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Abstract: Stimuli-responsive hydrogel drug delivery systems are designed to release a payload
when prompted by an external stimulus. These platforms have become prominent in the field of
drug delivery due to their ability to provide spatial and temporal control for drug release. Among
the different external triggers that have been used, ultrasound possesses several advantages: it is
non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area.
This review summarizes the current state of understanding about ultrasound-responsive hydrogels
used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound
are examined, along with the latest innovative formulations and hydrogel design strategies. We also
report on the most recent applications leveraging ultrasound activation for both cancer treatment
and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels
are discussed.

Keywords: hydrogels; polymers; stimuli-responsive; ultrasound; smart hydrogels; drug delivery;
Tissue engineering; cancer therapy; controlled drug release; thermoresponsive materials

1. Introduction

Stimuli-responsive drug delivery systems enable the delivery of payloads on-demand,
at a specific time, and at a specific location [1–4]. These platforms can be designed to
respond to a variety of different stimuli, either internal such as redox, pH, or enzymes, or
external physical triggers such as magnetic field, ultrasound, light, electricity, or tempera-
ture [5–10].

For the past 70 years, ultrasound has been extensively used as a diagnostic tool [11,12].
However, it has recently been applied to a broad range of therapeutic applications such as
the treatment of vascular thrombosis by dissolving clots, the ablation of tumors, and the
healing of bone fractures [12–14]. Ultrasound has proven to be both safe and ethical for
in vivo use in a variety of applications [15,16]. Ultrasound also induces biological effects
that are beneficial for therapeutic applications. It enhances transdermal drug delivery,
enhances uptake in cells and tissues, and facilitates wound healing [13,17–21]. Ultrasound
provides the capability for a wide variety of applications in the biomedical field including
imaging [22], clinical diagnosis [23], therapeutics delivery [20,24,25], detection [26], sens-
ing [27,28], the initiation of chemical and biological processes [29–31], and the release of
signaling molecules [32].

Ultrasound also possesses several advantages as a stimulus for drug delivery plat-
forms. It allows for the control of material properties and functions both easily and safely.
It is non-ionizing, non-invasive, localized, and allows for deep tissue penetration and spa-
tiotemporal control [33–36]. Ultrasound possesses the ability to be focused and localized to

Gels 2022, 8, 554. https://doi.org/10.3390/gels8090554 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels8090554
https://doi.org/10.3390/gels8090554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://orcid.org/0000-0002-7140-418X
https://orcid.org/0000-0001-8603-4575
https://orcid.org/0000-0001-9499-4111
https://doi.org/10.3390/gels8090554
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels8090554?type=check_update&version=1


Gels 2022, 8, 554 2 of 13

a small region of interest [15,37]. Acoustic energy can then be transferred by high or low
intensity focused ultrasound either via thermal or non-thermal mechanisms [24]. A wide
variety of polymeric carriers have been developed for ultrasound-responsive drug delivery.
The possibilities offered by micelles, nanobubbles, nanodroplets, emulsions, and vesicles
have already been thoroughly reviewed [38–45]. Consequently, we will only focus on the
prospects offered by hydrogels as ultrasound-responsive delivery platforms. The aim of the
present article is to highlight the mechanisms of inducing payload release via ultrasound,
examine the latest innovative strategies employed to rationally design hydrogels, and
describe their successful applications.

2. Acoustics

The developing field of responsive hydrogels is reaching new intersection points
with external stimulus triggers. Recent developments have brought stimuli-responsive
hydrogels into the field of acoustics and ultrasound. In this case, the acoustics field can be
defined as the use of mechanical waves for energetic transfer in materials such as solids,
liquids, or gases [37,46]. The transfer of energy into and through materials is then converted
into specific acoustic responses for each hydrogel. These acoustic responses include payload
delivery, modulation of material properties, initiation of biochemical processes, directed
assembly, actuation, locomotion, or sensing [37,47–50].

