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ABSTRACT The gut microbiota has a key role in determining susceptibility to Clos-
tridioides difficile infections (CDIs). However, much of the mechanistic work examin-
ing CDIs in mouse models uses animals obtained from a single source. We treated
mice from 6 sources (2 University of Michigan colonies and 4 commercial vendors)
with clindamycin, followed by a C. difficile challenge, and then measured C. difficile
colonization levels throughout the infection. The microbiota were profiled via 16S
rRNA gene sequencing to examine the variation across sources and alterations due to
clindamycin treatment and C. difficile challenge. While all mice were colonized 1 day
postinfection, variation emerged from days 3 to 7 postinfection with animals from some
sources colonized with C. difficile for longer and at higher levels. We identified bacteria
that varied in relative abundance across sources and throughout the experiment. Some
bacteria were consistently impacted by clindamycin treatment in all sources of mice, in-
cluding Lachnospiraceae, Ruminococcaceae, and Enterobacteriaceae. To identify bacteria
that were most important to colonization regardless of the source, we created logistic
regression models that successfully classified mice based on whether they cleared C. dif-
ficile by 7 days postinfection using community composition data at baseline, post-
clindamycin treatment, and 1 day postinfection. With these models, we identified 4 bac-
terial taxa that were predictive of whether C. difficile cleared. They varied across sources
(Bacteroides) or were altered by clindamycin (Porphyromonadaceae) or both (Enterobacte-
riaceae and Enterococcus). Allowing for microbiota variation across sources better emu-
lates human interindividual variation and can help identify bacterial drivers of pheno-
typic variation in the context of CDIs.

IMPORTANCE Clostridioides difficile is a leading nosocomial infection. Although per-
turbation to the gut microbiota is an established risk, there is variation in who be-
comes asymptomatically colonized, develops an infection, or has adverse infection
outcomes. Mouse models of C. difficile infection (CDI) are widely used to answer a
variety of C. difficile pathogenesis questions. However, the interindividual variation
between mice from the same breeding facility is less than what is observed in hu-
mans. Therefore, we challenged mice from 6 different breeding colonies with C. difficile.
We found that the starting microbial community structures and C. difficile persistence
varied by the source of mice. Interestingly, a subset of the bacteria that varied across
sources were associated with how long C. difficile was able to colonize. By increasing the
interindividual diversity of the starting communities, we were able to better model hu-
man diversity. This provided a more nuanced perspective of C. difficile pathogenesis.

KEYWORDS 16S rRNA, Clostridioides difficile, Clostridium difficile, microbial ecology,
microbiome, microbiota

Antibiotics are a common risk factor for Clostridioides difficile infections (CDIs) due to
their effect on the intestinal microbiota, but there is variation in who goes on to

develop severe or recurrent CDIs after exposure (1, 2). Additionally, asymptomatic
colonization, where C. difficile is detectable but symptoms are absent, has been
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documented in infants and adults (3, 4). The intestinal microbiota has been implicated
in asymptomatic colonization (5, 6), susceptibility to CDIs (7, 80), and adverse CDI
outcomes (8–11). However, it is not clear how much interindividual microbiota variation
contributes to the range of outcomes observed after C. difficile exposure relative to
other risk factors.

Mouse models of CDIs have been a great tool for understanding C. difficile patho-
genesis (12). The number of CDI mouse model studies has grown substantially since
Chen et al. published their C57BL/6 model in 2008, which disrupted the gut microbiota
with antibiotics to enable C. difficile colonization and symptoms such as diarrhea and
weight loss (13). CDI mouse models have been used to examine translationally relevant
questions regarding C. difficile, including the role of the microbiota and the efficacy of
potential therapeutics for treating CDIs (14). However, variation in the microbiota
between mice from the same breeding colony is much less than the interindividual
variation observed between humans (15, 16). Studying CDIs in mice with a homoge-
neous microbiota is likely to overstate the importance of individual mechanisms. Using
mice that have a more heterogeneous microbiota would allow researchers to identify
and validate more generalizable mechanisms responsible for CDI.

In the past, our group has attempted to introduce more variation into the mouse
microbiota by using a variety of antibiotic treatments (17–20). An alternative approach
to maximize microbiota variation is to use mice from multiple sources (21, 22). The
differences between the microbiota of mice from vendors have been well documented
and shown to influence susceptibility to a variety of diseases (23, 24), including enteric
infections (21, 22, 25–29). Different research groups have also observed different CDI
outcomes despite using similar murine models (12, 17, 20, 30–32). Here, we examined
how variation in the baseline microbiota and responses to clindamycin treatment in
C57BL/6 mice from six different sources influenced susceptibility to C. difficile coloni-
zation and the time needed to clear the infection.

RESULTS
The variation in the microbiota is high between mice from different sources.

We obtained C57BL/6 mice from 6 different sources: two colonies from the University
of Michigan that were split from each other in 2010 (the Young and Schloss lab
colonies) and four commercial vendors: the Jackson Laboratory, Charles River Labora-
tories, Taconic Biosciences, and Envigo (which was formerly Harlan). These 4 vendors
were chosen because they are commonly used for murine CDI studies (25, 33–39). Two
experiments were conducted, approximately 3 months apart.

