
Selective and synergistic cobalt(III)-catalyzed three-component 
C–H bond addition to dienes and aldehydes

Jeffrey A. Boerth#, Soham Maity#, Sarah K. Williams, Brandon Q. Mercado, and Jonathan 
A. Ellman
Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)

# These authors contributed equally to this work.

Abstract

Two-component C–H bond additions to a large variety of coupling partners have been developed 

with applications towards materials, natural product and drug synthesis. Sequential three-

component C–H bond addition across two different coupling partners potentially enables the 

convergent synthesis of complex molecular scaffolds from simple precursors. Here, we report 

three-component Co(III)-catalyzed C–H bond additions to dienes and aldehydes that proceeds 

with high regio- and stereoselectivity resulting in two new carbon-carbon σ-bonds and from four 

to six new stereocenters. The reaction relies on the synergistic reactivity of the diene and aldehyde 

with neither undergoing C–H bond addition alone. A detailed mechanism is supported by X-ray 

structural characterization of a Co(III)-allyl intermediate, observed transfer of stereochemical 

information, and kinetic isotope studies. The applicability of the method to biologically relevant 

molecules is exemplified by the rapid synthesis of the western fragment of the complex ionophore 

antibiotic lasalocid A.
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Multi-component reactions combine three or more coupling partners to enable the rapid 

generation of complex structures from simple precursors. The partners are combined in a 

precise way by reaction of specific functional groups on the different coupling partners 

(Figure 1a)1–4. Multi-component reactions as exemplified by the three-component Passerini 

reaction of aldehydes, isocyanides and carboxylic acids have been extensively studied and 

employed in synthesis (see Figure 1a)1. In transition metal-catalyzed C–H functionalization, 

the ubiquitous C–H bond rather than a functional group serves as the site for reaction. Many 

transition metal-catalyzed two-component additions of C–H bonds to a large variety of 

different coupling partners have been developed such as additions to α,β-unsaturated 

carbonyl compounds (Figure 1b)5–10. Sequential, three-component addition reactions of 

nonacidic C–H bonds to two different coupling partners could provide access to an 

enormous range of different products (Figure 1c-I), and in promising initial results we have 

recently reported the first examples11,12. For these reported transformations, at least two out 

of the three coupling partners are well-documented to undergo efficient two-component 

coupling with the metal catalyst used in the three-component coupling8. An even greater 

variety of useful structures might be achieved through synergistic three-component C–H 

bond addition. In this scenario, which is distinct from synergistic catalysis13, the individual 

coupling partners do not undergo two-component transformations (Figure 1c-II).

Herein, we show that aromatic and α,β-unsaturated amides undergo Co(III)-catalyzed β-C–

H bond addition across dienes and aldehydes to provide a carbon framework with high 

regio- and stereocontrol that incorporates two new C–C σ-bonds and four or more new 

stereocenters14,15. Notably, neither the diene or aldehyde partner individually undergoes 

Co(III)-catalyzed two-component C–H addition (vide infra). Moreover, use of the bulk 

chemical feedstock butadiene16,17 as the diene partner results in the introduction of vicinal 

α-methyl and hydroxyl asymmetric carbons that are commonly found in natural products.

Results

Optimization studies.

A thorough exploration of conditions was conducted to determine optimal reaction 

parameters for three-component coupling of benzamide 1a, butadiene (2a) and 

isovaleraldehyde (3a) to provide alcohol 4a in 87% yield (Figure 2; see Supplementary 

Table 2 in Supplementary Tables). The most effective catalyst was found to be a cationic 

earth-abundant cobalt catalyst previously developed in our lab, [Cp*Co(C6H6)][B(C6F5)4]2 

(Co(III)L)18,19. Notably, this robust catalyst is completely air stable and is prepared by a 

straightforward and scalable salt metathesis without the use of any precious metals. Only 

acetic acid in sub-stoichiometric amounts was required as an additive with heating to 50 °C. 

In determining reaction scope, 20 mol % of the robust earth-abundant catalyst (Co(III)L) was 

used. However, in preliminary studies on catalyst loading, product alcohol 4a was obtained 
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with a modest reduction in yield to 70% when employing 5 mol % of (Co(III)L) with pivalic 

acid rather than acetic acid as an additive.

Scope and limitations of the reaction.

