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Abstract: Resveratrol (Res) is a well-known natural product that can exhibit important
pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory.
An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound
can target different molecular pathways to exert its pharmacological actions. Transforming growth
factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular
mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be
involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis,
cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been
investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration
of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting
TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic
complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this
review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.

Keywords: resveratrol; transforming growth factor-beta (TGF-β); chronic diseases; fibrosis; cancer;
diabetes; therapy

Biomedicines 2020, 8, 261; doi:10.3390/biomedicines8080261 www.mdpi.com/journal/biomedicines

http://www.mdpi.com/journal/biomedicines
http://www.mdpi.com
https://orcid.org/0000-0001-6605-822X
https://orcid.org/0000-0002-6341-9007
https://orcid.org/0000-0002-5215-0217
https://orcid.org/0000-0002-1450-642X
https://orcid.org/0000-0003-0391-1769
https://orcid.org/0000-0002-2882-0612
http://www.mdpi.com/2227-9059/8/8/261?type=check_update&version=1
http://dx.doi.org/10.3390/biomedicines8080261
http://www.mdpi.com/journal/biomedicines


Biomedicines 2020, 8, 261 2 of 25

1. Resveratrol

From immemorial times, plant-derived natural compounds have been under attention in the
treatment of different disorders such as inflammatory diseases, cancers, pulmonary diseases, metabolic
disorders, neurological disorders (NDs) including Alzheimer’s disease (AD) and Parkinson’s disease
(PD), infertility, and so on [1–10]. Phytochemicals can exhibit beneficial actions against diseases due to
their excellent pharmacological activities [11–14]. These benefits have resulted in extensive research
into finding new natural compounds and revealing their potential mechanisms of actions [15–17].
Resveratrol (Res) is a dietary phytochemical that has been reported to be efficacious treatment for
various ailments by targeting diverse molecular pathways [18–21]. The role of Res in the treatment of
chronic diseases was established in early 1990s when it was found that this phytochemical possesses
significant cardioprotective benefits [22]. This ascending trend toward Res research led to the revelation
of its significant biological and therapeutic activities. The first report about anti-tumor activity of Res
dates back to 1997, when Jang and his colleagues reported its inhibitory effect on leukemia [23].

Currently, Res can be derived from various plants including Arachis hypogea, Cassia sp.,
Eucalyptus sp., Morus rubra, and so on using a number of different isolation techniques [24].
High-performance liquid chromatography is the best strategy [25–28]. Over the past decades, Res has
been applied in the treatment of various diseases such as osteoarthritis [29–31], NDs [32], cancer [33–35],
diabetes [36], cardiovascular diseases [37], liver disorders [38], and so on. An increasing amount of
evidence is in agreement with the fact that Res affects different molecular pathways to exhibit its
protective effects [39–41]. Hence, the identification of these targets can promote further studies for
investigating molecular pathways and the mechanisms of its therapeutic actions in depth. For instance,
anti-inflammation is one of the most important biological effects of Res treatment. To function as an
anti-inflammatory molecule, Res can effectively inhibit the activation of pro-inflammatory transcription
factors such as nuclear factor-kappaB (NF-kB). It seems that the anti-inflammatory actions of Res are
not only mediated via inhibitory actions on the NF-kB signaling pathway, but they also rely on its action
as a PARP-γ agonist [42]. The anti-inflammatory activities of Res are also characterized by decreased
levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α), etc. [43]. The production of
pro-inflammatory lipid mediators from arachidonic acid can be mediated by the cyclooxygenase (COX)
pathway. A number of anti-inflammatory drugs have been developed based on their inhibitory effect
on COX-1 and COX-2 [44,45]. Res is capable of binding to the active site of COX-1 and thus causing
anti-inflammatory effects. In addition to targeting inflammation, Res attaches to the active site of
COX-2 to suppress cancer proliferation [46–49]. It is noteworthy that the inhibitory effect of Res on
COX has been noted to follow a dose-dependent kinetics [50].

