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ABSTRACT 

Background. Chronic kidney disease ( CKD ) has emerged as a significant challenge to human health and economic 
stability in aging societies worldwide. Current clinical practice strategies remain insufficient for the early identification 

of kidney dysfunction, and the differential diagnosis of immunoglobulin A nephropathy ( IgAN ) predominantly relies on 

invasive kidney biopsy procedures. 
Methods. First, we assessed a case–control cohort to obtain urine samples from healthy controls and biopsy-confirmed 
CKD patients. Matrix-assisted laser desorption ionization time-of-flight ( MALDI-TOF ) mass spectrometry ( MS ) was 
applied to detect urinary peptide and then these urinary peptide profiles were used to construct diagnostic models to 
distinguish CKD patients from controls and identify IgAN patients from other nephropathy patients. Furthermore, we 
assessed the robustness of the diagnostic models and their reproducibility by applying different algorithms. 
Results. A rapid and accurate working platform for detecting CKD and its IgAN subtype based on urinary peptide 
pattern detected by MALDI-TOF MS was established. Naturally occurring urinary peptide profiles were used to construct 
a diagnostic model to distinguish CKD patients from controls and identify IgAN patients from other nephropathy 
patients. The performance of several algorithms was assessed and demonstrated that the robustness of the diagnostic 
models as well as their reproducibility were satisfactory. 
Conclusions. The present findings suggest that the CKD-related and IgAN-specific urinary peptides discovered facilitate 
precise identification of CKD and its IgAN subtype, offering a dependable framework for screening conditions linked to 
renal dysfunction. This will aid in comprehending the pathogenesis of nephropathy and identifying potential protein 

targets for the clinical management of nephropathy. 
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NTRODUCTION 

hronic kidney disease ( CKD ) is often characterized by progres- 
ive loss of renal function over 3 months, and it may eventually 
ead to end-stage renal disease ( ESRD ) [ 1 ]. The prevalence of CKD 

as risen dramatically in aging societies and CKD has become a 
urden on human health and economies [ 2 , 3 ]. Immunoglobu- 
in A nephropathy ( IgAN ) , the most common subtype of CKD, is 
athologically a primary glomerulonephritis due to mesangial 
eposition of IgA-related immune complexes [ 4 , 5 ]. 
In current clinical practice, renal function is generally eval- 

ated based on serum chemistry profiles and/or urine anal- 
ses, such as the levels of serum creatinine and urinary mi- 
roalbumin and the urinary albumin to creatinine ratio ( ACR ) 
r estimated glomerular filtration rate ( eGFR ) [ 1 , 6 ]. However,
hese parameters have major limitations [ 7 ], as they are nonspe- 
ific to kidney diseases and are often late manifestations of re- 
al damage; additionally, the differential diagnosis of subtypes 
f CKD relies on tissue biopsy, an invasive approach that may 
ause deadly complications. Therefore, novel biomarkers for re- 
al function are essential to meet the needs for noninvasive test- 
ng, early detection, differential diagnosis and even predicting 
rognosis. 
Driven by such clinical needs, new diagnostic methods and 

echnologies based on mass spectrometry have emerged. How- 
ver, at present, they have not been well promoted or applied in 
linical practice due to the barriers associated with advanced 
quipment and the lack of standardized protocols, including 
ioinformatic analysis processes and the quality control of such 
rocesses [ 8 –12 ]. 
Urine has recently emerged as a potential source of noninva- 

ive diagnostic biomarkers for human disease. In addition to uri- 
ary protein and microalbumin, urine contains a large number 
f endogenous peptides [ 13 ] that are accurately associated with 
omplex diseases, including kidney diseases [ 13 –16 ], cardiovas- 
ular diseases [ 17 ], graft-versus-host diseases [ 18 ] and cholan- 
iocarcinoma [ 19 ]. 

Matrix-assisted laser desorption ionization time-of-flight 
ass spectrometry ( MALDI-TOF MS ) can be used to acquire pep- 

ide profiles from various types of samples in a much simpler 
ay than other mass spectrometry techniques. Previous studies 
ave shown its potential in searching for novel biomarkers for 
arious diseases and in biosamples [ 13 , 20 –23 ], providing a rapid 
nd sensitive analysis of biomolecules [ 13 , 20 , 21 ], including uri- 
ary peptides. Currently, most diagnostic labs are equipped to 
erform MALDI-TOF MS, making its widespread clinical appli- 
ation feasible. 

To determine the probability of naturally occurring urinary 
eptides in the diagnosis of CKDs, a case–control cohort of 194 
iopsies from CKD patients and 48 healthy volunteers with nor- 
al kidney function was assessed in the present study. We per- 

ormed a MALDI-TOF MS–based urinary peptidomic analysis to 
dentify potential biomarkers for early detection, differential 
iagnosis and prognosis prediction. 