Acetaldehyde also coupled in good yield to give alcohol 4b, whose structure was rigorously 

confirmed by X-ray crystallography (see Supplementary Table 1 and Supplementary Figure 

3). Multiple linear aldehydes were evaluated to provide products 4c to 4h in good to 

excellent yields. These aldehydes illustrate that a variety of functionality is compatible with 

three-component coupling. A disubstituted alkene was incorporated without isomerization 

(4d), and a primary alkyl chloride was stable under the reaction conditions (4e). In addition, 

alcohol functionality could also be introduced when protected as either a benzyl (4f) or a 

silyl (4g) ether, although the tert-butyldiphenylsilyl (TBDPS) was necessary to minimize 

silyl deprotection under the reaction conditions. Finally, lactone 4h was obtained in near 

quantitative yield by coupling 4-oxo-butyric acid methyl ester with in situ cyclization of the 

initial alcohol product.

Several α-branched aldehydes were also evaluated providing alcohol products 4i, 4j and 4k 
in good to excellent yields. In particular, alcohol 4j demonstrates the incorporation of the 

privileged piperidine heterocycle motif20 with the nitrogen protected with the popular Boc 

protecting group21. However, the highly sterically hindered α,α-dibranched aldehyde, 

pivaldehyde, provided little product under the standard reaction conditions, and even at a 1 

M concentration in benzamide 1a and a 70 °C reaction temperature, provided 4l in only a 

14% isolated yield though as a single stereoisomer.

A broad range of aromatic aldehydes was also explored. Benzaldehyde (4m) along with a 

number of derivatives with electron deficient groups at the para-position (4n-4q) coupled in 

high yield. Moderately electron-rich p-tolualdehyde provided 4r though with a modest 

reduction in yield and diastereoselectivity. Aromatic aldehydes with substitution at the ortho 
site (4s) and at the meta site with electron-deficient (4t and 4u) and -rich (4v and 4w) 

substituents all coupled in high yields. The reactions performed with aromatic aldehydes 

further established the broad functional group compatibility of the transformation, with 

successful incorporation of electrophilic ester (4p) and ketone (4u) functionality, bromo (4o) 

and chloro (4t) substituents amenable to cross-coupling transformations, and acidic 

functionality exemplified by introduction of a phenol (4v) and an N-Boc aniline (4w).

Different C–H bond substrates were also investigated (Figure 3a). In addition to the 

pyrrolidine amide directing group, a number of other amide derivatives were also shown to 

be effective. Both the N,N-dimethyl and the Weinreb22 tertiary benzamides provided 

products 4x and 4y in good yields, and the secondary amide N-methyl benzamide also 

coupled efficiently to give 4z. A number of different functionalities were examined on the 

aryl portion of the pyrrolidine benzamide. A range of electron-donating and electron-

withdrawing groups were well-tolerated, resulting in products 4aa-af in good to excellent 

yield. With methylenedioxy substitution, alcohol 4ag was obtained in 93% yield as a single 

regioisomer, presumably through coordination of the oxygen to the cobalt in the C–H 

activation step. Conversely, attachment of two methoxy groups on meta- and para-positions 
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resulted in product 4ah as the major regioisomer, isolated as a single compound in 60% 

yield. Here steric interactions between the two methoxy groups block the contiguous ortho-

position. C–H functionalization was also successful for the heterocycle thiophene, giving 

alcohol 4ai in 72% yield. Alkene C(sp2)–H bonds also participated in the three-component 

reaction, generating products 4aj and 4ak in moderate yield and with high regio- and 

stereoselectivity for the introduction of six new stereocenters (four sp2 and two sp3) in a 

single transformation.

Lastly, a number of mono and di-substituted butadienes were explored to expand the range 

of products that are accessible while also providing stereochemical information useful for 

deciphering the reaction mechanism (Figure 3b). Interestingly, both the (E)- and (Z)-isomers 

of 1,3-pentadiene furnished alcohol 4al with the (E)-isomer providing a slightly higher 

yield. Consistent with this stereochemical outcome, the pure (E)-isomer and a 1:1 mixture of 

(E)- and (Z)-isomers of hexa-3,5-dien-1-ylbenzene gave the same alcohol product 4am and 

in nearly identical yields. Additionally, dienes containing linear alkyl chains or benzyloxy 

substituents furnished products 4an and 4ao in 83% and 80% yield respectively. The 

monosubstituted butadiene with a phenyl group directly attached to the diene, 1-phenyl-1,3-

butadiene, was also evaluated but did not provide the three-component coupling product 

(data not shown).