The positive characteristics of ultrasound acoustics are frequency, wavelength, time,
and transmission loss [51]. While acoustic frequencies range anywhere from 1 Hz to over
100 GHz, ultrasound frequencies only make up the range of 20 kHz to 50 MHz [37,46]. This
range of frequencies is particularly interesting since it is outside of the range of human
hearing [37]. Additionally, these ultrasound frequencies have generally small wavelengths
in water, making them extremely compatible with responsive systems used within the
human body [52]. The short time scales of ultrasound frequencies also make them extremely
efficient in energy exchange [53]. Another positive characteristic is the low amount of
transmission loss within the human body in this frequency range [37]. Due to these positive
characteristics, ultrasound is an ideal external trigger for stimuli-responsive hydrogels.

3. Acoustic Mechanisms

When using ultrasound acoustics on stimuli-responsive hydrogels, acoustic mech-
anisms are the pathway in which energy is transferred to induce a response. Acoustic
responses typically involve work that is not directly correlated to acoustic waves. The acous-
tic waves are instead used for energetic transfer through both thermal and non-thermal
mechanisms within a responsive hydrogel (Figure 1).

The thermal mechanism (Figure 2) is the pathway in which acoustic energy is trans-
ferred into thermal energy. The increase in temperature caused by ultrasound irradiation
enhances drug diffusion and increases cell permeability [54]. Positive results have been
observed with ultrasound-triggered drug release in thermosensitive hydrogels containing
colloids such as nanoparticles [55], liposomes [56], and micelles [57]. While the power
of high-intensity focused ultrasound is proven to be useful for drug delivery, damage
to surrounding cells should be accounted for when considering long-term hyperther-
mia [33,58,59].

The non-thermal mechanism (Figure 2) is the pathway in which acoustic energy is
transferred into mechanical energy in the form of oscillation and force [33]. This mechanical
energy can take the form of acoustic cavitation. Cavitation is the formation of bubbles
within a material, in which the bubble rapidly oscillates and then collapses within itself [60].
Cavitation has been used for drug delivery for chemotherapy [61] and bone regenera-
tion [62,63]. Mechanical energy can also take the form of ultrasonic mechanical force. This
mechanical force can be used to cleave unstable bonds [33]. Acoustic radiation force is
another form of mechanical energy derived from ultrasound. The forces created by the
acoustic waves act on the particles suspended within a fluid, these particles then move,
cluster, and interact with one another [64]. The movement and interaction of these particles
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create acoustic radiation forces, which when paired with low-intensity focused ultrasound
can be used for drug delivery and bone regeneration [65,66].
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High-intensity focused ultrasound and low-intensity focused ultrasound prove to
be effective in drug delivery using both thermal and non-thermal mechanisms in stimuli-
responsive hydrogels. High-intensity focused ultrasound is extremely effective when
inducing drug release, however possible damages and challenges may occur for sensitive
biological systems [37,67]. While low-intensity focused ultrasound may be less powerful,
it is at lower risk of damaging sensitive biological systems [68,69]. In scenarios using
thermo-responsive hydrogels with hyperthermia as the thermal mechanism, high-intensity
focused ultrasound would be ideal [33]. While both forms of focused ultrasound have
respective challenges, it is seen that each can be useful for different applications.
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Thermo-responsive and ultrasound-responsive hydrogels respond positively to ultra-
sound acoustics, making focused ultrasound an excellent external trigger for both systems.
Both types of hydrogels prove to be responsive to ultrasound stimulation due to the combi-
nation of hyperthermia and sonoporation induced by focused ultrasound [33,58,70]. While
different mechanisms exist for both types of hydrogels, each transfers acoustic energy
into a form of work proven to be useful for drug delivery. Specifically, drug delivery for
the purpose of cancer therapeutics and tissue engineering. Thermo-responsive materials
paired with focused ultrasound have been used for both cancer treatments [42,71] and
tissue repair [72]. Ultrasound-responsive materials paired with focused ultrasound have
been used for both chemotherapy [73] and bone tissue engineering [63,74].