Obesity is one of the challenges faced in today’s world. Res has demonstrated great potential
in reducing weight and exerting anti-obesity activity. Res changes white adipose tissue (WAT) into
brown adipose tissue (BAT), which in turn decreases weight and improves insulin resistance [51].
The inhibitory action of Res on lipid accumulation leads to its effect on cardiovascular disorders.
Res stimulates PARP-α/γ to activate ATP binding cassette (ABC) transporter A1/G1-mediated cholesterol
efflux, resulting in a decrease in lipid accumulation and cholesterol levels. These effects can lead to
a significant amelioration of atherosclerosis [52]. Based on the effect of Res on amyloid-beta (Aβ),
this plant-derived natural compound is of importance in treating NDs. For instance, Res is able to inhibit
inflammation and the microglial activation caused by Aβ. This results in the alleviation of inflammation
(down-regulation of TNF-α and IL-6) and a diminution in apoptosis (caspase-1 down-regulation) [53].
The antioxidant activity of Res provides its protective effect during kidney injury. In rats exposed
to nicotine, an increase occurs in oxidative stress markers via the down-regulation of glutathione.
The administration of Res has been also correlated with improving the antioxidant defense system
that protects renal cells against oxidative injury [54]. A newly published study also demonstrates the
effect of Res on stem cells. Res can stimulate stem cell function to ameliorate pancreatic injury such as
fibrosis and apoptosis [55]. Overall, these reports exhibit that Res has diverse therapeutic effects that
have resulted in its extensive application in the treatment of various disorders [56–58]. In the current
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review, we specifically focus on the therapeutic effects of Res mediated by its regulatory action on the
transforming growth factor-β (TGF-β) signaling pathway.

1.1. Resveratrol: Limitations and Applied Strategies

In spite of the excellent pharmacological activities of plant-derived natural compounds, very soon
it was found that a number of issues limit their efficacy in disease treatment. Increasing evidence
shows that phytochemicals are able to exert their therapeutic effects predominantly under in vitro
settings. However, when their efficiency is examined for in vivo experiments, a decrease occurs in
their therapeutic efficacy due to their potential poor bioavailability. The difficulty is more prominent
in clinical trials, leading to a limited application of phytochemicals in clinic. This holds also true for
Res, and various formulations of this agent have been tested to enhance its therapeutic capabilities.
Res has a lipophilic nature and can be dissolved in fruit or vegetable juices or given in capsule form.
The administration frequency of Res is variable from one to three times a day, and its reported doses
are at the range of 0.073 mg to 5 g [59,60]. The reports also demonstrated that the most efficient
strategy in promoting the bioavailability and protective effects of Res is using nanoparticles [61].
The encapsulation of Res by nanoparticles protects against degradation and improves its intestinal
absorption and blood circulation time [62–66]. These benefits lead to the promoted bioavailability of
Res and an improvement in its therapeutic effects [67,68]. It has been reported that loading Res on lipid
carriers can significantly increase its anti-tumor activity and cytotoxicity against breast cancer cells by
providing targeted delivery and enhancing its intracellular internalization [69]. Lipid nanocarriers
containing Res can be administered through the oral route. The oral administration of Res-loaded
lipid nanostructures is more beneficial in reducing the levels of pro-inflammatory cytokines and
induction of anti-inflammatory activity compared to Res alone [70]. The enhanced release of Res in the
intestine by nanoparticles is of importance in elevating its cytotoxicity against cancer cells [71]. Overall,
various studies reveal that nanostructures can be considered as potential delivery systems for Res and
fortunately, a significant number of studies have been performed in this field. The findings are in line
with the fact that these nano-based strategies can remarkably enhance both the bioavailability and
therapeutic capability of Res [72–74]. However, more studies are needed to design different effective
nanocarriers to facilitate an optimum delivery of Res.

1.2. Pharmacokinetics of Resveratrol: A Brief Explanation

Increasing evidence demonstrates that the dosage forms and conditions of patients can affect the
absorption of Res. However, the gastrointestinal (GI) tract is involved in the absorption of Res after oral
administration with a peak at plasma concentration after 30 min and 1.5–2 h [75–77]. The absorption
of Res undergoes an increase via grape consumption and using other forms such as micronized
form [78–82]. After absorption, Res can be distributed in different organs, such as the brain, liver,
intestine, and fat [83]. For metabolism, enterocytes and hepatocytes play the most important role after
oral administration. Notably, Res influx occurs through the passive diffusion and carrier-mediated
process [84,85]. The metabolism of Res also confirms its distribution in liver, so that it has been reported
that Res is a substrate of hepatic sulfotransferase and glucuronosyltransferase, and it extensively
accumulates in liver [86]. The interesting point is that metabolism of Res relies on dose. Low doses
(5–50 mg) of Res are bio-transformed into glucuronides, while high doses (more than 250 mg) are
bio-transformed into monosulfates [87–91]. Facial areas and urine are responsible for the elimination
of Res. It has been noted that the administration form of Res may affect its elimination, which can be
delayed when micronized Res is used [92–96].