We sequenced the V4 region of the 16S rRNA gene from fecal samples collected
from these mice after they acclimated to the University of Michigan animal housing
environment. We first examined the alpha diversity across the 6 sources of mice. There
was a significant difference in the richness (i.e., number of observed operational
taxonomic units [OTUs]) but not Shannon diversity index across the sources of mice
(PFDR � 0.03 and PFDR � 0.052, respectively; Fig. 1A and B and also Data Set S1, sheets
1 and 2, in the supplemental material). Next, we compared the community structures
of mice (Fig. 1C). The source of mice and the interactions between the source and cage
effects explained most of the observed variation between fecal communities (permu-
tational multivariate analysis of variance [PERMANOVA] combined R2 � 0.90, P � 0.001;
Fig. 1C and Data Set S1, sheet 3). Mice that are cohoused tend to have similar gut
microbiotas due to coprophagy (40). Since mice within the same source were housed
together, it was not surprising that the cage effect also contributed to the observed
community variation. There were some differences between the 2 experiments we
conducted, as the experiment and cage effects significantly explained the observed
community variation for the Schloss and Young lab mouse colonies (Fig. S1A and B and
Data Set S1, sheet 4). However, most of the vendors also clustered by experiment
(Fig. S1C, D, and F), suggesting there was some community variation between the 2
experiments within each source, particularly for Schloss, Young, and Envigo mice
(Fig. S1G and H). After finding differences at the community level, we next identified the
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bacteria that varied between sources of mice. There were 268 OTUs with relative
abundances that were significantly different between the sources at baseline (Fig. 1D
and Data Set S1, sheet 5). Though we saw differences between experiments at the
community level, there were no OTUs that were significantly different between exper-
iments within Schloss, Young, and Envigo mice at baseline (all P � 0.05). By using mice
from six sources, we were able to increase the variation in the starting communities to
evaluate in a clindamycin-based CDI model.

Clindamycin treatment renders all mice susceptible to C. difficile 630 coloni-
zation, but clearance time varies across sources. Clindamycin is frequently impli-
cated with human CDIs (41) and was part of the antibiotic treatment for the frequently
cited 2008 CDI mouse model (13). We have previously demonstrated that mice are
rendered susceptible to C. difficile but clear the pathogen within 9 days; thus, coloni-
zation is transient when mice are treated with clindamycin alone (20, 42). All mice were
treated with 10 mg clindamycin/kg of body weight via intraperitoneal injection and 1
day later challenged with 103 C. difficile 630 spores (Fig. 2A). The day after infection, C.
difficile was detectable in all mice at similar levels (median CFU range: 2.2e�07 to
1.3e�08; PFDR � 0.15), indicating that clindamycin rendered all mice susceptible
regardless of source (Fig. 2B). However, between 3 and 7 days postinfection, we
observed variation in C. difficile levels across sources of mice (all PFDR � 0.019; Fig. 2B
and Data Set S1, sheet 6). This suggested the source of mice was associated with C.

FIG 1 Microbiota variation is high between mice from different sources. (A and B) Number of observed OTUs (A) and Shannon diversity
index values (B) across sources of mice at baseline (day �1 of the experiment). Differences between sources were analyzed by
Kruskal-Wallis test with Benjamini-Hochberg correction for testing each day of the experiment, and the adjusted P value was �0.05 for
panel A (Data Set S1, sheet 1). None of the P values from pairwise Wilcoxon comparisons between sources were significant after
Benjamini-Hochberg correction (Data Set S1, sheet 2). Gray lines represent the median values for each source of mice. (C) Principal-
coordinate analysis (PCoA) of �YC distances of baseline stool samples. Source and the interaction between source and cage effects
explained most of the variation (PERMANOVA combined R2 � 0.90, P � 0.001; Data Set S1, sheet 3). For panels A to C, each symbol
represents the value for a stool sample from an individual mouse, circles represent experiment 1 mice, and triangles represent experiment
2 mice. (D) The median (point) and interquantile range (colored lines) of the relative abundances for the 20 most significant OTUs out of
the 268 OTUs that varied across sources at baseline by Kruskal-Wallis test with Benjamini-Hochberg correction (Data Set S1, sheet 5).
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difficile clearance. While the colonization dynamics were similar between the two
experiments, the Schloss mice took longer to clear C. difficile in the first experiment
than in the second and the Envigo mice took longer to clear C. difficile in the second
experiment than in the first (Fig. S2A and B). The change in the mice’s weight
significantly varied across sources of mice with the most weight loss occurring 2 days
postinfection (Fig. 2C and Data Set S1, sheet 7). There was also one Jackson and one