ATERIALS AND METHODS 

tudy subjects and ethical approval 

articipants with diagnosed CKD and healthy volunteers were 
ecruited from April 2019 to January 2020 at Zhujiang Hos- 
ital, Nanfang Hospital and Guangdong Provincial Hospital.
his study was approved by the Ethics Committee of Zhujiang 
ospital of Southern Medical University ( 2020-KY-016-01 ) , and 
he clinical trial registration number was ChiCTR2000033229 
 Chinese Clinical Trial Registry, www.chictr.org.cn ) . We enrolled 
94 volunteers with abnormal kidney function diagnosed patho- 
ogically by renal biopsy at nephrology clinics as CKD group,
hich included 82 cases of IgAN, 35 cases of membranous 
ephropathy, 33 cases of minimal change nephrosis, 15 cases of 
ocal segmental glomerulosclerosis, 17 cases of lupus nephritis,
 cases of diabetic nephropathy and 5 cases of membranoprolif- 
rative glomerulonephritis. Forty-eight volunteers with normal 
idney function ( eGFR ≥90 mL/min/1.73 m 

2 and ACR < 30 mg/g ) 
ere enrolled as controls, taking into consideration their age 
nd sex to ensure a proper match with CKD group. 

rine sample and metadata collection 

he patient is instructed to collect a random mid-stream urine 
ample. To do so, they should first wash their hands thoroughly 
ith soap and water. Then, the genital area is cleaned with a 
ild antiseptic wipe, moving from front to back. After voiding 

he first portion of urine into the toilet, they should collect the 
iddle portion of the urine stream in a sterile, wide-mouthed 
ontainer, while ensuring that the container does not come into 
ontact with the skin or any other surfaces. Once an adequate 
mount of mid-stream urine is collected ( usually about 10 mL ) ,
he container should be tightly sealed and labelled with the pa- 
ient’s name, date, and time of collection. Urine samples were 
entrifuged for 15 min at 3000 rpm. The supernatant was iso- 
ated and stored at –80°C until analysis. All urine samples were 
rocessed with the same standardized experimental protocols 
nd stored in the same type of plastic vials and boxes. Metadata 
nformation, including clinical demographic and kidney-related 
iochemical parameters, was gathered. 

ALDI-TOF MS peptide profiling 

ach urine sample was mixed with a matrix solution of α-cyano- 
-hydroxycinnamic acid ( 0.3 g/L ) at a ratio of 1:10. A total of 
 μL of sample/matrix solution was spotted onto the MALDI tar- 
et ( IntelliBio, Qingdao, China ) and left to crystallize fully and 
quably at 40°C. The samples from both study groups were eval- 
ated in a random order, and the disease status was blinded to 
inimize variability and systematic errors. MS analyses were 
onducted with a QuanTOF mass spectrometer ( IntelliBio, Qing- 
ao, China ) in linear positive mode. Positively charged ions were 
etected in the m/z range of 1000–10 000 Da. The MS spectra 
ere externally calibrated with a mixture of peptide calibra- 
ion standards, including 757.40, 1045.00, 2465.20, 3494.65 and 
734.50 Da. The average mass deviation was less than 2 ppm.
he following ion source parameters were used as follow: source 
oltage, 20 kV; detector voltage, 0.48 kV; laser pulse energy,
.8 μJ; pulse frequency, 3000 Hz; focus mass, 5000 Da; motion 
canning speed, 1 mm/sec; averaged shots per spectrum, 800.
uanTOF viewer software ( IntelliBio, Qingdao, China ) was ap- 
lied for the acquisition and processing of the spectra. Data 
nalysis of spectra from all urine samples was conducted us- 
ng R software ( v.4.0.3 ) . Detailed methods are provided in the 
upplementary data . 

tatistical analysis 

rincipal component analysis ( PCA ) was conducted using the 
rcomp function in the ‘stats’ package ( version 4.1.1 ) . Bray–
urtis distance matrices were calculated based on the feature 
atrix using the vegdist function in the ‘vegan’ package ( version 
.5.7 ) . Differences in groups represented in PCA plots were tested 
y permutational multivariate ANOVA with 1000 permutations.

http://www.chictr.org.cn
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data


Urinary peptides for CKD diagnosis on MALDI-TOF MS 1967 

Figure 1: Study design and analysis pipeline. ( A ) Scheme of establishing a diagnostic model and prognostic index for rapid and accurate screening of CKD and its 
subtypes patients. Urine sample gathered from recruited participants were analysed by MALDI-TOF after simple sample pretreatment. The significant feature peaks 
were identified and used to construct the diagnostic model with seven machine learning algorithms. ( B ) All participants were divided into a training cohort and an 

independent testing cohort. In training cohort, we select disease-related feature peaks to establish classification models with different machine learning methods. The 
performance of models was verified by testing cohort and compared with that of models constructed by clinical indicators. ( C ) Workflow for feature selection. Three 
machine learning methods were employed, namely, partial least squares-discriminant analysis ( PLS-DA ) , least absolute shrinkage and selection operator ( LASSO ) and 