4. Designing Hydrogels for Drug Delivery

Rationally designing stimuli-responsive hydrogels to be used for ultrasound-triggered
drug delivery requires a thorough understanding of the parameters that affect hydrogel
response (Figure 3). These key factors are: bond strength, molecular weight, degree of
polymerization, chain units, polymer structure, shape, and molecular assembly [33,75,76].
Rationally designing hydrogels to be as sensitive to ultrasound as possible is critical, as it
will greatly decrease the chances of adverse biological effects [12,58].
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These parameters are crucial when rationally designing stimuli-responsive hydrogels.
Drug release from polymer systems requires relatively low amounts of energy to break,
when paired with weaker bonds [77–79]. Molecular weight distribution also affects the
responsiveness and location of mechanical force acting along a polymer chain [80–82].
The degree of polymerization and chain units influence the mechanochemical activity of
polymeric materials [83–85]. Polymer structure and shape both play a role in the sonome-
chanical effects of ultrasound on materials [86–88]. The designed molecular assembly can
also influence the mechanochemical activity of the materials [89–91]. The amount of energy
used will be lowered by implementing these factors into the design of hydrogel matrices,
which will also decrease the chances of surrounding tissue damage.

The factors involving the structure of a stimuli-responsive hydrogel have large effects
on drug delivery, but another important parameter is the embedded payload or carrier
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within the hydrogel matrix. Possible embedded nanocarriers include microbubbles [92],
nanoparticles [93–95], liposomes [92], loaded nanodroplets [72,96], and micelles [97,98].
Cells can be placed into hydrogel matrices for direct diffusion into the surrounding area [65]
or aided by nanocarriers for increased targeting specificity [72]. Proteins have been diffused
from hydrogels without direct targeting [99–101], or aided by nanocarriers in drug delivery
systems [102]. Payloads such as drugs can also be directly diffused from hydrogels [103], or
aided by nanocarriers for targeted drug delivery [104]. The rational design of hydrogels for
ultrasound-triggered drug release is dependent on both the structural factors of the matrix
and the embedded materials within the hydrogel.

While hydrogel matrices affect the response to focused ultrasound, the specific pa-
rameters of the applied ultrasound also influence the outcome. Two types of ultrasound
can be used, either High-Intensity Focused Ultrasound (HIFU) or Low-Intensity Focused
Ultrasound (LIFU), each being beneficial for different applications [37,66,69]. LIFU is ad-
vantageous for applications involving reversible cellular effects [15] and increased tissue
regeneration [105]. For instance, Kearney et al. [93] and Levingstone et al. [106] used LIFU
at 2.5 min per hour for 5 h with an intensity of 9.6 mW/cm2 to induce bone regenera-
tion aided by BMP-2 release. For applications involving irreversible cell death or tissue
ablation, HIFU would most likely be preferred [107]. For example, HIFU was used by
Meng et al. [108] and Zhu et al. [109] at a 50% duty cycle with intensities of 6 W/cm2 and
1 W/cm2, respectively, to promote release and uptake in tumor systems.

Ultrasound has proven to be both safe and ethical for in vivo use in a variety of appli-
cations [15,16]. The Food and Drug Administration (FDA) has defined safety guidelines for
ultrasound exposure [15]. Criteria such as the mechanical index, thermal index, spatial peak
pulse average intensity, and spatial peak temporal average intensity have been defined
to stipulate the maximum allowed ultrasound exposure [58,110,111]. Adverse biological
effects can be avoided during in vivo ultrasound studies when following these.

Drug delivery applications must be fully understood to rationally design hydrogels
specific for each application. The two main applications for ultrasound drug delivery via
hydrogel systems are tissue engineering and cancer therapy. Each application features a
variety of hydrogel systems, ultrasound parameters, delivery methods, and drugs used.

5. Tissue Engineering Applications

Ultrasound has traditionally been used for imaging tissue and bone defects, but is
more recently being used to control drug release from responsive hydrogel systems with
spatiotemporal control. Injectable hydrogels have been chosen as drug release systems due
to their high capabilities of drug loading and biocompatibility [112,113]. More advantages
of the hydrogel networks come from their ability to act as scaffolds and carry therapeutic
materials for release [113,114]. For instance, Yamaguchi and al. [100] developed supramolec-
ular PEG hydrogels crosslinked with a host-guest interaction between PEG-β-cyclodextrin
and PEG-adamantane. Embedded protein payloads were released in a site-specific manner
from these hydrogels during exposure to focused ultrasound (Figure 4).