FIG 2 Clindamycin is sufficient to promote C. difficile colonization in all mice, but clearance time varies
across sources. (A) Setup of the experimental timeline. Mice for the experiments were obtained from 6
different sources: the Schloss (n � 8) and Young lab (n � 9) colonies at the University of Michigan, the
Jackson Laboratory (n � 8), Charles River Laboratories (n � 8), Taconic Biosciences (n � 8), and Envigo
(n � 8). Mice that were ordered from commercial vendors acclimated to the University of Michigan
mouse facility for 13 days prior to antibiotic administration. All mice were administered 10-mg/kg
clindamycin intraperitoneally (IP) 1 day before challenge with C. difficile 630 spores on day 0. Mice were
weighed and feces were collected daily through the end of the experiment (9 days postinfection). Note
that 3 mice died during the course of the experiment: 1 Taconic mouse prior to infection and 1 Jackson
and 1 Envigo mouse between 1 and 3 days postinfection. (B) C. difficile CFU/gram stool measured over
time (n � 20 to 49 mice per time point) via serial dilutions. The black line represents the limit of detection
for the first serial dilution. CFU quantification data were not available for each mouse due to early deaths,
stool sampling difficulties, and not plating all of the serial dilutions. (C) Mouse weight change measured
in grams over time (n � 45 to 49 mice per time point); all mice were normalized to the weight recorded
1 day before infection. For panels B and C, time points where differences between sources of mice were
statistically significant by Kruskal-Wallis test with Benjamini-Hochberg correction for testing across
multiple days (Data Set S1, sheets 6 and 7) are reflected by the asterisk above each time point (*,
P � 0.05). Lines represent the median for each source, and circles represent individual mice from
experiment 1, while triangles represent mice from experiment 2.
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Envigo mouse that died between 1 and 3 days postinfection during the second
experiment. Mice obtained from Jackson, Taconic, and Envigo tended to lose more
weight, have higher C. difficile CFU levels, and take longer to clear the infection than the
other sources of mice (although there was variation between experiments with Schloss
and Envigo mice). This was particularly evident 7 days postinfection (Fig. 2B and C;
Fig. S2C and D), when 57% of the mice were still colonized with C. difficile (Fig. S2E). By
9 days postinfection, the majority of the mice from all sources had cleared C. difficile
with the exception of 1 Taconic mouse from the first experiment and 2 Envigo mice
from the second experiment (Fig. 2B). Thus, clindamycin rendered all mice susceptible
to C. difficile 630 colonization, regardless of source, but there was significant variation
in disease phenotype across the sources of mice.

Clindamycin treatment alters bacteria in all sources, but a subset of bacterial
differences across sources persists. Given the variation in fecal communities that we
observed across breeding colonies, we hypothesized that variation in C. difficile clear-
ance would be explained by community variation across the 6 sources of mice. As
expected, clindamycin treatment decreased the richness and Shannon diversity across
all sources of mice (Fig. 3A and B). Interestingly, significant differences in diversity

FIG 3 Clindamycin treatment alters bacteria in all sources, but a subset of bacterial differences across sources persists. (A and B) Number of observed OTUs
(A) and Shannon diversity index values (B) across sources of mice after clindamycin treatment (day 0). Differences between sources were analyzed by
Kruskal-Wallis test with Benjamini-Hochberg correction for testing each day of the experiment, and the adjusted P value was �0.05 (Data Set S1, sheet 1).
Significant P values from the pairwise Wilcoxon comparisons between sources with Benjamini-Hochberg correction are displayed as the first initial of each group
compared to the group that they are listed above (Data Set S1, sheet 2). (C) PCoA of �YC distances from stools collected post-clindamycin treatment. Source
and the interaction between source and cage effects explained most of the variation observed post-clindamycin treatment (PERMANOVA combined R2 � 0.99,
P � 0.001; Data Set S1, sheet 3). For panels A to C, each symbol represents a stool sample from an individual mouse, with circles representing experiment 1
mice and triangles representing experiment 2 mice. (D) The median (point) and interquantile range (colored lines) of the relative abundances for the 18 OTUs
(Data Set S1, sheet 8) that varied between sources after clindamycin treatment (day 0). (E) The median (point) and interquantile range (colored lines) of the
top 10 most significant OTUs out of 153 with relative abundances that changed because of the clindamycin treatment (adjusted P value � 0.05). Data were
analyzed by paired Wilcoxon signed-rank test of mice that had paired sequence data for baseline (day �1) and post-clindamycin-treatment (day 0) time points
(n � 31), with Benjamini-Hochberg correction for testing all identified OTUs (Data Set S1, sheet 9). The gray vertical line indicates the limit of detection.
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metrics between sources emerged after clindamycin treatment, with Charles River mice
having higher richness and Shannon diversity than most of the other sources (PFDR �

0.05; Fig. 3A and B and Data Set S1, sheets 1 and 2). The clindamycin treatment
decreased the variation in community structures between sources of mice. The source
of mice and the interactions between source and cage effects explained almost all of
the observed variation between communities (combined R2 � 0.99, P � 0.001; Fig. 3C
and Data Set S1, sheet 3). However, there were only 18 OTUs with relative abundances
that significantly varied between sources after clindamycin treatment (Fig. 3D and Data
Set S1, sheet 8). Next, we identified the bacteria that shifted after clindamycin treat-
ment, regardless of source, by analyzing paired fecal samples from mice that were
collected at baseline and after clindamycin treatment. We identified 153 OTUs that
were altered after clindamycin treatment in most mice (Fig. 3E and Data Set S1, sheet
9). When we compared the list of significantly clindamycin-impacted bacteria with the
bacteria that varied between sources post-clindamycin treatment, we found 4 OTUs
that were shared between the lists (Enterobacteriaceae [OTU 1], Lachnospiraceae [OTU
130], Lactobacillus [OTU 6], and Enterococcus [OTU 23]; Fig. 3D and E and Data Set S1,
sheets 8 and 9). Importantly, some of the OTUs that varied between sources also shifted
with clindamycin treatment. For example, Proteus increased after clindamycin treat-
ment (Fig. 3D), but only in Taconic mice. Enterococcus was primarily found in mice
purchased from commercial vendors and also increased in relative abundance after
clindamycin treatment (Fig. 3D). These findings demonstrate that clindamycin had a
consistent impact on the fecal bacterial communities of mice from all sources and only
a subset of the OTUs continued to vary between sources.

Microbiota variation between sources is maintained after C. difficile challenge.
One day postinfection, significant differences in diversity metrics remained across
sources (PFDR � 0.05, Fig. 4A and B and Data Set S1, sheets 1 and 2). Although the
Charles River mice had more diverse communities and were also able to clear C. difficile
faster than the other sources, diversity did not explain the observed variation in C.
difficile colonization across sources. The Young and Schloss mice had the lowest
diversity 1 day postinfection and were able to clear C. difficile earlier than Jackson,
Taconic, and Envigo mice. The source of mice and the interactions between source and
cage effects continued to explain most of the observed community variation (com-
bined R2 � 0.88; P � 0.001; Fig. 4C and Data Set S1, sheet 3). One day after C. difficile
challenge, there were 44 OTUs with significantly different relative abundances across
sources (Fig. 4D and Data Set S1, sheet 10).

Throughout the experiment, the source of mice continued to be the dominant
factor that explained the observed variation across fecal communities (PERMANOVA
R2 � 0.35, P � 0.001) followed by interactions between cage effects and the day of the
experiment (Movie S1 and Data Set S1, sheet 11). Fecal samples from the same source
of mice continued to cluster closely with each other throughout the experiment. By
7 days postinfection, when approximately 43% of mice had cleared C. difficile, most of
the mice had not recovered to their baseline community structure (Fig. 4E). The
distance to the baseline community did not explain the variation in C. difficile clearance
as the Schloss and Young mice had mostly cleared C. difficile, but their communities
were a greater distance from baseline 7 days postinfection compared to the Jackson
and Taconic mice that were still colonized. In summary, mouse bacterial communities
varied significantly between sources throughout the course of the experiment, and a
consistent subset of bacteria remained different between sources regardless of clinda-
mycin and C. difficile challenge.

Baseline, post-clindamycin-treatment, and postinfection community data can
predict mice that will clear C. difficile by 7 days postinfection. After identifying taxa
that varied between sources, changed after clindamycin treatment, or both, we deter-
mined which taxa were influencing the variation in C. difficile colonization at day 7
(Fig. 2B and Fig. S2C). We trained three L2-regularized logistic regression models with
either input bacterial community data from the 6 sources of mice at the baseline
(day � �1), post-clindamycin-treatment (day � 0), or postinfection (day � 1) time
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points of the experiment to predict C. difficile colonization status on day 7 (Fig. S3A and
B). All models were better at predicting C. difficile colonization status on day 7 than
random chance (all P � 0.001, Data Set S1, sheet 12). The model based on the
post-clindamycin-treatment (area under the receiving operator characteristic curve
[AUROC] � 0.78) community OTU data performed significantly better than the baseline
(AUROC � 0.72) or the postinfection (AUROC � 0.67) models (PFDR � 0.001 for pairwise
comparisons; Fig. S3C and Data Set S1, sheet 13). Thus, we were able to use bacterial
relative abundance data from the time of C. difficile challenge to differentiate mice that
had cleared C. difficile before day 7 from the mice still colonized with C. difficile at that

FIG 4 Microbiota variation across sources is maintained after C. difficile challenge. (A and B) Number of observed OTUs (A) and Shannon diversity index values
(B) across sources of mice 1 day postinfection. Data were analyzed by Kruskal-Wallis test with Benjamini-Hochberg correction for testing each day of the
experiment, and the adjusted P value was �0.05 (Data Set S1, sheet 1). Significant P values from the pairwise Wilcoxon comparisons between sources with
Benjamini-Hochberg correction are displayed as the first initial of each group compared to the group that they are listed above (Data Set S1, sheet 2). (C) PCoA
of �YC distances of 1-day-postinfection stool samples. Source and the interaction between source and cage effects explained most of the variation between fecal
communities (PERMANOVA combined R2 � 0.88, P � 0.001; Data Set S1, sheet 3). For panels A to C, each symbol represents the value for a stool sample from
an individual mouse, circles represent experiment 1 mice, and triangles represent experiment 2 mice. (D) The median (point) and interquantile range (colored
lines) of the relative abundances for the top 20 most significant OTUs out of the 44 OTUs that varied between sources 1 day postinfection. The gray vertical
line indicates the limit of detection. For each time point, OTUs with differential relative abundances across sources of mice were identified by Kruskal-Wallis
test with Benjamini-Hochberg correction for testing all identified OTUs (Data Set S1, sheet 10). (E) �YC distances of fecal samples collected 7 days postinfection
relative to the baseline (day �1) sample for each mouse. Each symbol represents an individual mouse. Gray lines represent the median for each source.
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time point. This result suggests that the bacterial community’s response to clindamycin
treatment had the greatest influence on subsequent C. difficile colonization dynamics.