recursive feature elimination with cross-validation ( RFECV ) , to select relevant features associated with diseases in the training cohort ( n = 160 ) . In the PLS-DA method, 
variable important in projection ( VIP ) scores of peaks were calculated, and the top 20 were chosen as disease features. For the LASSO method, 80% of the samples 
in the training dataset were randomly selected with 200 repetitions, and peaks with more than 20% occurrence frequency were considered as disease features. The 
RFECV method selected the top 20 peaks with automatic tuning of all the features chosen by cross-validation accuracy. By combining the above feature peaks and 

through further empirical verification based on frequency ( > 30% ) and AUC ( > 60% ) between groups, the remaining features were identified as distinct peaks between 
the groups. 
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ignificant differences were determined by the Wilcoxon rank- 
um test between two groups and the Kruskal–Wallis test among
ultiple groups. The P -value was adjusted by the Benjamini and
ochberg method. P < .05 was considered statistically signifi- 
ant. Spearman correlation analysis was used to examine the 
orrelation between feature peaks and laboratory tests. 

ESULTS 

xperimental workflow, demographic and clinical 
haracteristics of participants 

s demonstrated in Fig. 1 , in this study, we established an effi-
ient urinary peptidome workflow based on MALDI-TOF MS, and 
he spectrum data generated were analysed by using machine 
earning to identify patients with CKD and its IgAN subtype. In
etail, a total of 242 participants, including 194 patients with kid-
ey diseases and 48 controls with normal kidney function, were
ecruited for this study. Clean urine samples from participants 
ere self-collected and analysed by using MALDI-TOF MS after 
imple preprocessing. Participants were randomly divided into 
 training cohort ( 128 CKD patients and 32 healthy controls ) or
 testing cohort ( 66 CKD patients and 16 healthy controls ) with
n allocation of 2:1. The characteristics of the participants are
hown in Table 1 . Compared with controls, CKD patients had
orse renal function with a decreased eGFR and increased al-
uminuria. Additionally, other physiological indicators showed 
hat CKD patients had higher systolic blood pressure and blood
lucose levels, consistent with previous epidemiological reports 
 4 , 5 ]. All CKD participants underwent kidney biopsy to confirm
heir renal pathological diagnosis with Lee’s grading and the
xford classification system. 

aturally occurring urinary peptides can be used to 
onstruct a diagnostic model to distinguish CKD 

atients from healthy individuals 

ll urine samples were prepared and analysed using an in-house
tandard protocol resulting in individual datasets containing in-
ormation of generally 32–140 features ( presumably peptides )
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Table 1: The characteristics of the participants. 

Training cohort Test cohort 

Control ( n = 32 ) CKD ( n = 128 ) P -value Control ( n = 16 ) CKD ( n = 66 ) P -value

Age ( years ) 34 ( 18, 61 ) 37.5 ( 15, 77 ) .273 36.5 ( 22.0, 56.0 ) 39.0 ( 16.0, 78.0 ) .413 
Sex, n ( % ) 
Female 17 ( 53 ) 59 ( 46 ) .607 6 ( 38 ) 30 ( 45 ) .768 
Male 15 ( 47 ) 69 ( 54 ) 10 ( 62 ) 36 ( 55 ) 

eGFR ( mL/min/1.73 m 

2 ) 109 ( 91.4, 137 ) 90.8 ( 7.45 145 ) < .001 104 ( 91.3, 126 ) 74 ( 12.1, 138 ) .00396 
ACR ( mg/g ) 0 ( 0, 28.0 ) 1680 ( 10.2,47 800 ) < .001 0 ( 0, 21.2 ) 2260 ( 10.6, 77 700 ) < .001 
MA_U ( mg/L ) 0.25 ( 0, 27 ) 1070 ( 4.21, 25 800 ) < .001 0 ( 0, 24.0 ) 1510 ( 2.37, 12 400 ) < .001 
Ucrea ( μmol/L ) 11 300 ( 1530, 28 300 ) 7610 ( 649, 29 600 ) .0194 11 900 ( 1700, 28 800 ) 6610 ( 437, 24 700 ) .0623 
Serum albumin ( g/L ) 44.3 ( 40.4, 47,4 ) 34.3 ( 11.2, 51.2 ) < .001 41.7 ( 41.2, 47.1 ) 32.7 ( 15.7, 47.2 ) < .001 
TC ( mmol/L ) 5 ( 2.97, 7.40 ) 5.36 ( 0.840, 66.3 ) .0536 5.10 ( 4.10, 7.30 ) 6.16 ( 0.850, 16.0 ) .0276 
Scr ( μmol/L ) 67 ( 51.0, 90.0 ) 83.5 ( 30.0, 569 ) < .001 72.0 ( 54.0, 89.5 ) 96.0 ( 37.0, 478 ) .0181 
SBP ( mmHg ) 126 ( 100, 147 ) 131 ( 92.0, 192 ) .105 121 ( 96.0, 142 ) 129 ( 92.0, 179 ) .027 
DBP ( mmHg ) 76.5 ( 56.0, 93.0 ) 78 ( 55.0, 122 ) .257 68.0 ( 52.0, 89.0 ) 76.0 ( 58.0, 105 ) .00892 
Glu ( mmol/L ) 4.7 ( 3.70, 6.10 ) 4.72 ( 3.07, 16.3 ) .98 4.75 ( 4.20, 5.90 ) 4.80 ( 2.64, 13.5 ) .774 

