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CE–MS-based urinary biomarkers to distinguish
non-significant from significant prostate cancer
Maria Frantzi1, Enrique Gomez Gomez2,3,4, Ana Blanca Pedregosa2,3, José Valero Rosa2,3, Agnieszka Latosinska1, Zoran Culig5,
Axel S. Merseburger6, Raul M. Luque3,4,7,8, María José Requena Tapia2,3, Harald Mischak1 and Julia Carrasco Valiente2,3

BACKGROUND: Prostate cancer progresses slowly when present in low risk forms but can be lethal when it progresses to
metastatic disease. A non-invasive test that can detect significant prostate cancer is needed to guide patient management.
METHODS: Capillary electrophoresis/mass spectrometry has been employed to identify urinary peptides that may accurately
detect significant prostate cancer. Urine samples from 823 patients with PSA (<15 ng/ml) were collected prior to biopsy.
A case–control comparison was performed in a training set of 543 patients (nSig= 98; nnon-Sig= 445) and a validation set of
280 patients (nSig= 48, nnon-Sig= 232). Totally, 19 significant peptides were subsequently combined by a support vector
machine algorithm.
RESULTS: Independent validation of the 19-biomarker model in 280 patients resulted in a 90% sensitivity and 59% specificity,
with an AUC of 0.81, outperforming PSA (AUC= 0.58) and the ERSPC-3/4 risk calculator (AUC= 0.69) in the validation set.
CONCLUSIONS: This multi-parametric model holds promise to improve the current diagnosis of significant prostate cancer. This
test as a guide to biopsy could help to decrease the number of biopsies and guide intervention. Nevertheless, further prospective
validation in an external clinical cohort is required to assess the exact performance characteristics.
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BACKGROUND
Prostate cancer (PCa) is ranked as the second most frequently
diagnosed cancer in men,1 and the most frequent non-skin
cancer in developed countries.2 Although PCa is diagnosed in
15–20% of men, the lifetime risk of death due to PCa is very low
(3%),3 mainly because low-risk forms progress slowly and the
disease is well treatable in early stages. PCa diagnosis is currently
mostly based on serum prostate-specific antigen (PSA) testing,
digital rectal examination (DRE) and confirmed by a multi-core
prostatic biopsy.4 Multiple factors not related to prostate
malignancy may affect the level of blood PSA [inflammation,
infection or presence of benign prostate hyperplasia (BPH)].
Therefore, PSA lacks specificity particularly in the intermediate
range, with only 22–27% of those patients with PSA between
4–10 ng/ml to be positively confirmed with PCa after biopsy.5 In
addition, PSA screening and multicore biopsy have increased the
detection rate of small, localised, well-differentiated PCa,6

resulting in over-diagnosis and over-treatment.6–9 For those
patients presenting with an indolent or clinically non-significant
cancer (Gleason score (GS) < 7),10 immediate treatment may not
be beneficial and ideal management may be a conservative
approach, such as active surveillance (AS).11 Management of

patients with non-significant PCa currently relies on repeated
biopsies, series of PSA measurements and DRE, while the
uncertainty to properly assess PCa imposes a significant social
and economic burden on patients and health insurances because
of the side effects and treatment costs.12 For these reasons,
better stratification of the risk for significant PCa (Sig PCa)
appears beneficial to guide patient management.
Aimed at improving on the current discrimination of Sig PCa by