1.3. Toxicity of Resveratrol

Similar to other compounds, plant-derived natural compounds have a number of drawbacks.
Although Res is safe and well-tolerated at normal doses, there are toxicities associated with the
application of high doses of Res [97]. The willingness toward using high doses of Res is due to its



Biomedicines 2020, 8, 261 4 of 25

poor bioavailability, which restricts its therapeutic usage. Therefore, providing information about the
toxicity of Res is advantageous for directing further studies toward using normal and safe doses of
Res. It is worth mentioning that the toxicity of Res has been evaluated in both in vivo and clinical
trials. It appears that high doses of Res—as much as 3 g/kg/day in rats—may result in nephrotoxicity.
Although there are few studies that have demonstrated that Res can negatively affect liver and enhance
levels of liver enzymes such as aspartate aminotransferase, others have reported that it may not exhibit
any significant toxicity on the liver [98,99]. The administration of 750 mg/kg/day of Res for 3 months is
well-tolerated in rats [100]. Studies in humans show that Res is completely safe and only a few adverse
effects including blood electrolyte changes, nasopharyngitis, and erythematous rash can be observed
after the administration of 400 mg of Res. Headache, myalgia, epididymitis, and dizziness were other
commonly reported adverse effects of Res [101–103].

2. TGF-β: Signaling Pathways and Pathological Role

2.1. Members and Receptors of TGF-β Family

There are three distinct members of TGF-β in mammals including TGF-β1, TGF-β2, and TGF-β3
that are homologous in terms of structure, but they demonstrate different biological activities, temporal,
and spatial expression patterns [104–108]. The number of genes that can encode members of the TGF-β
family are numerous, but a number of them can be mentioned as activin, nodal, bone morphogenetic
proteins (BMPs), and growth and differentiation factors (GDFs) [109]. The TGF-β signaling pathway
possesses a regulatory effect on different cellular events such as growth, survival, differentiation,
cell fate specification, angiogenesis, and so on [110–115]. TGF-β signaling is initiated by the attachment
of a ligand onto cell surface receptors, which in turn triggers a cascade that mediates the translocation
of TGF-β into the nucleus. In humans, there are 12 cell surface receptors that are affected by
ligand, including type I receptors (ALK1-7) and type II receptors (TβRII, ActRII, ActRIIB, BMPRII,
and AMHRII) [116,117]. After attachment of a certain type of TGF-β into type II receptors, these receptors
are stimulated, which subsequently phosphorylates the glycine-serine-rich domain (GS domain) of
type I receptors. In the canonical pathway of TGF-β, type I receptors mediate the formation of Smad
complex via phosphorylation at carboxyl termini.

2.2. TGF-β Signaling Pathway

The TGF-β gene encodes a pro-precursor peptide consisting of 390 amino acids that undergoes
proteolytic processing to produce mature TGF-β. This mature TGF-β has two distinct sections including
amino-terminal and carboxy-terminal sections [118]. The amino-terminal fragment is known as latency
associated peptide (LAP) with non-covalent attachment into TGF-β [119,120]. The cleavage of LAP by
proteases or mechanical forces by cell surface integrins contributes to the release of mature and active
TGF-β [121,122]. The activated TGF-β is a dimeric protein with disulfide bonds and molecular weight
of 25 kDa that can bind into cell surface receptors. As described above, then, the binding of a ligand
into a receptor leads to the phosphorylation of type I receptors by type II ones [123]. Then, TGF-βRI
as a type I receptor can stimulate Smad2 and Smad3 via phosphorylation, resulting in the formation
of a complex with Smad4. This complex translocates into the nucleus to affect target genes such as
plasminogen activator inhibitor 1 (PAI1). Among them, only Smad4 and Smad3 can bind to DNA. It is
worth mentioning that the affinity of Smad3 and Smad4 for attachment to DNA is low and they need to
collaborate with other DNA-binding transcription factors to promote gene expression [124,125]. This is
the canonical pathway of TGF-β, and there is another pathway, which is known as the non-canonical
pathway. In this pathway, activated receptors target different molecular pathways such as PI3K as well
as JNK, P38, extracellular signal-regulated kinase (ERK), and mitogen-activated protein kinase (MAPK).
For instance, PI3K can be activated by stimulated receptors to induce Akt/mTOR axis, resulting in the
stimulation of S6K and regulate protein translation (Figure 1) [106].
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Figure 1. A schematic presentation of transforming growth factor-beta (TGF-β) signaling pathways.
This pathway consists of two distinct modules: canonical signaling and non-canonical signaling.
Canonical signaling, as shown in the figure, is a result of the formation of a complex containing Smad2,
Smad3, and Smad4. Then, these molecules can translocate into the nucleus to trigger the expression of
genes that are responsible for the proliferation and metastasis of cancer cells. Non-canonical signaling is
Smad-independent and involves different signaling pathways such as PI3K/Akt, MAP3K7, Ras, and so
on. However, final aim of these two signaling pathways is to promote aberrant growth and malignancy
of cancer cells.