Data are presented as median ( min, max ) . Chi-square test for classification variables. Wilcoxon rank-sum test for continuous variables. 
Ucrea, urine creatinine; TC, total cholesterol; Scr: serum creatinine; SBP, systolic blood pressure; DBP, diastolic blood pressure; Glu, glucose. 
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er sample. PCA using all detected features ( Fig. 2 A ) clearly 
howed that the urinary peptidomic pattern was significantly 
ifferent ( P = .001, R 2 = 0.075 ) between the healthy individuals 
nd CKD patients based on the Bray–Curtis dissimilarity matrix.
o better understand the major peptide features contributing to 
he shift in the urinary peptidome, we screened for biomark- 
rs according to the filter shown in Fig. 1 C by using the training 
ohort dataset. Thirty-one peptide features were filtered out, of 
hich 25 peaks were enriched in healthy individuals and 6 peaks 
ere enriched in CKD patients ( Fig. 2 B, Supplementary data, 
able S2 ) . Then, a classification model based on the random for- 
st algorithm was constructed using these 31 features to distin- 
uish the two groups. A receiver operating characteristic ( ROC ) 
urve was used to evaluate the performance of the model. In the 
raining cohort, the area under the ROC curve ( AUC ) was 98.3% 

 Fig. 2 C ) . We applied the model to the independent testing co- 
ort to validate the efficiency of the classification model, and the 
UC of the testing cohort was 99% ( Fig. 2 D ) , indicating that CKD 

atients can be well distinguished from healthy controls us- 
ng the naturally occurring urinary peptidome. Furthermore, we 
ompared the normalized intensity of these 31 CKD-related fea- 
ures between controls and patients with different eGFR levels 
 Supplementary data, Fig. S4 ) and identified features for which 
ntensity was closely related to kidney function. Four of 31 fea- 
ures are shown in Fig. 2 E–H, 3 of which ( M/Z1250.48, M/Z1909.6 
nd M/Z1975.09 ) were decreased as the eGFR declined, and one 
f them ( M/Z2925.93 ) was increased in both the training cohort 
nd testing cohort. In addition, we demonstrated the correla- 
ion between these four features and clinical parameters ( Fig. 2 I ) .
he three features mentioned above were negatively related 
o increased urinary protein loss and serum creatinine, while 
/Z2925.93 showed a harmful role with clinical parameters that 

eflect renal function. 

istinguishing IgAN patients from other nephropathy 
atients ( non-IgAN ) using machine learning based on 

gAN-specific feature peaks 

gAN is the most common glomerular disease in the clinic, and 
t is also the first major cause of ESRD [ 4 , 5 ]. In our cohort,
gAN subtype accounted for the highest proportion among CKD 

atients ( 42.3%, 82/194 ) , which aligns with the epidemiological 
urvey of CKD in China ( Supplementary data, Table S1 ) [ 24 ]. IgAN
atients were younger than non-IgAN patients and exhibited 
lightly better renal function indicators based on clinical assess- 
ents. Additionally, IgAN patients had lower blood pressure and 
lucose levels ( Table 2 ) . We sought to distinguish IgAN patients 
rom all CKD patients. PCA of all features revealed the difference 
etween control, IgAN and non-IgAN patients ( Fig. 3 A, P = .001,
 

2 = 0.099 ) ; among all features, 45 features either contributed to 
he discrimination between healthy controls and IgAN patients 
 Fig. 3 B left ) or distinguished IgAN patients from other glomeru- 
opathy patients ( Fig. 3 B right ) and were defined as IgAN-related 
eatures ( Supplementary data, Table S3 and Fig. S5 ) . PCA based 
n the IgAN-related features showed that the urinary peptide 
atterns of healthy controls, IgAN patients and non-IgAN pa- 
ients could be significantly distinguished ( Fig. 3 C, P = .001,
 

2 = 0.205 ) . Then, a classification model based on the random 

orest algorithm was constructed using these 45 features to dis- 
inguish IgAN patients from other glomerulopathy patients. The 
UCs of the ROC curve were 79% and 76.2% in the training cohort
nd testing cohort, respectively ( Fig. 3 D ) . IgAN is often diagnosed 
y kidney biopsy to specify the immunopathological lesion of 
he kidney tissue. 