To examine the bacteria that were driving each model’s performance, we selected
the 20 OTUs that had the highest absolute feature weights in each of the 3 models
(Data Set S1, sheet 14). First, we looked at OTUs from the model with the best
performance, which was based on the post-clindamycin-treatment (day 0) bacterial
community data. Out of the 10 highest-ranked OTUs, 7 OTUs were associated with C.
difficile colonization 7 days postinfection (Bacteroides, Escherichia/Shigella, 2 Lachno-
spiraceae, Lactobacillus, Porphyromonadaceae, and Ruminococcaceae), while 3 OTUs
were associated with clearance (Enterobacteriaceae, Lachnospiraceae, and Porphyromon-
adaceae [Fig. 5A]). On day 0, the majority of these OTUs were impacted by clindamycin
and had relative abundances that were close to the limit of detection (Fig. 5A). Next, we
examined whether any of the top 20 ranked OTUs from the post-clindamycin-treatment
(day 0) model were also important in the other 2 classification models based on
baseline (day �1) and 1 day postinfection community data. We identified 6 OTUs that
were important to the post-clindamycin-treatment model and either the baseline or
1-day-postinfection models (Enterobacteriaceae, Ruminococcaceae, Lactobacillus, Bacte-
roides, Porphyromonadaceae, and Erysipelotrichaceae [Data Set S1, sheet 14]). Thus, a
subset of bacterial OTUs were important for determining C. difficile colonization dy-
namics across multiple time points.

To determine whether the OTUs driving the classification models also varied be-
tween sources, were altered by clindamycin treatment, or both, we identified the OTUs
from each model that varied between sources (Fig. 1D, Fig. 3D, and Fig. 4D and Data
Set S1, sheets 5, 8, and 10) or were impacted by clindamycin treatment (Fig. 3E; Data
Set S1, sheet 9; and Fig. S4). Comparing the features important to the 3 models
identified 14 OTUs associated with source, 21 OTUs associated with clindamycin
treatment, and 6 OTUs associated with both (Fig. 5B). Together, these results suggest
that the initial bacterial communities and their responses to clindamycin influenced the
clearance of C. difficile.

Several OTUs that overlapped with our previous analyses appeared across at least 2
models (Bacteroides, Enterococcus, Enterobacteriaceae, and Porphyromonadaceae), so we
examined how the relative abundances of these OTUs varied over the course of the
experiment (Fig. 6). Across the 9 days postinfection, there was at least 1 time point
when the relative abundances of these OTUs significantly varied between sources (Data
Set S1, sheet 15). Interestingly, there were no OTUs that emerged as consistently
enriched or depleted in mice that were colonized past 7 days postinfection, suggesting
that multiple bacteria influence C. difficile colonization dynamics.

DISCUSSION

Applying our CDI model to 6 different sources of mice allowed us to identify
bacterial taxa that were unique to different sources as well as taxa that were universally
impacted by clindamycin. We trained L2-regularized logistic regression models with
baseline (day �1), post-clindamycin-treatment (day 0), and 1-day-postinfection fecal
community data that could predict whether mice cleared C. difficile by 7 days postin-
fection better than random chance. We identified Bacteroides, Enterococcus, Enterobac-
teriaceae, and Porphyromonadaceae (Fig. 6) as candidate bacteria within these commu-
nities that influenced variation in C. difficile colonization dynamics, since these bacteria
were all important in the logistic regression models and varied by source, were
impacted by clindamycin treatment, or both. Overall, our results demonstrated that
clindamycin was sufficient to render mice from multiple sources susceptible to CDI, and
only a subset of the interindividual microbiota variation across mice from different
sources was needed to predict which mice could clear C. difficile.

Other studies have used mice from multiple sources to identify bacteria that either
promote colonization resistance or increase susceptibility to enteric infections (21, 22,
25–29). For example, against Salmonella infections, Enterobacteriaceae and segmented
filamentous bacteria have emerged as protective (21, 26). We found Enterobacteriaceae
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increased in all sources of mice after clindamycin treatment, positively correlating with
C. difficile colonization. However, there was also variation in Enterobacteriaceae relative
abundance levels between sources that was associated with the variation in C. difficile
colonization dynamics across sources. Thus, bacteria may have differential roles in
determining susceptibility depending on the type of bacterial infection.