2.3. TGF-β in Cancer, Diabetes, and Other Pathological Events

A number of studies have highlighted that the abnormal expression of TGF-β may pave the road
for generating pathological events. The role of the TGF-β signaling pathway in cancer cells has been
extensively investigated. Increasing evidence demonstrates that TGF-β mediates the migration and
invasion of cancer cells. For enhancing cancer cell metastasis, TGF-β induces epithelial-to-mesenchymal
transition (EMT), which significantly promotes the migratory ability of cancer cells [126]. Interestingly,
molecular pathways that negatively regulate the metastasis of cancer cells can reduce the expression of
TGF-β. It has been revealed that sirtuin 7 (SIRT7) can suppress the migration of cancer cells through
inhibiting TGF-β signaling via Smad4 degradation. Therefore, the Smad complex may be disrupted,
and its nuclear translocation can be inhibited [127]. In addition to metastasis, TGF-β signaling
induces angiogenesis, which is a mechanism that is vital for the proliferation and migration of cancer
cells. The stimulatory effect of TGF-β on angiogenesis can be mediated via the phosphorylation of
Smad3 [128]. TGF-β is able to stabilize the Nrf2 signaling pathway via p21 induction, thus leading to the
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chemoresistance of cancer cells [129]. Moreover, numerous studies are in agreement with the fact that
TGF-β can act as a positive factor for the proliferation and migration of cancer cells, and a negative factor
for cancer prognosis. In addition to cancer, TGF-β contributes to the development of other malignancies.
Diabetes mellitus (DM) is a chronic metabolic disorder in which insulin resistance can be obtained and
glucose metabolism undergoes dysregulation [130,131]. Myocardial injury and fibrosis may result from
DM, and studies have demonstrated that TGF-β is involved in this process. In DM, TGF-β activates
Smad2 to facilitate its nuclear translocation. Then, an increase occurs in fibrosis, thereby providing
conditions for deteriorating DM. Mesenchymal stem cell-derived exosomes are able to improve DM
fibrosis via the inhibition of the TGF-β/Smad2 axis [132]. The TGF-β/Smad3 axis may be also involved
in DM fibrosis. Thus, the stimulation of TGF-β and the nuclear translocation of Smad3 provide
conditions for the development of renal fibrosis during DM. It has been found that the administration
of retinoic acid can alleviate DM-promoted fibrosis via the inhibition of TGF-β/Smad3 [133]. It is
noteworthy that a number of phytochemicals have shown potential in the regulation of the TGF-β
signaling pathway, which is of immense importance for disease therapy [134,135]. In the present
review, we focus on modulation of the TGF-β signaling pathway by Res and its potential impact for
disease therapy [136–138].

3. Resveratrol and TGF-β Signaling Pathway

In this section, we will highlight the modulatory effects of Res on TGF-β levels in different chronic
diseases. For example, Res can suppress the TGF-β signaling pathway and its downstream targets such
as Smads. It can also reduce TGF-β-mediated EMT in fibrosis. It has been reported that for the inhibition
of EMT, Res can down-regulate matrix metalloproteinase-9 (MMP-9), leading to the alleviation of
fibrosis. MicroRNAs (miRs) such as miR-31 can also be affected by Res in targeting TGF-β in disease
therapy. The inhibitory effect of Res on the TGF-β signaling pathway can lead to the suppression
of intra-abdominal adhesion formation, since TGF-β can enhance fibrin accumulation [139–149].
These modulatory effects of Res are discussed in the following sections.

3.1. Resveratrol and Fibrosis

Pulmonary fibrosis (PF) is a common disorder of the lung that is characterized with hypoxemia,
restrictive functional ventilatory disturbance, and chronic fibrosis. Clinical manifestations of PF
include wheezing, difficulties in breathing, and dry coughs [150]. The pathogenesis of PF is still not
completely understood, but it appears that the TGF-β signaling pathway plays a significant role in PF
development [151]. Thus, the administration of Res may be an ideal strategy in the amelioration of PF,
and different molecular pathways may be involved. Normally, microRNA (miR)-21 can induce PF
via the activation of TGF-β signaling and providing Smad7 nuclear translocation. TGF-β provides a
positive feedback loop, so TGF-β enhances the expression of miR-21 and AP-1. The administration
of Res down-regulates the expression of miR-21 via inhibition of the MAPK/AP-1 axis. This leads to
a diminution in TGF-β expression and inhibition of Smad7, resulting in the alleviation of PF [152].
Accumulating data demonstrate that during the inhibition of fibrosis, Res affects the TGF-β signaling
pathway via the modulation of miRs. Myocardial fibrosis (MF) is caused by the accumulation of
collagen fibers, enhanced collagen content, and alteration in collagen composition. Systolic and
diastolic functions of the heart can be negatively affected by MF [153]. TGF-β is one of the key
players regulating MF [154]. The TGF-β/Smad7 axis can also contribute to the development of MF.
The administration of Res can up-regulate the expression of miR-17, which in turn remarkably reduces
levels of Smad7, leading to an improvement in MF [155].