non-invasive means, capillary-electrophoresis coupled to mass
spectrometry (CE–MS) was employed to identify peptides specific
for PCa in urine samples from patients with clinically significant
and non-significant PCa. Urine was selected, as it presents several
advantages over blood or tissue, among others: easy, non-invasive
repeated sampling, effortless availability and high stability of the
proteome. Although several candidate biomarkers have been
described,13–15 the currently available single biomarkers lack
diagnostic accuracy for routine clinical application. At the same
time, the high biological variability of PCa suggests that a
combination of clearly defined, -omics derived biomarkers, rather
than a single biomarker, may provide higher accuracy to detect
cancer.16–18 In this study, we aimed to establish a biomarker
model to detect Sig PCa.
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METHODS
Study population and design
A case–control study was performed on patients who underwent a
transrectal ultrasound (TRUS)-guided prostate biopsy from January
2013 to July 2015 in the Urology department, Reina Sofia
Hospital, Cordoba, Spain, as part of the ONCOVER project. Ethical
approval was obtained by the Reina Sofia Hospital Research Ethics
Committee and informed consent was obtained from all
participants for the project. ONCOVER cohort included patients
who attended the urology clinic of Reina Sofia Hospital with a
recommendation for a prostate biopsy according to clinical
practice.19 Patients provided a urine sample and underwent
blood testing just before undergoing a prostate biopsy. Recom-
mendations for biopsy indication were: suspicious findings on
DRE, PSA > 10 ng/mL, or PSA 3–10 ng/mL if free PSA ratio was low
(usually, <25–30%), and in patients with previous biopsies, a
persistently suspicious indication of PCa (persistently elevated
PSA, suspicious DRE, etc.). For transrectal prostate biopsy, 12 cores
were obtained from patients undergoing the first biopsy
procedure, and a minimum of 16 biopsy cores for those who
had a previous biopsy. For this analysis, 823 PCa patients
were included according to the following criteria: (a) PSA level
<15 ng/mL on the day of the biopsy and (b) no previous diagnoses
of PCa. For all 823 patients, complete records for all the main
variables were available, including PSA, DRE, number of previous
biopsies, 5-alpha-reductase inhibitor intake and pathology results.
Information on prostate volume was additionally retrieved for 721
patients, based on the measurements that had been performed
with TRUS during the biopsy. Because of missing data for
102 patients, and in order to avoid introducing any selection
bias, for this analysis prostate volume was not included in
the nomogram analysis, but only for comparison purposes (i.e.,
biomarkers compared to prostate volume). Patients treated with
5-alpha-reductase inhibitors for urinary symptoms were also
included in the study, but excluded from the analysis for the
comparison with PSA, as treatment with 5-alpha-reductase
inhibitors is expected to affect PSA levels. All biopsy specimens
were analysed by a urologic pathologist according to International
Society of Urological Pathology 2005 modified criteria.20

Clinical and laboratory data, including among others: age, PSA
level (on the day of biopsy), the results of DRE, number of previous
biopsies, prior treatment with 5-alpha-reductase inhibitors,
prostate volume by TRUS, urinary creatinine and pathology
results were collected and presented in the Supplementary
Table 1. A score based on the risk calculator of the European
Randomised Study of Screening for Prostate Cancer (ERSPC) was
calculated (http://www.prostatecancer-riskcalculator.com/seven-
prostate-cancer-risk calculators). The formulas that were utilised
in this study, were ERSPC- 3, for those patients during initial
biopsy, and ERSPC- 4, for patients during repeated biopsy. For the
above estimates, the variables that are considered are PSA and
DRE and the result of previous biopsy for those patients who
underwent (biopsy before (ERSPC-4). GS was used in this study to
discriminate Sig PCa (GS ≥ 7) from non-Sig PCa.

MS analysis
CE–MS analysis was performed for the 823 urine samples,
following the previously established protocols for samples
preparation and data acquisition, previously described in detail.21

In brief, sample preparation was performed by diluting 700 µl
urine aliquots from the urine collected from patients prior to the
prostate biopsy, with two volumes (1.4 ml) alkaline buffer
containing 2 M urea, 10 mM NH4OH and 0.02% sodium dodecyl
sulphate (pH 10.5). Subsequently, the samples were filtered by
Centrisart ultracentrifugation filters (Sartorius, Göttingen, Ger-
many) to retain proteins/polypeptides below 20 kDa and were
subsequently desalted over PD-10 columns (GE Healthcare,
Munich, Germany). The peptide extracts were lyophilised and

resuspended in high-performance liquid-chromatography (LC)
grade water. CE–MS analysis and data processing were performed
according to ISO13485 standards yielding quality controlled
urinary data sets.21 Mass spectral ion peaks representing identical
molecules at different charge states were deconvoluted into single
masses using MosaiquesVisu software.22,23 The peak list char-
acterises each peptide by its molecular mass (kDa), normalised
migration time (min) and normalised signal intensity (AU).22,23