FIG 5 Bacteria that influenced whether mice cleared C. difficile by day 7. (A) Post-clindamycin-treatment (day 0) relative abundance data for
the 10 OTUs with the highest rankings based on feature weights in the post-clindamycin-treatment (day 0) classification model. Red font
represents OTUs that correlated with C. difficile colonization, and blue font represents OTUs that correlated with clearance. Symbols represent
the relative abundance data for an individual mouse. Gray bars indicate the median relative abundances for each source. The gray horizontal
lines indicate the limit of detection. (B) Venn diagram that combines OTUs that were important to the day �1, 0, and 1 classification models
(Fig. S4 and Data Set S1, sheet 14) and either overlapped taxa that varied across sources at the same time point, were impacted by clindamycin
treatment, or both. Bold OTUs were important to more than 1 classification model.
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Differences in CDI mouse model studies have been attributed to intestinal micro-
biota variation across sources. For example, researchers using the same clindamycin
treatment and C57BL/6 mice had different C. difficile outcomes, one having sustained
colonization (31) while the other had transient colonization (17), despite both using C.
difficile VPI 10643. Baseline differences in the microbiota composition have been
hypothesized to partially explain the differences in colonization outcomes and overall
susceptibility to C. difficile after treatment with the same antibiotic (12, 30). When we
treated mice from 6 different sources with clindamycin and challenged them with C.
difficile 630, we found that microbiota variation across sources impacted colonization
outcomes but not susceptibility. A previous study with C. difficile identified an endog-
enous protective C. difficile strain, LEM1, that bloomed after antibiotic treatment in mice
from Jackson or Charles River Laboratories, but not Taconic, and that protected mice
against the more toxigenic C. difficile VPI 10463 (25). Given that we obtained mice from
the same vendors, we checked all mice for endogenous C. difficile by plating stool
samples that were collected after clindamycin treatment. However, we did not identify
any endogenous C. difficile strains prior to challenge, suggesting there were no endog-
enous protective strains in the mice we received and that other bacteria mediated the
variation in C. difficile colonization across sources. The C. difficile strain used could also
be contributing to the variation in C. difficile outcomes seen across different research
groups. For example, a group found differential colonization outcomes after clindamy-
cin treatment, with C. difficile 630 and M68 infections eventually becoming undetect-
able while strain BI-7 remained detectable up to 70 days posttreatment (43). One study
limitation is that we used only female mice. Sex has been shown to influence micro-
biota variation in mice (44), so we used female mice to reduce this confounding
variable and also to match the sex used in previous CDI studies that administered
clindamycin to mice (31, 32, 43, 45). The bacterial perturbations induced by clindamycin

FIG 6 OTUs associated with C. difficile colonization dynamics vary across sources throughout the experiment. (A and D) Relative abundances of bold OTUs from
Fig. 5B that were important in at least two classification models are shown over time. (A) Bacteroides (OTU 2), which varied across sources throughout the
experiment. (B and C) Enterobacteriaceae (B) and Enterococcus (C), which significantly varied across sources and were impacted by clindamycin treatment. (D)
Porphyromonadaceae (OTU 7), which was significantly impacted by clindamycin treatment and, after examining relative abundance dynamics over the course
of the experiment, was found to also significantly vary between sources of mice on days �1, 5, 6, 7, and 9 of the experiment. Symbols represent the relative
abundance data for an individual mouse. Colored lines indicate the median relative abundances for each source. The gray horizontal line represents the limit
of detection. Time points where differences between sources of mice were statistically significant by Kruskal-Wallis test with Benjamini-Hochberg correction for
testing across multiple days (Data Set S1, sheet 15) are identified by the asterisk above each time point (*, P � 0.05).
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treatment have been well characterized, and our findings agree with previous CDI
mouse model work demonstrating that Enterococcus and Enterobacteriaceae were
associated with C. difficile susceptibility and Porphyromonadaceae, Lachnospiraceae,
Ruminococcaceae, and Turicibacter were associated with resistance (18, 20, 31, 32, 42,
43, 45, 46). While we have demonstrated that susceptibility is uniform across sources of
mice after clindamycin treatment, there could be different outcomes for either suscep-
tibility or clearance in the case of other antibiotic treatments.

We found the time needed to naturally clear C. difficile varied across sources of mice,
implying that at least in the context of the same perturbation, microbiota differences
influence infection outcome. More importantly, we were able to explain the variation
observed across sources with a subset of OTUs that were also important for predicting
C. difficile colonization status 7 days postinfection. Since all but 3 mice eventually
cleared C. difficile 630 by 9 days postinfection and the model built with the post-
clindamycin-treatment (day 0) OTU relative abundance data had the best performance,
our results suggest clindamycin treatment had a larger role in determining C. difficile
susceptibility and clearance than did the source of the mice.

Using mice from multiple sources successfully increased the interanimal variation.
One alternative approach that has been used in some CDI studies is to associate mice
with human microbiotas (47–52). However, a major caveat to this method is the
substantial loss of human microbiota community members upon transfer to mice (53,
54). Additionally, with the exception of 2 recent studies (47, 48), most of these studies
associated mice with just 1 type of human microbiota either from a single donor or
from a single pool from multiple donors (49–52). This approach does not aid in the goal
of modeling the interpersonal variation seen in humans to understand how the
microbiota influences susceptibility to CDIs and adverse outcomes. Importantly, our
study using mice from 6 different sources increased the variation between groups of
mice compared to using 1 source alone, to better reflect the interindividual microbiota
variation observed in humans.