At present, the commonly used pathological grading sys- 
em is Lee’s classification, which is a descriptive classification 
ethod, and the Oxford classification system which was devel- 
ped in 2009 as a pathological classification system for IgAN to 
redict the risk of disease progression [ 25 –27 ]. Thus, we sought
o determine the relationship between the urinary peptidome 
nd the results of kidney biopsy. PCA ( Fig. 3 E ) demonstrated that 
he urinary peptidome was shifted as IgAN progressed according 
o Lee’s grading. The Oxford classification is regarded as a more 
bjective indicator since it consists of five classification crite- 
ia [ 28 , 29 ], namely, the mesangial score, endocapillary hypercel- 
ularity absence, segmental glomerulosclerosis absence, tubular 
trophy and crescents ( MEST-C ) , within which MST is regarded 
s more relevant to the progression of ESRD [ 26 ]. Thus, we ex-
lored the difference in the urinary peptidome under MST clas- 
ification. PCA ( Fig. 3 F–H ) showed that the urinary peptidome 
hifted from right to left on the PC1 axis as the M, S and T

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
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Figure 2: The shifted urinary peptide profile between controls and CKD patients. ( A ) PCA analysis using urinary peptide profile showed significant difference between 
healthy participants and CKD patients. ( B ) The feature selection workflow used to identify 31 distinct peaks between control participants and CKD patients. The line 
chart represented the normalized intensity of these feature peaks. Among the 31 peaks, 25 were significantly enriched in healthy participants, while 5 out of the 6 

peaks were significantly enriched in CKD patients. ( C ) ROC curves of machine learning models distinguishing between healthy participants and CKD patients with five 
repeats and 10-fold cross-validation in training cohort. ( D ) ROC curves of machine learning models distinguishing between healthy participants and CKD patients in 
testing cohost. ( E –H ) Four feature peaks with significantly increased/decreased intensity among control, eGFR1–2 and eGFR3–4, respectively. In each subfigure, the left 
panel displays partial raw mass spectra from MALDI-TOF MS, while the right panel illustrates the intensity of urinary peptides among groups. ( I ) The association of 
six feature peaks with kidney-related clinical parameters. Sa, serum albumin; UA, uric acid; Up_24 h, 24-h urinary protein quantity; Scr, serum creatinine. 
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lassification grading was aggravated. Furthermore, we found 
any features associated with Lee’s classification grading, in 
hich M/Z1752.24 ( Fig. 3 I ) and M/Z1932.05 ( Fig. 3 J ) decreased
s Lee’s score increased. These findings indicated that IgAN- 
pecific features detected by MALDI-TOF MS may be associated 
ith the progression of ESRD and can be recognized as potential
iomarkers. 

he robustness of the diagnostic models and batch 

esults indicated satisfactory reproducibility 

s mentioned above, we used the random forest algorithm to
uild diagnostic models, which resulted in an AUC of approxi-
ately 99% for the identification of CKD patients and nearly 80%

or IgAN patients. The random forest algorithm can be used to
rocess data of high dimensions and includes a classifier with
ultiple decision trees. Although no algorithm solves all prob- 

ems perfectly in the field of machine learning, especially for su-
ervised learning ( e.g. predictive modelling ) , in the current study
e tried a variety of machine learning methods and used algo-
ithms that are not sensitive to imbalanced data ( e.g. ctree, SVM )
o verify the robustness of the results. In addition to random for-
st, we used six different machine learning algorithms to gen-
rate diagnostic models. In the model that distinguished CKD
atients and healthy controls, the six models achieved AUCs of
0.2%–98.5% in the training cohort and 83.8%–99.7% in the test-
ng cohort ( Fig. 4 A ) . In the model that distinguished IgAN from
on-IgAN patients ( Fig. 4C ) , the other six algorithms achieved
UCs from 61.3% to 80.0% in the training cohort and 61.2%–85.1%
n the testing cohort. 

The coefficients of variation of the seven models’ AUC-ROCs
ere calculated to assess the reproducibility of the machine

earning modelling of the MALDI-TOF MS spectrum acquired
n five different days. In the CKD and healthy control models,
early all coefficients of variation ( CVs ) of the AUC-ROCs of the
even models generated from the spectrum acquired from five
ifferent batches were less than 5% in the training and test-
ng data ( Fig. 4 B ) , and in the model that identified IgAN from
KD patients, CVs were approximately 10% due to the rather
mall amount of data ( Fig. 4 D ) . These results show that the re-
roducibility of machine learning modelling using five different
atches of MALDI-TOF MS spectra is satisfactory in discriminat-
ng CKD patients from healthy controls. 