Normalisation of the CE–MS data were based on twenty nine
collagen fragments that are generally not affected by disease and
serve as internal standards.24 After normalisation, all proteomics
datasets were deposited, matched, and annotated in a Microsoft
SQL database and used as input in the presented study.
Transformation of the data (log-transformation) was performed
prior to the statistical analysis, as previously described.25

Peptide sequencing and matching
Matching of the amino acid sequences with the CE–MS acquired
ion peaks was based on mass correlation between CE–MS and LC-
tandem MS analysis. The amino acid sequence was determined by
MS/MS analysis using either a PACE CE or a Dionex Ultimate 3000
RSLS nanoflow system (Dionex, Camberly UK) coupled to an
Orbitrap Velos instrument (Thermo Scientific), as previously
described.26 Protein matching and data analysis was based on
Proteome Discoverer 1.2 (activation type: HCD; precursor mass
tolerance: 5 ppm; fragment mass tolerance: 0.05 Da). No fixed
modifications were selected, oxidation of methionine and proline
were selected as variable modifications. The data were searched
against the UniProt human database27 without enzyme specificity.
Further validation of the obtained peptide identifications is based
on the assessment of the peptide charge at the working pH of 2.2
and the CE-migration time results.28

Statistical analysis
A case–control statistical comparison was performed to detect
potentially Sig PCa biomarkers. The datasets were grouped into:
(a) a case set of clinically Sig PCa (nSig= 146), including PCa
patients with high-risk PCa (GS ≥ 7) and (b) a control set including
clinically non-significant PCa (low-risk PCa; GS= 6) along with
patients presenting with other aetiologies (n= 677). The groups
were further divided into a discovery (nSig= 98 cases of Sig PCa;
nnon-Sig= 445 controls) and validation set (nSig= 48 cases of Sig
PCa, nnon-Sig= 232 controls), according to the ‘2/3–1/3 rule’, as
previously described.16 Random sampling guarantees that each
group/class is properly represented in all data subsets. Based on
the literature,29 this commonly used strategy of allocating two-
third of cases for training is close to optimal for large sized
datasets (n ≥ 100) with strong signals (i.e., >85% full dataset
accuracy).29

Further statistical analysis was performed to identify potential
bias, considering the clinical data shown in Table 1.
Mann–Whitney non-parametric test was used to investigate
statistically significant differences between the two groups for
continuous variables and chi-squared test for categorical variables,
respectively. The urinary CE–MS profiles were compared for
differences at the individual peptide excretion levels by applying
the Wilcoxon rank sum test.25 A frequency threshold of 70% in at
least one of the two groups was applied. To increase the validity of
the statistical approach, permutation analysis was performed by
randomly excluding 30% of the samples and repeated five times.
Statistical correction of the estimated p values for multivariate
testing was performed based on the Benjamini–Hochberg
method.30 Only the peptides significant (p < 0.05) in all five
permutation analyses were considered for further analysis.

Optimisation of the SVM-based biomarker model
The urinary peptide-based classifier was developed in the training
set, using MosaCluster (version 1.7.0), a support vector machine
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(SVM)-based software. The classifier was optimised based on the
shortlisted PCa specific biomarkers with each biomarker repre-
senting one dimension in the n-dimensional parameter space.17