Another motivation for associating mice with human microbiotas is to study the
bacteria associated with the disease in humans. Decreased Bifidobacterium, Porphy-
romonas, Ruminococcaceae, and Lachnospiraceae and increased Enterobacteriaceae,
Enterococcus, Lactobacillus, and Proteus numbers have all been associated with human
CDIs (7). Encouragingly, these populations were well represented in our study, sug-
gesting most of the mouse sources are suitable for gaining insights into the bacteria
influencing C. difficile colonization and infections in humans. Important exceptions
were Enterococcus, which was primarily absent from University of Michigan colonies,
and Proteus, which was found only in Taconic mice. The fact that some CDI-associated
bacteria were found only in a subset of mice has important implications for future CDI
mouse model studies but also models the natural patchiness of microbial populations
in humans.

Other microbiota and host factors that were outside the scope of our current study
may also contribute to the differences in C. difficile colonization dynamics between
sources of mice. The microbiota is composed of viruses, fungi, and parasites in addition
to bacteria, and these nonbacterial members can also vary across sources of mice (55, 56).
While our study focused solely on the bacterial portion, viruses and fungi have also begun
to be implicated in the context of CDIs or fecal microbiota transplantation (FMT) treatments
for recurrent CDIs (34, 57–60). Beyond community composition, the metabolic function of
the microbiota also has a CDI signature (19, 46, 61, 62) and can vary across mice from
different sources (63). For example, microbial metabolites, particularly secondary bile acids
and butyrate production, have been implicated as important contributors to C. difficile
resistance (32, 43). Interestingly, butyrate has previously been shown to vary across mouse
vendors and mediated resistance to Citrobacter rodentium infection, a model of enterohe-
morrhagic and enteropathogenic Escherichia coli infections (22). Evidence for immunolog-
ical toning differences in IgA and Th17 cells across mice from different vendors have also
been documented (64, 65) and could influence the host response to CDI (66, 67), particu-
larly relevant for C. difficile strains that induce more severe disease than C. difficile 630. The
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outcome after C. difficile exposure depends on a multitude of factors, including genetics,
age, diet, and immunity, all of which also influence the microbiota.

We have demonstrated that the ways in which baseline microbiotas from different
mouse sources respond to clindamycin treatment influence the length of time that mice
remained colonized with C. difficile 630. To better understand the contribution of the
microbiota to C. difficile pathogenesis and treatments, using multiple sources of mice may
yield more insights than a single source. Furthermore, for studies wanting to examine the
interplay between particular bacteria such as Enterococcus and C. difficile, these results
could serve as a resource for selecting mice to address the question. Using mice from
multiple sources helps model the interpersonal microbiota variation among humans to aid
our understanding of how the gut microbiota provides colonization resistance to CDIs.

MATERIALS AND METHODS
Animals. All experiments were approved by the University of Michigan Animal Care and Use

Committee (IACUC) under protocol number PRO00006983. Female C57BL/6 mice were obtained from 6
different sources: The Jackson Laboratory, Charles River Laboratories, Taconic Biosciences, Envigo, and
two colonies at the University of Michigan (the Schloss lab colony and the Young lab colony). The Young
lab colony was originally established with mice purchased from Jackson in 2002, and the Schloss lab
colony was established in 2010 with mice donated from the Young lab. The 4 groups of mice purchased
from vendors were allowed to acclimate to the University of Michigan mouse facility for 13 days prior to
starting the experiment. At least 4 female mice (age 5 to 10 weeks) were obtained per source, and mice
from the same source were primarily housed at a density of 2 mice per cage. The experiment was
repeated once, approximately 3 months after the start of the first experiment.

Antibiotic treatment. After the 13-day acclimation period, all mice received 10-mg/kg clindamycin
(filter sterilized through a 0.22-�m syringe filter prior to administration) via intraperitoneal injection
(Fig. 1A).

C. difficile infection model. Mice were challenged with 103 spores of C. difficile strain 630 via oral
gavage postinfection 1 day after clindamycin treatment as described previously (20). Mouse weights and
stool samples were taken daily through 9 days postinfection (Fig. 1A). Collected stool was split for C.
difficile quantification and 16S rRNA sequencing analysis. For C. difficile quantification, stool samples were
transferred to the anaerobic chamber, serially diluted in phosphate-buffered saline (PBS), plated on
taurocholate-cycloserine-cefoxitin-fructose agar (TCCFA) plates, and counted after 24 h of incubation at
37°C under anaerobic conditions. A sample from the day 0 time point (post-clindamycin treatment and
prior to C. difficile challenge) was also plated on TCCFA to ensure mice were not already colonized with
C. difficile prior to infection. There were 3 deaths recorded over the course of the experiment: 1 Taconic
mouse died prior to C. difficile challenge and 1 Jackson mouse and 1 Envigo mouse died between 1 and
3 days postinfection. Mice were categorized as cleared when no C. difficile was detected in the first serial
dilution (limit of detection: 100 CFU). Stool samples for 16S rRNA sequencing were snap-frozen in liquid
nitrogen and stored at �80°C until DNA extraction.