Tissue engineering hydrogel systems are rationally designed for a specific use, mean-
ing each system has its own application, polymeric backbone, and delivery method (Table 1).
Some of the tissue engineering applications include bone regeneration [65,93,106], cartilage
repair [72,115], and skin repair [116]. The polymeric backbone of responsive hydrogels in-
cludes materials such as alginate [93,106], chitosan [72,115], cellulose [116], fibrin [117–119],
and collagen [65]. The loading of these systems is made up of cells, proteins, or drugs.
These ultrasound-responsive hydrogels then release their embedded payloads when ex-
posed to focused ultrasound. This release occurs both with and without nanocarriers to
aid in targeting. Ultrasound also proved to be safe when used in vivo for the delivery of
angiogenic growth factors [117,119,120].
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Figure 4. Design of ultrasound-responsive supramolecular PEG hydrogels crosslinked with a host-
guest interaction between PEG-β-cyclodextrin and PEG-adamantane. This hydrogel matrix was
developed by Yamaguchi et al. [100] and used for the controlled delivery of protein payloads.

Table 1. Characteristics of ultrasound-responsive hydrogels for tissue engineering applications.

Application Hydrogel Polymer
System Payload Ultrasound Parameters Reference

Bone
Regeneration

Alginate
Hydrogel BMP-2

2.5 min/h for 5 h
Amplitude of 25%

9.6 mW/cm2
[106]

Cartilage Repair Chitosan
Hydrogel

BMSCs aided by
nanocarriers

1 MHz
2–3 W/cm2

20–30% duty cycle
[72]

Bone
Regeneration

Alginate
Hydrogel

BMP-2 conjugated gold
nanoparticles

2.5 min/h for 5 h
Amplitude of 25%

9.6 mW/cm2
[93]

Cartilage
Repair

Chitosan
Hydrogel

Kartogenin on
microparticles 2 and 5 min intervals [115]

Skin Repair Cellulose
Hydrogel Film Mimosa drug LIFU 23, 43, and 96 kHz

5–30 W [116]

Vascularization Fibrin Hydrogel bFGF release 100 Hz, 6.1 MPa
5.4 µs pulse [117]

Bone
Regeneration

Collagen
Hydrogel Osteoblasts

LIPUS 1 MHz, 1 kHz, 1 Hz
Duty cycle: 20%, 50% or 100%

30 and 150 mW/cm2
[65]

6. Applications for Cancer Therapy

Ultrasound has successfully been used as a minimally invasive diagnostic tool for the
detection and follow-up of cancer patients [26,107,121] and for analyte detection [122–125].
Ultrasound has also been used for cancer treatment due to its effective real-time capabilities
in imaging and has more recently been used for drug delivery from responsive hydrogel
systems [126–131]. Like the hydrogel systems used for drug delivery in tissue engineering,
these hydrogels were chosen due to their high loading efficiencies, stability, and flexibil-
ity [17]. The hydrogel systems could be loaded with either therapeutic drugs [132] or
contrast agents for cancer [133]. For instance, Kim and al. [134] embedded mechanophores
into PEG hydrogels. When activated by ultrasound, the mechanophores generated free
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radicals that converted to free oxygen species effectively killing melanoma and breast
cancer cells in vitro (Figure 5).
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Figure 5. Design of ultrasound-responsive mechanophores embedded into PEG hydrogels, generating
reactive oxygen species (ROS) when activated by high-intensity focused ultrasound. This hydrogel
matrix was developed by Kim et al. [134] and used for the selective elimination of cancer cells in vitro.

The hydrogel systems that are rationally designed for cancer therapeutics cover a
wide variety of applications, polymer systems, materials delivered, and nanocarriers
used. Some of these applications include breast cancer [134–136], melanoma [103,134],
tumor systems [108,109,137], and general cancer therapy [104]. Hydrogel polymer systems
include alginate [103,135], PEG [134], OEGMA [108], hyaluronic acid [104], polylysine [136],
chitosan [109], and silk fibroin [137]. These systems are used to deliver a variety of drugs,
proteins, cells, and therapeutics payloads (Table 2). This delivery is completed both with
and without the aid of nanocarriers within the system to complete the task of drug delivery.
Ultrasound also proved to be safe when used in vivo for the delivery of antitumor agents
such as doxorubicin or mitoxantrone [99,108,135].

Table 2. Characteristics of hydrogel polymer systems used for cancer therapy.