In addition to PF and MF, renal fibrosis (RF) can arise as a result of the activation of the TGF-β
signaling pathway. It has been reported that the inhibition of the TGF-β signaling pathway by natural
products such as bardoxolone and nimbolide is of importance in RF therapy [156,157]. It is worth
mentioning that Res can target the TGF-β signaling pathway, thereby causing an amelioration of RF.
In RF treatment, fibroblast–myofibroblast differentiation (FMD), EMT, and the proliferation of tubular
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epithelial cells (TECs) should be targeted. The administration of Res can disrupt Smad2/3 activation by
TGF-β and consequently suppress the proliferation of TECs, FMD, and EMT [158]. Increasing evidence
demonstrates that EMT may be involved in renal fibrogenesis, and its activation can facilitate the
development of RF [159–162]. Res is capable of suppressing EMT-mediated RF. It seems that TGF-β1
functions as an upstream mediator of EMT, and Res suppresses EMT and RF through inhibiting
TGF-β1 [163]. In fact, in the stimulation of anti-fibrotic activity, Res affects the proliferation and survival
of fibroblasts. It has been shown that Res can stimulate apoptosis in fibroblasts and suppress their
growth as well. An investigation of the molecular pathways demonstrates that in targeting fibroblasts,
Res can suppress TGF-β and the Smad2/3/4 complex, and it can also upregulate Smad7 [164].

It is worth mentioning that the anti-fibrotic activity of Res is dose-dependent, and using low
doses is preferred as compared to higher doses. An experiment has evaluated the role of dose in
the anti-fibrotic activity of Res. TGF-β induces fibrosis via formation of the Smad3/4 complex and
subsequent stimulation of EMT. The administration of Res has been correlated with the deacetylation
of Smad3 and Smad4 via sirtuin 1 (SIRT1). According to in vitro results, low doses of Res (5–20 mM)
effectively exerted anti-fibrotic activity, while high doses (more than 40 mM) did not demonstrate any
substantial anti-fibrotic activity. The in vivo findings are in line with in vitro results, so that low doses of
Res (less than 25 mg/kg) improve fibrosis, while high doses of Res (more than 50 mg/kg) deteriorated the
condition [165]. This study confirms the dose-related toxicity of Res. Overall, these studies demonstrate
that TGF-β can function as a key player in the development of fibrosis and Res can suppress the TGF-β
signaling pathway and its downstream targets such as Smads to alleviate fibrosis [166,167].

The TGF-β signaling pathway contributes to the development of fibrosis in different vital organs
of body such as the lung and heart. The interesting point to highlight is the possible epigenetic
regulation of TGF-β by miRs in the development of fibrosis. Res is capable of suppressing miR and
TGF-β interaction in fibrosis therapy. MiR-17 and miR-21 are two important miRs that contribute to
the emergence of myocardial and pulmonary fibrosis via TGF-β induction. The regulation of TGF-β by
miRs is suppressed upon Res administration. RF also occurs by the function of TGF-β and subsequent
induction of EMT. The TGF-β/EMT axis is inhibited by Res to alleviate RF. It is noteworthy that in
the amelioration of fibrosis, components of TGF-β signaling such as Smad7 and Smad4 can also be
down-regulated. Therefore, TGF-β is a versatile agent in the amelioration of fibrosis.

3.2. Resveratrol and Cancer Therapy

Accumulating data exhibit that the TGF-β signaling pathway can regulate both the proliferation
and metastasis of cancer cells, and its inhibition is a promising strategy in cancer therapy [168–173].
Metastasis is an increasing challenge in the effective treatment of cancer. Cancer cells are able to migrate
into neighboring and distant tissues, demanding novel strategies in the inhibition of their metastasis.
EMT is one of the mechanisms that can promote invasion via the transformation of static epithelial
cells into migratory mesenchymal ones [174]. A number of different molecular pathways have been
recognized as regulators of EMT [175,176], and it has been found that TGF-β is capable of elevating
migration via EMT induction. In breast cancer, TGF-β can stimulate EMT via Smad2 and Smad3
activation, leading to an increase in N-cadherin and vimentin levels, and a decrease in E-cadherin levels.
The administration of Res suppresses the metastasis of breast cancer (under both in vitro and in vivo
conditions) via the inhibition of TGF-β1 and down-regulation of Smad2 and Smad3 [177]. TGF-β
also contributes to the migration and malignant behavior of lung cancer. In addition to breast cancer,
Res targets TGF-β to inhibit EMT in lung cancer. By suppressing levels of TGF-β, Res down-regulates
the levels of vimentin and fibronectin, while it enhances E-cadherin levels, leading to an inhibition of
EMT and metastasis of lung cancer cells [178]. It is noteworthy that EMT induction enhances viability
via the stimulation of cancer stem cell markers such as Bmi1 and Sox2. By inhibition of the TGF-β/Smad
axis, Res not only inhibits EMT and migration, but also interferes with the proliferation and survival of
cancer cells [179]. So, Res can function as a potential modulator of EMT in cancer cells to negatively
affect their proliferation and metastasis.
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Accumulating data also show that Res is able to diminish levels of TGF-β that in turn, suppresses
the development of renal carcinoma [180]. These studies are in agreement with the fact that the
inhibition of TGF-β by Res is of interest in suppressing tumor growth and metastasis [181]. Moreover,
a dual relationship has been found between TGF-β and programmed cell death-1 (PD-1). For instance,
PD-1 overexpression is associated with the induction of TGF-β, and TGF-β can regulate PD-1
expression [182,183]. This dual relationship is of importance in cancer therapy. Res can suppress the
proliferation of oral cancer cells via the down-regulation of TGF-β and subsequent inhibition of PD-1.
L-thyroxine as a thyroid hormone can also modulate the anti-tumor activity of Res via regulating the
TGF-β/PD-1 axis [179].