Finally, we compared the error counts by using urinary pep-
idomic modelling of urinary microalbumin or ACR to screen for
KD. By using a random forest model for diagnosis, two control



1970 Z. Li et al .

I J

N
or

m
ol

iz
ed

 in
te

ns
ity

A B

Control
M0
M1

R2 = 0.267
P = 0.001

−0.001 0.000 0.001

PC1(53.01%)

P
C

2(
12

.0
3%

)
Oxford classification: M

E F

Control

Grade III
Grade II Grade IV

Grade V

R2 = 0.301
P = 0.001

−1
e−

03
−5

e−
04

0
5e

−0
4

1e
−0

3

−1
e−

03
−5

e−
04

0
5e

−0
4

1e
−0

3

−0.001 0.000 0.001

PC1(53.01%)

P
C

2(
12

.0
3%

)

Lee classification

Control
T0

T1
T2

R2 = 0.299
P = 0.001

−0.001 0.000 0.001
PC1(53.01%)

P
C

2(
12

.0
3%

)

Oxford classification: T
G H

−1
e−

03
−5

e−
04

0
5e

−0
4

1e
−0

3

−1
e−

03
−5

e−
04

0
5e

−0
4

1e
−0

3

Control
S0
S1

R2 = 0.258
P = 0.001

−0.001 0.000 0.001
PC1(53.01%)

P
C

2(
12

.0
3%

)

Oxford classification: S

R2 = 0.099
P = 0.001

−0
.0

02
−0

.0
01

0.
00

0
0.

00
1

0.
00

2

−0.002 −0.001 0.000 0.001 0.002
PC1(24.48%)

P
C

2(
11

.9
3%

)

Control
IgAN Non-IgAN

Training data Testing data

Con
tro

l

Grad
e I

I-II
I

Grad
e I

V-V

Con
tro

l

Grad
e I

I-II
I

Grad
e I

V-V
0

2e−04

4e−04

6e−04

8e−04

In
te

ns
ity

M/Z 1752.24

0.01 0.01 0.0430.039

Con
tro

l

Grad
e I

I-II
I

Grad
e I

V-V

Con
tro

l

Grad
e I

I-II
I

Grad
e I

V-V

Training data Testing data

0

3e−04

6e−04

9e−04

In
te

ns
ity

M/Z 1932.05

2e−070.046 0.00038 0.0081

C D
R2 = 0.205
P = 0.001

−0
.0

01
0.

00
0

0.
00

1

−0.002 −0.001 0.000 0.001

PC1(48.72%)

P
C

2(
12

.5
7%

)

Control

IgAN

Non-IgAN

Training data(IgAN VS Non-IgAN)

Specificity (%)

S
en

si
tiv

ity
 (%

)

Testing data(IgAN VS Non-IgAN)

Specificity (%)

S
en

si
tiv

ity
 (%

)

AUC(%)

100 80 60 40 20 0

0
20

40
60

80
10

0

rf: 79.0

AUC(%)

100 80 60 40 20 0

0
20

40
60

80
10

0

rf: 76.2

******
***
***
******
***

******

***

***

******

***
***

***

***
******

***

******
****

***

**

***

***

Features between Control and IgAN

Control
IgAN

Control
IgAN

0.
2

0.
4

0.
6

***

***

******

**
*****

***

*
***

***
***

***
**

**

******
***

***

***
Features between IgAN and Non-IgAN

Non-IgAN
IgAN

Non-IgAN
IgAN

0.
1

0.
2

0.
3

0.
4

0.
5

N
or

m
ol

iz
ed

 in
te

ns
ity

Figure 3: The shifted urinary peptide profile between controls, and IgAN and non-IgAN patients. ( A ) PCA analysis using total urinary peptide profile showed significant 
difference between groups. ( B ) The line chart showed the 45 feature peaks selected according to feature selection workflow. Among 45 peaks, 28 peaks ( 22 peaks 

enriched significantly in healthy participants compared with IgAN patients, while 6 peaks enriched significantly in IgAN patients ) were selected between healthy 
participants and IgAN patients and 21 peaks ( one peak enriched significantly in non-IgAN subpopulations compared with IgAN patients, while 20 peaks enriched 
significantly in IgAN patients ) were selected between IgAN patients and non-IgAN subpopulations. ( C ) PCA analysis using the 45 features peaks. ( D ) ROC curves by 
machine learning method. ( E ) PCA analysis using 45 feature peaks showed urine profile shift progressively during development of IgAN in Lee classification. ( F –H ) PCA 
analysis using 45 feature peaks showed urine profile shift progressively during development of IgAN in Oxford classification M ( F ) , S ( G ) and T ( H ) , respectively. ( I , J ) 
The intensity of two feature peaks significantly increased/deceased between controls, Grade II-III and Grade IV-V, respectively. For the Lee’s grading system for IgAN, 
patients classified as Grade II-III are reflecting moderate disease severity. Those in Grade IV-V are indicating severe disease with significant kidney damage. 

Table 2: The characteristics of the participants among control, IgAN and non-IgAN groups. 