16S rRNA sequencing. DNA was extracted from �80°C-stored stool samples using the DNeasy
PowerSoil HTP 96 kit (Qiagen) and an EpMotion 5075 automated pipetting system (Eppendorf). The V4
region was amplified for 16S rRNA with the AccuPrime Pfx DNA polymerase (Thermo Fisher Scientific)
using custom barcoded primers, as previously described (68). The ZymoBIOMICS microbial community
DNA standards were used as a mock community control (69), and water was used as a negative control
per 96-well extraction plate. The PCR amplicons were cleaned up and normalized with the SequalPrep
normalization plate kit (Thermo Fisher Scientific). Amplicons were pooled and quantified with the Kapa
library quantification kit (Kapa Biosystems), prior to sequencing using the MiSeq system (Illumina).

16S rRNA gene sequence analysis. mothur (v. 1.43) was used to process all sequences (70) with a
previously published protocol (68). Reads were combined and aligned with the SILVA reference database
(71). Chimeras were removed with the VSEARCH algorithm, and taxonomic assignment was completed
with a modified version (v16) of the Ribosomal Database Project reference database (v11.5) (72) with an
80% confidence cutoff. Operational taxonomic units (OTUs) were assigned with a 97% similarity thresh-
old using the OptiClust algorithm (73). Based on the mock communities, our overall sequencing error rate
was 0.0112% and all water controls had fewer than 1,000 sequences (range: 18 to 875). To account for
uneven sequencing across samples, samples were rarefied to 5,437 sequences 1,000 times for alpha and
beta diversity analyses and a single time to generate relative abundances for model training. Principal-
coordinate analyses (PCoAs) were generated based on the Yue and Clayton measure of dissimilarity (�YC)
distances (74). Permutational multivariate analysis of variance (PERMANOVA) was performed on mothur-
generated �YC distance matrices with the adonis function in the vegan package (75) in R (76).

Classification model training and evaluation. Models were generated based on mice that were
categorized as either cleared or colonized 7 days postinfection and had sequencing data from the
baseline (day �1), post-clindamycin-treatment (day 0), and postinfection (day 1) time points of the
experiment. Input bacterial community relative abundance data at the OTU level from the baseline,
post-clindamycin-treatment, and 1-day-postinfection time points were used to generate 3 classification
models that predicted C. difficile colonization status 7 days postinfection. The L2-regularized logistic
regression models were trained and tested using the caret package (77) in R as previously described (78)
with the exception that we used 60% training and 40% testing data splits for testing of the held-out test
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data to measure model performance and repeated 2.5-fold cross-validation of the training data to select
the best cost hyperparameter. The modified training-to-testing ratio was selected to accommodate the
small number of samples in the data set. Code was modified from https://github.com/SchlossLab/ML
_pipeline_microbiome to update the classification outcomes and change the data split ratios. The
modified repository to regenerate our modeling analysis is available at https://github.com/tomkoset/ML
_pipeline_microbiome.

Statistical analysis. All statistical tests were performed in R (v 4.0.2) (76). The Kruskal-Wallis test was
used to analyze differences in C. difficile CFU, mouse weight change, and alpha diversity across sources
with a Benjamini-Hochberg correction for testing multiple time points, followed by pairwise Wilcoxon
comparisons with Benjamini-Hochberg correction. For taxonomic analysis and generation of logistic
regression model input data, C. difficile (OTU 20) was removed. Bacterial relative abundances that varied
across sources at the OTU level were identified with the Kruskal-Wallis test with Benjamini-Hochberg
correction for testing all identified OTUs, followed by pairwise Wilcoxon comparisons with Benjamini-
Hochberg correction. The Wilcoxon rank sum test was used to test for OTUs that differed between
experiments within the Schloss, Young, and Envigo sources with Benjamini-Hochberg correction for
testing all identified OTUs. OTUs impacted by clindamycin treatment were identified using the paired
Wilcoxon signed-rank test with matched pairs of mouse samples from day �1 and day 0. To determine
whether classification models had better performance (test AUROCs) than random chance (0.5), we used
the one-sample Wilcoxon signed-rank test. To examine whether there was an overall difference in
predictive performance across the 3 classification models, we used the Kruskal-Wallis test followed by
pairwise Wilcoxon comparisons with Benjamini-Hochberg correction for multiple hypothesis testing. The
tidyverse package (v 1.3.0) was used to wrangle and graph data (79).

Code availability. Code for all data analysis and generating the manuscript is available at https://
github.com/SchlossLab/Tomkovich_Vendor_mSphere_2020. The modified repository to regenerate our
modeling analysis is available at https://github.com/tomkoset/ML_pipeline_microbiome.

Data availability. The 16S rRNA sequencing data have been deposited in the National Center for
Biotechnology Information Sequence Read Archive (BioProject accession no. PRJNA608529).
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