In additiony, the cut-off was established based on the discovery
set. In the independent validation, the sensitivity and specificity
estimates for the SVM-based peptide marker pattern
were calculated based on the number of correctly classified
samples. The receiver operating characteristic (ROC) plots and
the respective confidence intervals (95% CI) were based on
exact binomial calculations and were calculated in MedCalc
12.7.5.0 (Mariakerke, Belgium). Area under the curve (AUC)
values were then compared using DeLong tests. Statistical
comparisons of the classification scores in the validation cohort
were performed by the Kruskal–Wallis rank sum test using
MedCalc. To address the potential clinical utility of the models,
we performed decision curve analysis, as proposed by Vickers and
Elkin.31 This method has the advantage of not requiring the
specification of the relative cost for false-positives and false-
negatives, defining a net benefit as a function of the decision
threshold at which one would consider obtaining a biopsy. For the
analysis MedCalc 12.7.5.0 (Mariakerke, Belgium) and R version 3.2.3
were used.

RESULTS
Study cohort for patients with clinically significant and non-
significant PCa
Proteomics profiling data were acquired from 823 patients
suspicious for PCa. Out of those, 677 (82.3%) presented with
non-significant PCa (GS= 6), benign or atypical conditions (control
group) and 146 (17.7%) were included in the case group due to
presence of Sig PCa. Men with Sig PCa were significantly older
[median age= 68; interquartile range (IQR)= 10.3] compared to
men from control group (median age= 63; IQR= 11.5; p < 0.0001).
In addition, patients from the control group had significantly lower
PSA levels (median= 5.1 ng/ml; IQR= 3.3) compared to those
from case group [median= 6.1 ng/ml; IQR= 4.1; p= 0.0013].
Within the control group, 480 (70.9%) did not undergo any
previous negative biopsy, while for patients with Sig PCa, the
respective proportion was 85.6% (n= 125); (p= 0.0007). The

clinical characteristics along with the sample distribution are
presented in the Table 1.

Development of a biomarker model based on CE–MS urinary
peptide profiling
For the identification of CE–MS specific biomarkers, a case–control
comparison was performed in the discovery set of 543 patients,
schematically depicted in Fig. 1. The comparison enabled the
identification of 19 peptides displaying statistically significant
differences in their distribution between patients with Sig PCa
compared to the control group (Supplementary Table 2). The
graphical depiction of the compiled urinary profiling signatures is
comparatively presented in Fig. 2. Using the 19 statistically altered
peptide markers an SVM machine learning algorithm was adopted
and optimise to develop a classifier (Fig. 1).

Independent validation of the SVM-based biomarker model
Validation of the 19-biomarker model in the independent set (n=
280), in line with the recommendations for biomarker identifica-
tion and reporting in clinical proteomics,25 resulted in an overall
AUC value of 0.81 ranged from 0.76 to 0.86 (95% CI: p < 0.0001).
Fig. 3 presents the ROC curve, which at the pre-defined cut-off of
−0.07 resulted in sensitivity levels of 90% (77–97; 95% CI) and
specificity of 59% (52–65; 95% CI), respectively. Additional
statistical analysis was performed, by application of a post hoc
rank sum test to compare the scores between the case and control
groups. As depicted in Fig. 4a, the classification of each group
differs at the significance level of p < 0.0001. Moreover, as shown
in Fig. 4b, there is a gradual increase in the 19-biomarker model
score, as GS increases, while a significant difference is observed
between the 19-biomarker model scores of GS 6 tumours and
GS ≥ 7 (p < 0.0001).

Comparative analysis of the 19-biomarker model with clinical
parameters
A direct comparison of the 19-biomarker model with PSA was
performed in the validation set. Of note, out of 280 patients, 6
patients had received previous treatment with 5-alpha-reductase
inhibitors, therefore for the comparative analysis only 274 patients
were considered. As depicted in Fig. 5a, the multi-peptide model

Study overview

Discovery
phase

Definition of
significant
markers

Classifier
optimisation

Validation
phase

Control group; n = 445

Case group; n = 98

Case–control statistical analysis

Control group; n = 232

Case group; n = 48

Machine learning: support vector machine

Low-grade PCa: GS=6

High-grade PCa: GS ≥3+4

Wilcoxon test (p < 0.05)
Adjustment for FDR: benjamini–hochberg test (p < 0.05)
Frequency threshold 70%

19 peptides

High-grade PCa: GS ≥3+4

Low-grade PCa: GS=6, prostatitis, atypical small acinar
proliferation, high-grade prostatic intraepithelial neoplasia,
benign prostatic hyperplasia.