The symmetrical 1,1-disubstituted butadiene, 4-methyl-1,3-pentadiene, provided three-

component products 4ap and 4aq in 52% and 66% yield, respectively. Moreover, a 

stereochemically pure unsymmetrical 1,1-disubstituted butadiene coupled to give 4ar with 

three asymmetric carbons and with very high stereoselectivity. The relative stereochemistry 

for 4ar was rigorously confirmed by X-ray structural analysis of an acylated derivative 4ar’ 
(see Supplementary Table 1 and Supplementary Figure 4). Because the unsymmetrical 1,1-

disubstituted butadiene used in the three-component reaction to give 4ar required 

preparation, this diene was also evaluated as the limiting reagent for the three component 

reaction and resulted in a comparable 54% yield. The added stereochemical complexity 

introduced by unsymmetrical 1,1-disubstituted butadienes not only has potential synthetic 

utility but also provides useful mechanistic insight (vide infra).

Mechanistic studies.

Experiments were conducted to help elucidate a mechanism for this three-component 

transformation (Figure 4). First, butadiene and multiple aldehyde coupling partners were 

separately submitted to two-component coupling under standard reaction conditions (Figure 

4a). Butadiene resulted in only a 12% yield of the two-component coupling product, diene 5, 

with 85% recovery of 1a. Diene 5 is presumably released from the cobalt after β-hydride 

elimination to give an off-cycle cobalt hydride species (vide infra). More forcing conditions 

(100 °C) or addition of the common stoichiometric terminal oxidant, Cu(OAc)2, resulted in 

less than 5% of diene 5 or any other type of two-component product. Attempted coupling of 

1a with alkyl and aryl aldehydes resulted in quantitative recovery of 1a without formation of 

any two-component product 6. This reaction outcome is expected because arene C(sp2)–H 

additions to standard aromatic and alkyl aldehydes are well-documented to be 

thermodynamically disfavored23,24.
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To trap possible intermediates along the catalytic cycle, substrate 1a was reacted with 

butadiene without any aldehyde but with stoichiometric amounts of the cobalt catalyst, 

resulting in isolation and rigorous X-ray structural characterization of the coordinatively 

saturated Co-allyl species 8a with η3-allyl binding (Figure 4b, Supplementary Table 1 and 

Supplementary Figure 5). Notably, the isolation and structural characterization of 

Cp*Co(III)-intermediates via direct C–H functionalization pathways has proven to be very 

challenging25. To ascertain whether the isolated Co-allyl species 8a is an intermediate along 

the reaction pathway, a reaction was conducted using 8a as the catalyst for the coupling of 

1a with butadiene and isovaleraldehyde (Figure 4c). Using the standard reaction conditions, 

a 77% NMR yield of the desired alcohol 4a was obtained. This result establishes that 8a is a 

competent catalyst consistent with this allyl species serving an intermediate along the 

reaction pathway.

Experiments with deuterated substrate 1a-D also defined key features of the reaction (Figure 

4d). When substrate 1a-D was subjected to the standard reaction conditions for only 2 h, no 

deuterium exchange was observed in either the product or the starting material (See 

Supplementary Methods). A primary kinetic isotope effect (KIE) of 2.90 ± 0.20 was 

observed (Figure 4d, Supplementary Figures 1 and 2), which is consistent with 

orthometallation as a rate-determining step26.

A mechanism consistent with all of the experimental data is shown in Figure 5. First, rate-

determining C–H metallation of substrate 1a generates 5-membered metallocycle 7, which 

inserts into the terminal carbon of diene partner 2 to form Co-allyl species 8. This step is 

supported by the isolation and X-ray structural characterization of 8a (see Figure 4b). 

