This pipeline applied on larger datasets, and if replicated, would demonstrate robustness of

these new neurodynamics metrics and reliability of the methods, and hence could be to some

extent clinically used.
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