Application Hydrogel Polymer
System Payload Ultrasound Parameters Reference

Breast Cancer
Treatment

Alginate
Hydrogel Mitoxantrone HIFU 9.6 mW/cm2

5 min pulses/h, /2 h, or /24 h
[135]

Melanoma and
Breast Cancer PEG Hydrogel AZO-Mechanophores

for MDT

HIFU 550 kHz
115 W/cm2, 1.9 MPa
10 s on and 20 s off

[134]

Tumor Systems Nanocomposite
Hydrogel

Nanovaccines (ORP
nanoparticles)

HIFU 40 kHz
6 W/cm2, 50% duty cycle [108]

Cancer Therapy Hyaluronic Acid
Hydrogel

Doxorubicin loaded
gold nanoparticles

HIFU 10, 20, 30, or 50 W
30 or 60 min

1.5 MHz 50% Duty cycle
1 Hz pulse frequency

[104]

Melanoma Alginate
Hydrogel Mitoxantrone HIFU 20% or 40% amplitude

1 or 5 min [103]

Breast Cancer Polylysine
Nanogel

Epirubicin aided by
ICAM-1

HIFU 15 or 30 min
10 W [136]

Tumor Systems Chitosan
Hydrogel

Piezoelectric
Tetragonal BaTiO3

HIFU 1 MHz, 1 W/cm2

50% duty cycle
1, 2, 3, 4, 5, or 10 min

[109]

Tumor
Systems

Silk Fibroin
Hydrogel Vincristine

HIFU 1, 2, or 3 W
14.3, 28.5, or 42.8 W/cm2

20 s or 1 min
[137]

7. Conclusions

Ultrasound-responsive hydrogels have been developed using a wide range of methods
for delivery applications ranging from cancer therapeutics to bone regeneration. Ultrasound
offers great advantages as an external trigger. It is localized, non-invasive, has deep
tissue penetration, and offers real-time feedback by sonography. Ultrasound can also be
focused to a small region of space and transfer acoustic energy via different thermal or
non-thermal mechanisms.



Gels 2022, 8, 554 8 of 13

We envision that future hydrogel delivery platforms will be custom-tailored for the
chosen embedded payload in order to create synergistic effects between the payload and
the ultrasound application in a specific tissue. One promising area of development is the
use of thermoresponsive Diels-Alder linkers to crosslink polymeric hydrogels. This Click
Chemistry reaction presents several advantages, it can be conducted in aqueous solution,
it is highly efficient, it does not require a catalyst, and it is thermally reversible. When
triggered by heat, the retro Diels-Alder reaction yields the original reactants. The chemical
composition of these linkers can be modified to adjust the forward and reverse energy
barriers, allowing to fine-tune the associated payload release kinetics.

Drug delivery systems could also be designed to respond to a combination of external
focused ultrasound and internal physiological trigger (pH, enzyme, redox, or temperature)
to combine their benefits. Upcoming platforms might also try to leverage the ability of
ultrasound to facilitate transdermal delivery and enhanced uptake in cells and tissues.

Focused ultrasound will continue to be used in all types of drug delivery applica-
tions due to its ability to deliver payloads on-demand with spatiotemporal control. The
interactions between acoustic mechanisms and drug delivery mechanisms will be critical
in defining a specific application for an ultrasound-responsive hydrogel delivery sys-
tem. Acoustic energy can be transmitted either via thermal mechanisms or non-thermal
mechanisms. Delivery platforms for cancer therapy will most likely be dependent on
high-intensity focused ultrasound due to its ability to invoke a thermal mechanism in solid
tumors. Low-intensity focused ultrasound will be used for tissue engineering thanks to its
capability to enhance uptake in cells and tissue.

The main challenges for future ultrasound-responsive drug delivery systems are
related to the safety of the focused ultrasound, especially for high-intensity focused ultra-
sound. Running a system with the lowest amount of energy required is always beneficial to
mitigate any potential damage. Future ultrasound-responsive hydrogels will most likely be
rationally designed to reduce the amount of energy required to trigger the release and min-
imize any risk of damage to the surrounding tissues. Guidance from regulating agencies
such as the safe operating guidelines developed by the FDA will be helpful in the future to
safely translate to the clinic the emerging early-stage strategies currently explored in vitro.

Overall, ultrasound has a tremendous potential to become increasingly popular as a
stimulus for on-demand drug delivery platforms and to improve the clinical outcome of a
variety of advanced drug delivery applications.
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