Formal migration of a hydrogen from carbon 1 to 4 in allyl intermediate 8 must occur to 

achieve the bond connectivity observed in the final product. Syn β-hydride elimination at 

carbon 1 in 8 would give the Co-diene complex 9, which is supported by the isolation of 

diene byproduct 5 when no aldehyde is present (Figure 4a). Reversible stereospecific syn-

insertion of the Co-hydride from the same face but at carbon 4 would provide Co-allyl 

species 1027. Reaction of aldehyde 3 by the chair transition state depicted in 11 would 

provide the stereochemistry observed in product 4, which is obtained upon protonolysis with 

concomitant release of the cobalt catalyst.

The stereochemistry observed for substituted dienes provides critical support for the 

proposed hydride migration from 8 to 10. (Z)- and (E)-monosubstituted dienes would be 

expected to provide the same intermediate 10 because a stereocenter is not introduced during 

hydride migration. Consequently, both (Z)- and (E)-monosubstituted dienes would be 

expected to provide the same product as was observed for both 4al and for 4am. Moreover, 

the high stereoselectivity and relative stereochemistry observed for 4ar is consistent with 

stereospecific hydride migration28 upon coupling with the unsymmetrical 1,1-disubstituted 

butadiene.

Synthesis of fragment of the ionophore antibiotic lasalocid A.

The carbon framework and stereochemistry obtained with this three-component reaction 

provides an opportunity to access structural motifs present in natural products as exemplified 
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by the western fragment of the ionophore antibiotic lasalocid A29,30, which is used to treat 

coccidiosis in cattle (Figure 6). C–H bond functionalization of benzamide 12, butadiene, and 

isovaleraldehyde as a model aldehyde, provided alcohol 13 in good yield regardless of 

whether benzamide 12 (70% yield) or isovaleraldehyde (77%) was employed as the limiting 

reagent. Moreover, this reaction was also performed on the benchtop under an N2 

atmosphere with benzamide 12 as the limiting reagent and gave a comparable 68% yield. In 

addition, when the reaction was performed on the benchtop with only 5 mol % of (Co(III)L) 

and with pivalic acid as the additive, the product was obtained with only a slight reduction in 

the yield to 60%. Alkene hydrogenation31 to provide 14 was followed by amide N-

nitrosylation32, saponification and benzyl group cleavage to furnish alcohol 15 in excellent 

overall yield.

Conclusion

These studies establish a general Co(III)-catalyzed three-component transformation for the 

synergistic, sequential C–H bond additions across dienes and aldehydes to form two new 

carbon-carbon σ-bonds and up to six stereocenters with high regio- and diastereoselectivity. 

A mechanism is proposed that involves stereospecific hydrogen migration and is supported 

by product connectivity and stereochemistry, X-ray structural characterization of a Co(III)-

allyl intermediate, and isotope labeling studies. The utility of the three-component reaction 

is demonstrated by the rapid assembly of the western fragment of lasalocid A. Asymmetric 

variants of this three-component reaction might be possible using either enantiomerically 

pure coupling partners or chiral catalysts. Given the success of the disclosed three-

component reaction, the discovery of additional synergistic three-component processes is 

anticipated.

Methods

General procedure for aldehyde and C–H bond substrate scope.

In a N2-filled glove box, a 0.5–2.0 mL microwave vial was charged with [Cp*Co(C6H6)

[B(C6F5)4]2 (65.2 mg, 0.0400 mmol, 0.20 equiv), the indicated C–H bond partner (1) (0.200 

mmol, 1.0 equiv) and corresponding aldehyde (3) (0.600 mmol, 3.0 equiv). Following this, 

67 μL of a 0.6 M stock solution of acetic acid in 1,4-dioxane, followed by 333 μL of 1,4-

dioxane. Finally, 100 μL of a 4 M stock solution of 1,3-butadiene in THF was added (0.400 

mmol, 2.0 equiv) (use of commercial solution of butadiene in THF works equally well, for 

full details see Supplementary Table 2 and Supplementary Methods for the synthesis of the 

lasalocid A fragment 15). The reaction vial was then equipped with a magnetic stir bar, 

sealed with a microwave cap, and taken outside the glove box. The reaction mixture was 

stirred at 50 °C in a preset oil bath for 20 h. The reaction mixture was allowed to cool to 

room temperature and then was filtered through a small celite plug (1 cm long in a pipette) 

that was washed with ethyl acetate. The resulting mixture was then concentrated and 

purified by the corresponding chromatographic method to afford the desired product. Full 

experimental details and characterization of new compounds are provided in Supplementary 

Methods.
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General procedure for diene substrate scope.