Control IgAN Non-IgAN 

( N = 48 ) ( N = 82 ) ( N = 112 ) P -value

Age ( years ) 35.5 ( 18.0, 61.0 ) 33.0 ( 15.0, 73.0 ) 46.5 ( 16.0, 78.0 ) < .001 
Sex, n ( % ) 
Female 23 ( 47.9 ) 46 ( 56.1 ) 43 ( 38.4 ) .049 
Male 25 ( 52.1 ) 36 ( 43.9 ) 69 ( 61.6 ) 

eGFR ( mL/min/1.73 m 

2 ) 108 ( 91.3, 137 ) 89.1 ( 7.92, 138 ) 85.8 ( 7.45, 145 ) < .001 
ACR ( mg/g ) 0 ( 0, 28.0 ) 986 ( 10.2, 30 700 ) 2490 ( 10.6, 77 700 ) < .001 
MA_U ( mg/L ) 0 ( 0, 27.0 ) 808 ( 2.37, 16 600 ) 2040 ( 4.21, 25 800 ) < .001 
Ucrea ( μmol/L ) 11 700 ( 1530, 28 800 ) 6940 ( 437, 29 600 ) 7640 ( 895, 24 900 ) .00929 
Serum albumin ( g/L ) 41.8 ( 40.4, 47.4 ) 37.9 ( 15.6, 50.8 ) 25.8 ( 11.2, 51.2 ) < .001 
TC ( mmol/L ) 5.00 ( 2.97, 7.40 ) 4.83 ( 0.850, 18.9 ) 6.33 ( 0.840, 66.3 ) < .001 
Scr ( μmol/L ) 68.5 ( 51.0, 90.0 ) 88.0 ( 45.0, 569 ) 86.0 ( 30.0, 521 ) < .001 
SBP ( mmHg ) 124 ( 96.0, 147 ) 121 ( 92.0, 186 ) 134 ( 92.0, 192 ) < .001 
DBP ( mmHg ) 73.0 ( 52.0, 93.0 ) 76.0 ( 55.0, 115 ) 79.0 ( 56.0, 122 ) .0451 
Glu ( mmol/L ) 4.70 ( 3.70, 6.10 ) 4.67 ( 3.07, 9.62 ) 4.87 ( 2.64, 16.3 ) .0488 

Data are presented as median ( min, max ) . Chi-square test for classification variables. Kruskal–Wallis test for continuous variables. 

Ucrea, urine creatinine; TC, total cholesterol; Scr: serum creatinine; SBP, systolic blood pressure; DBP, diastolic blood pressure; Glu, glucose. 
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nd one CKD patients were incorrectly diagnosed, while when 
sing urinary microalbumin or ACR to screen for CKD in current 
ractice, five or seven CKD patients were incorrectly diagnosed 
eparately, indicating that urinary peptide-based RF modelling 
ad a better accuracy for CKD diagnosis ( Fig. 4 E ) . 
ISCUSSION 

n this study, we developed a rapid and accurate pipeline for 
etecting CKD and its IgAN subgroup based on multivariate uri- 
ary peptidomic pattern detection with MALDI-TOF MS. These 
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Figure 4: Results of repeated testing of six machine learning models. ( A ) The ROC curves of various machine learning models ( including nb, svm, gbm, adaboost, ctree 

and knn algorithms ) used to distinguish between healthy participants and CKD patients. These models were trained using five repeats and 10-fold cross-validation in 
the training cohort. The right side of the figure shows the ROC curves of the same models used to distinguish between healthy participants and CKD patients in the 
testing cohort. ( B ) Radar plot showing the CV of seven machine learning models in distinguishing between controls and CKD. This plot represents five-repeats testing. 
( C ) The ROC curves of machine learning models ( nb, svm, gbm, adaboost, ctree and knn algorithms ) used to distinguish between IgAN and Non-IgAN patients. The 

models were trained using five repeats and 10-fold cross-validation in the training cohort. The right side of the figure shows the ROC curves of the same models used 
to distinguish between IgAN and non-IgAN patients in the testing cohort. ( D ) Radar plot showing the CV of seven machine learning models in distinguishing between 
IgAN and non-IgAN. This plot represents five-repeats testing. ( E ) The error counts for the random forest model, ACR and MA_U are displayed. CKD errors are denoted 

in red, while control errors are in blue. 
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atterns have superior performance to current clinical param- 
ters ( Supplementary data, Fig. S1 ) . Our data were robustly
erified by an independent testing cohort as well as multiple
achine learning algorithms with five repeats and 10-fold cross- 
alidation. Of note, our results suggest that these patterns main-
ain consistent diagnostic value across time and batches. 