C=1280 and gamma= 0.0012

5× permutations (with randomly 30% discard)

Benign conditions: prostatitis, atypical small acinar proliferation,
high-grade prostatic intraepithelial neoplasia, benign prostatic
hyperplasia

Fig. 1 Schematic representation of the study design and the analytical workflow for the development of urine CE–MS-based biomarker panel
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significantly outperformed the PSA testing with the AUC values at
0.82 and 0.58, respectively (p < 0.0001). For those patients where
clinical records on prostate volume were available (n= 240), an
additional comparison between the 19-biomarker model and the
prostate volume was performed, indicating a significantly better
accuracy for the 19-biomarker model (AUC of 0.81) compared to
prostate volume (AUC of 0.64; p= 0.0103). Moreover, logistic
regression analysis was performed for the available clinical
variables to assess the potential significant predictive value of
each of those in the discrimination of Sig PCa. The included clinical
parameters were: (a) the result of DRE, (b) presence of previous

biopsy, (c) the number of previous biopsies, (d) prostate volume
and (e) age. Based on the statistical comparison significant
contribution to the outcome is revealed for age (odds ratio of 1.1,
p= 0.0366), PSA (odds ratio of 1.2, p= 0.0162) and the 19-
biomarker model (odds ratio of 2.2, p < 0.0001), while the presence
and number of previous biopsies, prostate volume and the result
of DRE were not significant predictors of Sig PCa. Combination of
the significant variables (19-biomarker model, PSA and age) into a
nomogram through the regression equation, resulted in an
improved AUC value of 0.83, although not statistically significant
(p= 0.4344) compared to the 19-biomarker model alone. In order

Non-significant PCa,
control group

(n = 445)
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(n = 98)

Fig. 2 Compiled average urinary profiling signatures of the patients with significant and non-significant PCa. The molecular mass (0.1–12 kDa)
is shown on a logarithmic scale and is plotted against normalised migration time (15–55min). Signal intensity is encoded by peak height
and colour

19-Peptide marker classifier

Sample size (n) 280

48/232

0.81

0.76–0.86

<0.0001

90 (77–97)

59 (52–65)

>–0.07

Area under curve (AUC)

Sensitivity (range) [%]

Specificity (range) [%]

Optimal cut-off

p value

Case/control
group (n)

95% confidence
interval

100
Validation set Performance

80

60

40

20

0

0 20 40
100–Specificity

60 80 100

Fig. 3 Receiver operating characteristics (ROC) analysis performed in the independent validation cohort, displaying the performance of the
19-biomarker panel for discriminating the case group (nSig= 48) from the control group (nnon-Sig= 232). ROC characteristics, such as area
under the curve (AUC), 95% confidence intervals (CI), and p value are provided for the classification of Sig PCa patients
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to investigate if the 19-peptide classifier can present an added
value over the current state-of-the-art, the SVM-based score
from the 19-biomarker model was further compared with the
estimates of the ERSPC risk calculator for detecting high risk PCa

(ERSPC—3/4), as presented in Fig. 5b. The 19-peptide classifier
showed significantly better performance (AUC= 0.82; p= 0.02)
compared to the ERSPC estimates (AUC= 0.69). To assess the
clinical benefit of the 19-biomarker model, a decision curve
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analysis was additionally performed. Based on the net plotting
against the threshold probabilities for the comparisons between
the 19-biomarker model alone and with clinical variables (PSA,
age), PSA and ERSPC estimates, there is a clear benefit of the
biomarker model, particularly in the lower range of the risk
thresholds (Fig. 5c).