Overall, the regulation of TGF-β by Res in cancer is of importance in terms of suppressing both
migration and proliferation. The most well-known mechanism targeted by TGF-β is EMT, which can
promote cancer metastasis. In addition, TGF-β can activate the signaling pathways such as PD-1
and Sox2 to ensure the growth and survival of cancer cells. Upon Res administration, TGF-β and its
downstream targets are inhibited to pave the road for effective cancer therapy.

3.3. Resveratrol and Lung Injury

Injuries to vascular endothelium and alveolar epithelium by inflammatory factors can lead
to the emergence of acute lung injury (ALI) [184]. Infections are able to generate ALI and
among them, Pseudomonas aerogenosa, Candidate albicans, and staphylococcal enterotoxin B (SEB) are of
importance [185–187]. In the amelioration of SEB-mediated lung injury, Res can target the TGF-β
signaling pathway. Res can down-regulate the expression of miR-193a to inhibit TGF-β2 and TGFβR3,
thus resulting in a decrease in levels of inflammatory cytokines and T cell infiltration [188]. The enhanced
level of TGF-β has been associated with the development of asthma and lung injury [189]. In fact,
the administration of Res may alleviate lung injury and asthma via decreasing levels of TGF-β [190].
Chronic obstructive pulmonary disease (COPD) is one of the most common disorders of lung
tissue. Cigarette smoking is the most well-known reason for COPD [191]. Pulmonary inflammation,
airflow obstruction, and remodeling are features of COPD [192]. Chronic inflammation can result in
the development of COPD, and TGF-β has been found to play an important role in the pathogenesis of
this disease [193,194]. Therefore, based on the modulatory impact of Res on TGF-β, the administration
of this naturally occurring compound can be advantageous in the amelioration of COPD. It was also
found that Res can decrease fibrotic response and inhibit mucus hypersecretion via the down-regulation
of TGF-β [195].

It seems that via the regulation of TGF-β, Res is capable of reducing inflammation in lung and
preventing the development of pathological events such as ALI, COPD, and asthma. Interestingly,
Res inhibits inflammation via reducing the infiltration of cytokines and T cells. COPD is also emerged
via pulmonary inflammation and fibrosis. Based on the effect of Res on TGF-β and subsequent decrease
in fibrotic response and mucus hypersecretion, it can be beneficial in the treatment of COPD.

3.4. Resveratrol and Brain Injury

Cerebral hemorrhage is a leading cause of brain injury and vasospasm [196]. This malignancy
results in ischemic/reperfusion and the induction of apoptosis in cancer cells [197,198]. The TGF-β
signaling pathway has been correlated with brain injury [199]. Interestingly, the administration of
Res was found to improve the blood–brain barrier (BBB) and inhibit apoptosis in neuronal cells.
These protective effects of Res were found to be mediated via the inhibition of TGF-β-mediated
ERK [200]. Moreover, it was found that exposing rats to alcohol is associated with an increase in levels
of cytokines such as TGF-β. An administration of Res (10 and 20 mg/kg) can significantly improve
cognitive deficits and reduces brain injury via decreasing TGF-β levels [201]. So, the alleviation of
cognitive deficits and maintaining the integrity of BBB are functions of Res that can be mediated by
TGF-β modulation.
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3.5. Resveratrol and DM