We established a CKD cohort with confirmed pathologi- 
al diagnosis by kidney biopsy, and clinical data suggested 
hat our cohort was at an early stage of kidney disease
 Supplementary data, Fig. S1A ) . Although urinary microalbu- 
in and ACR are currently good indicators of nephropathy in

he clinic, from our data, the AUCs of ACR and urine microal-
umin ( MA_U ) in distinguishing control and CKD were 99.66% 

nd 99.11%, respectively ( Supplementary data, Fig. S1B ) , while 
A_U varied greatly between individuals ( Table 1 ) , and the use
f MA_U’s reference range alone to diagnose CKD resulted in a
reater false-negative rate in the current cohort ( Fig. 4 E ) . 

We identified a panel of IgAN-specific urinary biomarkers,
nd the combination of feature peaks compared with clinical 
ndicators showed potential diagnostic value for distinguishing 
gAN patients from other CKD patients. In addition, we screened
ut certain urinary peptides that were strongly related to kidney-
elated clinical parameters, including the eGFR and urinary mi-
roalbumin level. The confirmation of IgAN diagnosis relies on
idney biopsy [ 4 , 5 ]; currently, Lee’s grading and the Oxford clas-
ification are widely used in the clinic [ 30 ]. Lee’s grading sys-
em was proposed in 1982 and is easy to use and apply [ 31 ].
he Oxford classification system was first published in 2009 and
as been increasingly used in clinical practice around the world.
oth Lee’s grading and the Oxford classification were used to
redict the clinical prognosis of IgAN patients based on renal
iopsy [ 26 , 27 ]. In this study, all CKD patients underwent kidney
iopsy and were pathologically evaluated by Lee’s grading and
he Oxford classification. We found a significant association be-
ween Lee’s grading and the M/S/T features of the Oxford clas-
ification ( Supplementary data, Figs S2 and S3 ) [ 28 ]. It has also
een reported [ 26 ] that the M/S/T features of the Oxford classifi-
ation can be used in the prediction of IgAN prognosis; thus, we
roposed that the urinary peptide pattern may be a biomarker
ssociated with the prognosis of IgAN. 

In all, 25 of 31 CKD-related and 31 of 45 IgAN-specific uri-
ary peptides were identified by liquid chromatography–MS/MS 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad211#supplementary-data
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ithout proteolysis ( Supplementary data, Tables S4 and S5 ) ; 
mong those, uromodulin had the most pronounced change de- 
ected in this study. Previous study indicated that uromodulin 
rotein has emerged as a promising biomarker for assessing 
ubular function and nephron mass, offering a potential alter- 
ative to existing markers that primarily focus on glomerular 
unction. Our study further identified a specific fragment of uro- 
odulin, the 1909.6 m/z peptide, to have the strongest associ- 
tion with renal function, which suggests that measuring this 
pecific fragment may be clinically relevant for assessing renal 
mpairment or CKD. However, the detailed mechanisms under- 
ying this association and the potential clinical applications re- 
uire further investigation. Notably, we have discovered a poten- 
ial new biomarker called Methyl-CpG-binding domain protein 5 
 MBD5 fragment, 1283.46 m/z ) , a family member of MBD2, which 
as been reported to be associated with CKD [ 32 , 33 ]. In the cur-
ent study, MBD5 fragment 1283.46 m/z was downregulated in 
KD; further research will reveal the specific mechanisms and 
xplore the potential of MBD5 as a biomarker in CKD. 

Prior to this study, Good et al . [ 34 ] reported that a support-
ector classification model based on 273 urinary peptides de- 
ected by capillary electrophoresis–MS can distinguish between 
ealthy subjects and CKD patients. In addition, in small sam- 
le size cohorts [ 35 ], urinary peptides have been found to be sig- 
ificantly different between healthy and CKD individuals, even 
hose with distinct types of kidney disease, based on a plat- 
orm combining a magnetic bead separation system with MS.
n this study, our urinary peptides were detected based on the 
ALDI-TOF MS platform, which is equipped in most diagnostic 

abs and requires simple preprocessing. We validated that uri- 
ary peptidomics can overcome the batch effect and has sta- 
le performance with acceptable CV% in repeated experiments.
hese results indicate that the urinary peptidome has potential 
alue as a novel, noninvasive and robust biomarker for kidney 
iseases. 
In conclusion, our current results indicated that the identi- 

ed CKD-related and IgAN-specific urinary peptides enable ac- 
urate detection of CKD and its IgAN subtype, providing a robust 
ipeline for screening diseases associated with kidney dysfunc- 
ion. The results of our study have provided valuable insights 
nto the early screening of CKD patients. In addition, our study 
as shown that the peptide we identified holds promising po- 
ential as a diagnostic biomarker for use in clinical settings, uti- 
izing both MALDI-TOF MS platform and immunology methods.
hese findings have opened up new avenues for improving the 
iagnosis and management of CKD and IgAN patients. Despite 
he potential diagnostic value, in the future, larger independent 
ohorts are needed to verify the reliability of model extrapo- 
ation before being applied in the clinic as a routine screening 
ethod to understand the pathogenesis of nephropathy and 
rovide potential protein targets for the clinical treatment of 
ephropathy. 
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