In a N2-filled glove box, a 0.5–2.0 mL microwave vial was charged with [Cp*Co(C6H6)

[B(C6F5)4]2 (65.2 mg, 0.0400 mmol, 0.20 equiv), the indicated C–H bond partner (1) (0.200 

mmol, 1.0 equiv) and corresponding aldehyde (3) (0.600 mmol, 3.0 equiv). Following this, 

67 μL of a 0.6 M stock solution of acetic acid in 1,4-dioxane was added to the solid mixture, 

followed by 133 μL of 1,4-dioxane. Finally, diene (2) was added (0.400 mmol, 2.0 equiv). 

The reaction vial was then equipped with a magnetic stir bar, sealed with a microwave cap, 

and taken outside the glove box. The reaction mixture was stirred at 50 °C in a preset oil 

bath for 20 h. The reaction vial was allowed to cool to room temperature. The reaction 

mixture was filtered through a small celite plug (1 cm long in a pipette) that was washed 

with ethyl acetate. The resulting mixture was then concentrated and purified by the 

corresponding chromatographic method to afford the desired product. Full experimental 

details and characterization of new compounds are provided in Supplementary Methods.

Data availability.

The data that support the findings of this study are available within the paper and its 

Supplementary Information. X-ray crystal data for structures 4b, 4ar’, and 8a are available 

free of charge from the Cambridge Crystallographic Data Centre (https://

www.ccdc.cam.ac.uk/) under reference numbers CCDC 1812525, CCDC 1826301, and 

CCDC 1812526, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Three-component strategy for the rapid assembly of complex structures.
a. Multi-component reactions. b. Transition metal-catalyzed two-component C–H bond 

additions. c. Sequential three-component C–H bond additions.
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Figure 2: C–H Functionalization with benzamide 1a, butadiene and diverse aldehydes 3.
Reactions were performed on 0.2 mmol scale with 1a at [0.4 M] and proceeded with >98:2 

dr unless otherwise noted. Isolated yields of product after purification by chromatography 

are reported. See Supplementary Methods for experimental details. a. Reaction performed 

with 5 mol % of (Co(III)L) and 20 mol % of pivalic acid in place of acetic acid. b. Reaction 

performed with 1a at [1.0 M] and at 70 °C.
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Figure 3: C–H Functionalization with dienes and aldehydes.
Reactions were performed on 0.2 mmol scale and proceeded with >98:2 dr unless otherwise 

noted, and isolated yields of product after purification by chromatography are reported. See 

Supplementary Methods for experimental details. a. 1a = [0.4 M]. b. 20% of the minor 

regioisomer was observed by NMR analysis. c. 1a = [1.0 M]. d. Isolated yield of major 

diastereomer, crude dr 92:8. e. Benzamide 1a (2.0 equiv), diene 2ar (1.0 equiv), and 

benzyloxyacetaldehyde (3.0 equiv).
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Figure 4: Mechanistic Experiments.
a. Evaluation of two-component coupling reactions with either diene or aldehyde coupling 

partner. Benzamide 1a = [0.4 M]. b. Synthesis of Co-allyl species 8a. c. Co-allyl species 8a 
as the catalyst in the three-component reaction. 1a = [0.4 M]. d. Kinetic isotope effect 

determined from parallel reactions of 1a and 1a-D. Benzamides 1a and 1a-D = [0.4 M].
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Figure 5: Proposed mechanism for the three-component transformation.
The transformation proceeds through formation of Co-allyl species 8, which is supported by 

isolation of species 8a. Syn β-hydride elimination and hydride reinsertion leads to a new Co-

allyl species 10, which can coordinate with the aldehyde to produce the chair transition state 

11. Aldehyde addition and protonolysis yields the product 4. The depicted mechanism is 

consistent with the stereochemical outcomes observed for the substituted butadienes.
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Figure 6: Synthesis of the core scaffold in lasalocid A.
Isolated yields are shown. aBenzamide 12 as the limiting reagent: benzamide 12 (1 equiv), 

butadiene (2 equiv) and isovaleraldehyde (3 equiv). bAldehyde as the limiting reagent: 

benzamide 12 (2 equiv), butadiene (2 equiv) and isovaleraldehyde (1 equiv).
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