During DM, microvascular complications can lead to hyperglycemia that accounts for the
emergence of diabetic nephropathy (DN). Interestingly, an enhanced level of oxidative stress,
renal polyol formation, protein kinase C induction, and activation of AMPK as well as the accumulation
of advanced glycation end-products (AGEs) are responsible for DN [202,203]. TGF-β1 is considered
as one of the potential pathways involved in the emergence of DN [204]. A combination of Res and
rosuvastatin (RSU) was found to be beneficial in the alleviation of DN via the down-regulation of
TGF-β1 [205]. The in vivo studies have also indicated that the administration of Res is a promising
strategy in alleviating DN. It was observed that Res could diminish urinary albumin excretion,
glomerular hypertrophy, and the deposition of fibronectin and collagen type IV to ameliorate DN.
Moreover, an investigation of molecular pathways demonstrated that Res can alleviate TGF-β expression
as well as the phosphorylation of Smad2 and Smad3 for DN alleviation (Table 1, Figure 2) [206]. The most
important effect of Res during DN is reducing fibrosis, which can be mediated via TGF-β inhibition.
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Table 1. Res targets TGF-β signaling pathway in disease therapy.

Drug In Vitro/In Vivo Disease Dose Duration of
Experiment

Administration
Route

Effect on
TGF-β Results References

Resveratrol
Fenofibrate

In vivo (animal model of
steatohepatitis) Steatohepatitis 70 mg/kg 12 weeks Diet Inhibition Alleviation of nonalcoholic steatohepatitis [207]

Resveratrol
In vitro (rat mesangial cells)

In vivo (rat model of diabetic
nephropathy)

Diabetes 25 µM
20 mg/kg

24 h
4 weeks Oral Inhibition

Reducing mesangial cell viability,
fibronectin secretion, and amelioration of

diabetic nephropathy
[208]

Resveratrol In vivo (diabetic mice) Diabetes 5 and 25
mg/kg/day 2 months Intragastric Inhibition Improving fibrosis via inhibition of

ROS/ERK/TGF-β [209]

Resveratrol In vivo (diabetic rats) Diabetes 10 mg/kg/day 30 days Intraperitoneal Inhibition

Alleviation of diabetic nephropathy and
reducing epithelial desquamation, swelling,

intracytoplasmic vacuolization, brush
border loss, and peritubular infiltration

[210]

Resveratrol In vivo (diabetic rats) Diabetes 50 mg/kg 8 weeks Gavage Inhibition Amelioration of renal damage and reducing
collagen deposition [211]

Resveratrol In vivo (diabetic model) Diabetes 10 mg/kg 8 weeks Oral gavage Inhibition Reducing collagen deposition [212]

Resveratrol In vivo (diabetic rats) Diabetes 10 mg/kg 4 weeks Drinking
water Inhibition Improving vascular dysfunction and

reducing oxidative stress [213]

Resveratrol In vivo (rat model of chronic
prostatitis)

Chronic
prostatitis 10 mg/kg 10 days Oral Inhibition Alleviation of prostate fibrosis via mast cell

suppression [214]

Resveratrol In vivo (rat model of chronic
prostatitis)

Chronic
prostatitis 10 mg/kg 10 days Oral Inhibition

Reducing prostate fibrosis and urinary
dysfunction via inhibition of

TGF-β/Wnt/β-catenin
[215]

Resveratrol

In vitro (Human colorectal
cancer cell line LoVo)

In vivo (mice with orthotopic
transplantation tumor)

Cancer
6 and 12 µM
50, 100, and
150 mg/kg

24 h
3 weeks Intragastric Inhibition

Suppressing metastasis of cancer cells by
EMT inhibition via down-regulation of

TGF-β/Smad signaling pathway
[216]

Resveratrol In vitro (MCF-7 cells) Cancer 5, 25, 50, 100,
and 200 µM 48 h - Inhibition Sensitizing cancer cells into chemotherapy

via inhibition of TGF-β-mediated EMT [217]

Resveratrol In vitro (A431 human
epidermoid carcinoma cells) Cancer 50–100 µM 24 h - Inhibition Suppressing ultraviolet-induced tumor

proliferation [218]

Resveratrol
analogue
(HS-1793)

In vivo (tumor bearing mice) Cancer 0.5 and 1
mg/kg 3 weeks Intraperitoneal Inhibition Enhancing efficacy of radiotherapy [219]

Resveratrol Murine model of LPS-induced
pulmonary fibrosis

Pulmonary
fibrosis 0.3 mg/kg 28 days Intraperitoneal Inhibition

Improving pulmonary fibrosis and
inhibition of EMT via the down-regulation

of TGF-β1/Smad
[216]
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Table 1. Cont.