Sequencing of peptide biomarkers
Among the 19 peptide biomarkers, sequences could be obtained
for 17, while 2 peptides could not be sequenced. The majority
(14/17) were originated from various collagens. Peptide fragments
originating from alpha-1 collagen of types (I), (XI), (XVII), (XXI) and
alpha-2 type (I), (V), (IX), were most prominent and fragments of
collagen type (VIII) chain were also identified. All the collagen
peptide fragments are of increased abundance in the Sig PCa
cases, apart from collagen alpha-1 (XVII) chain and collagen alpha-
1(XXI), which are presented with decreased abundance. Interest-
ingly, among the collagen fragments, a unique motif (pGP) is very
prominent. The three remaining peptide markers were a fragment
of protein phosphatase 1 regulatory subunit 3A, which was
identified with decreased abundance and fractalkine or chemo-
kine (C-X3-C motif) ligand 1 and Semaphorin-7A, both upregu-
lated in the group of patients with Sig PCa.

DISCUSSION
Insignificant PCa are slowly progressing forms that may be better
managed conservatively without immediate treatment. Never-
theless, as insignificant forms can progress to significant cancer,
frequent monitoring is required to timely and accurately detect
the progression. Currently, routine monitoring is based on either
PSA, although associated low accuracy, or invasive biopsies.32

More accurate non-invasive biomarkers are required to improve
on the discrimination of Sig PCa. In this study, a biomarker model
based on urinary peptides was established and validated in 823
patients suspicious for presence of PCa. This peptide panel
enables the discrimination of non-significant PCa from clinically
significant forms with high sensitivity and moderate specificity.
The lower specificity is mostly attributed to the misclassification of
clinically non-significant PCa (mainly GS of 6) as clinically
significant forms. The clinical consequence of this observation
can be weighted as acceptable, since patients with a positive
score based on the 19-biomarker model would further undergo
biopsy to rule out the presence of significant cancer.
The 19-biomarker model performs significantly better, when

compared to PSA levels and also, when compared to the ERSPC risk
calculator, demonstrating an added value of the biomarkers.
Comparison with other clinical variables was also performed
indicating a significant improvement of the 19-biomarker model,
although particularly for prostate volume, missing data for 34
patients from the validation set do compromise the statistical
power. An additional decision curve analysis was performed to
assess the clinical benefit of the 19-biomarker model, in comparison
with the current clinical standards, PSA and ERSPC calculator,
demonstrating an improved net benefit of the 19-biomarker model,
particularly in the low range of risk threshold.
Nowadays, several biomarkers have been tested in order to

discriminate Sig PCa, such as 4K score test, PHI, PCA3,
SelectMDx).33 A direct comparison with those markers, was
unfortunately not possible in the context of the presented study,
as paired data were not available (as different cohorts and
approximations were performed). However, the initial results
shown in this study with an AUC higher than 0.80, is within the
range of 0.74–0.90 which is shown by other biomarkers34,35 and
clearly justify implementation of this approach in a future
investigative setting. In line with this and in order to facilitate
comparisons, an additional prospective validation study design is
planned, similar to other studies, such as the step approximation

of the STHLM3 study, which was able to identify up to 21% of Sig
PCa in patients with a PSA between 1 and 3 ng/ml.35 In the
prospective evaluation, inclusion of multiparametric magnetic
resonance imaging is planned, as it has demonstrated an added
value in the diagnostic approximation for Sig PCa with a high NPV,
improving the detection of Sig PCa.36,37

Regarding the biomarker identity, sequences could be obtained
from 17 of the 19 peptide markers, most of them derived from
collagen origin and being in increased abundance. Collagen
fragments represent the majority of urinary peptides, even in
healthy individuals.18 The increase in specific collagen fragments
may depict extracellular matrix rearrangements, associated with
tumour invasion and resulting in proteolytic products, which are
subsequently excreted in urine. Previous studies,18,38 reporting on
CE–MS based biomarkers for detection of PCa (for discrimination
of PCa patients from those without malignancy), also identified
collagen fragments as being increased in abundance in cancer
patients.18,38 In the present study, a slightly different clinical
design was followed, as the aim was to discriminate in patients
that had PCa, those presenting with significant cancer from those
with non-significant cancer. In the study by Theodorescu et al.,18

four sequences out of twelve could be obtained, with one
biomarker common in both studies: a fragment of Collagen alpha-
1(I) chain. The other three biomarkers described by Theodorescu
et al.18 were not identified as significantly altered in this study,
while an enrichment was observed for other sequences belonging
to collagen alpha-1 and collagen alpha-2 chains, protein
phosphatase 1 regulatory subunit 3A and fractalkine. The
observed differences are attributed in part to the advancements
of the technology enabling a better sequence coverage, but also
the different clinical context, which in this study was the
identification of differentially abundant cancer biomarkers
between two cancer forms. A pGP motif was present in most of
the collagen sequences. The pGP motif is a chemoattractant
derived from proteolytic cleavage of collagen by matrix metallo-
proteinases. pGP motif binds to (C–X–C motif) receptors and is
thus associated with neutrophil attraction in inflamed tissues.39 In
addition, protein phosphatase 1 regulatory subunit 3A, which is
considered as a tumour suppressing molecule was identified with
decreased abundance.40 Overall, the observations at the urinary
peptides of the patients with Sig PCa, depict features of cancer
progression and tumour related inflammation.
The specific clinical impact of the non-invasive biomarker

model would primarily be to guide patient management and
reduce the number of invasive biopsies. As such, high sensitivity
is required, for correct detection of significant PCa. In view of a
positive test, the treating physician is alerted to perform a more
thorough investigation, improving the overall accuracy in
detection of Sig PCa. Lower specificity would result in more
misclassifications of non-significant PCa as potentially significant,
and as a consequence prostate biopsy to rule out significant
cancer. Therefore, a false positive result will be clarified upon
biopsy.
These encouraging results should be interpreted considering

the limitations of the study: Firstly, although the use of TRUS
biopsy for PCa diagnosis suffers from random error and false
negative results in comparison with trans-perineal template
biopsy,37 which might have affected the results (underestimate
the specificity and overestimate the sensitivity) of the present
study, it should be noted that TRUS biopsy is the accepted
standard method in the current clinical practice and mostly used
in biomarkers studies. Secondly, comparison with prostate
biopsy pathology and not prostatectomy specimens is a similar
limitation, possibly affecting the results in the same way, but
prostate biopsy is the first approximation to diagnose and to
stablish the risk category of the patients, so that it might
represent more clearly the clinical practice. Thirdly, urine was
collected with no prostate stimulation which could diminish the
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number of peptides specifically derived from the prostate
secretion. Moreover, this study was performed retrospectively,
however, on samples that were prospectively collected. Further-
more, the exact potential benefit for patients has to be assessed
in a prospective trial. However, based on the data presented,
implementation of this approach in an investigative setting
appears highly justified.
The data presented in this study could demonstrate the utility

of a multiple-marker approach for improved non-invasive detec-
tion of Sig PCa. Taking into consideration the increased variability
which is caused by the high intra-tumour heterogeneity, an
intrinsic characteristic of cancer, a single biomarker is not
expected to enable the discrimination of Sig PCa from non-
significant with high accuracy. Therefore, a combination of
biomarkers appears to be the currently best option to guide
biopsies and AS. Effective discrimination between clinically
significant and non-significant PCa is expected to have a positive
impact on reducing biopsies, improving patient compliance
and also guide a more thorough examination in case of a
positive result. The benefit for the management of patients under
AS is also evident, as discrimination of the Sig PCa will result in
improved guidance for initiation of definite treatment. Overall,
improved non-invasive patient stratification is expected to present
a positive impact on PCa patient management, by improving
patient compliance and reducing over-treatment and the
associated costs. The results of this study, although highly
significant, will be assessed in a prospective trial to also determine
the exact value in the context of patient management.
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