Drug In Vitro/In Vivo Disease Dose Duration of
Experiment

Administration
Route

Effect on
TGF-β Results References

Resveratrol In vivo (SIRT3-knock out mice) Fibrosis 1.8 mg/kg 8 weeks Diet Inhibition Improving cardiac fibrosis and suppressing
fibroblast-to-myoblast transformation [220]

Resveratrol In vivo (chronic asthma model) Asthma 10 and 50
mg/kg 3 months Oral gavage Inhibition

Inhibition of Smad2/3 phosphorylation,
amelioration of airway inflammation and

structural changes
[221]

Resveratrol In vitro (human retinal
pigment epithelial cells) Eye disease

25, 50, 100,
200, 400, and

800 µM
24 h - Inhibition

Suppressing Smad2 and Smad3
phosphorylation leads to the inhibition of

EMT and collagen deposition
[222]

Resveratrol In vivo (mouse model of
Duchene muscular dystrophy)

Muscular
dystrophy 4 g/kg 32 weeks Diet Inhibition

Decreasing reactive oxygen species
generation, fibronectin production, and

enhancing expressions of α-SMA and SIRT1
[223]

Resveratrol In vitro (rhabdomyosarcoma) Rhabdomyosarcoma5, 10, 20, 40, or
80 µmol/L 24, 48, and 72 h - Inhibition Induction of G1 and S phases cell cycle

arrest and down-regulation of Smad4 [224]

Resveratrol In vivo (Male C57BL/6J mice) - 5 mg/kg 2 days after
surgery Intraperitoneal Inhibition Reducing levels of collagen IV and

fibronectin [225]

TGF-β, transforming growth factor-beta; ROS, reactive oxygen species; ERK, extracellular signal-regulated kinase; EMT, epithelial-to-mesenchymal transition; α-SMA, α-smooth muscle
actin, SIRT1, sirtuin 1.
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4. Conclusions and Future Directions

Currently, extensive research is being performed for possible applications of natural products for
the therapy of chronic diseases, as these agents can regulate multiple molecular targets and transcription
factors [226–233]. In the present review, a comprehensive discussion of possible impact of Res on the
TGF-β signaling pathway, which is one of the important cascades involved in the regulation of biological
mechanisms and the generation of pathological events, is provided. TGF-β acts as an upstream inducer
of EMT, and this not only enhances the metastasis of cancer cells, but also mediates fibrosis in
cells. Res inhibits TGF-β/EMT in suppressing both cancer and fibrosis. Through inhibiting TGF-β,
Res diminishes the accumulation of collagen and fibrin, and reduces organ adhesion. Interestingly,
Res dually targets both upstream (such as miRs) and downstream (Smads, PD-1, and EMT) mediators
of TGF-β signaling in disease therapy. In addition to anti-tumor and anti-fibrotic activities, Res can
also exert neuroprotective, lung protective, and anti-diabetic effects via the down-regulation of TGF-β,
which was also highlighted in this article. Moreover, to circumvent the issue of poor bioavailability,
the application of nanoparticles can enhance the modulatory effects of Res on the TGF-β signaling
pathway. Besides, genetic manipulations such as small interfering RNA (siRNA) can also be co-applied
for Res to promote its potential modulatory actions on TGF-β for therapeutic uses.

More studies are needed to find the optimal dose of Res in disease therapy via targeting TGF-β.
Chemical modification of the Res structure and using nanoparticles can promote its efficacy in TGF-β
regulation as well as its potential against various malignancies. More importantly, these findings are
more valuable when they are translated into clinic. So, clinical studies are vital to approve the results
of in vitro and in vivo experiments.
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Abbreviations

NDs neurological disorders
AD Alzheimer’s disease
PD Parkinson’s disease
TCM Traditional Chinese Medicine
Res resveratrol
NF-kB nuclear factor-kappaB
IL interleukin
TNF-α tumor necrosis factor-α
WAT white adipose tissue
BAT brown adipose tissue
ABC ATP binding cassette
Aβ amyloid-beta
TGF-β transforming growth factor-β
GI gastrointestinal
CPC centrifugal partition chromatography
BMPs bone morphogenetic proteins
GDFs growth and differentiation factors
LAP latency associated peptide
PAI1 plasminogen activator inhibitor 1
EMT epithelial-to-mesenchymal transition
SIRT7 sirtuin 7
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DM diabetes mellitus
MMP-9 matrix metalloproteinase-9
PF pulmonary fibrosis
miR microRNA
MF myocardial fibrosis
RF renal fibrosis
FMD fibroblast-myofibroblast differentiation
TECs tubular epithelial cells
SIRT1 sirtuin 1
PD-1 programmed cell death-1
ALI acute lung injury
SEB staphylococcal enterotoxin B
COPD chronic obstructive pulmonary disease
BBB blood-brain barrier
DN diabetic nephropathy
ERK extracellular signal-regulated kinase
MAPK mitogen-activated protein kinase
AGEs advanced glycation end-products
RSU rosuvastatin
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