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Abstract

T cells and B cells are crucial in the initiation and maintenance of multiple scle-

rosis (MS), and the activation of these cells is believed to be mediated through

specific recognition of antigens by the T- and B-cell receptors. The antigen

receptors are highly polymorphic due to recombination (T- and B-cell recep-

tors) and mutation (B-cell receptors) of the encoding genes, which can there-

fore be used as fingerprints to track individual T- and B-cell clones. Such

studies can shed light on mechanisms driving the immune responses and pro-

vide new insights into the pathogenesis. Here, we summarize studies that have

explored the T- and B-cell receptor repertoires using earlier methodological

approaches, and we focus on how high-throughput sequencing has provided

new knowledge by surveying the immune repertoires in MS in even greater

detail and with unprecedented depth.

Introduction

Multiple sclerosis (MS) is believed to be mediated by an

immunological attack on the central nervous system

(CNS), orchestrated by T cells and B cells of the adaptive

immune system. Already half a century ago, a local synthe-

sis of immunoglobulin G (IgG) was identified in the cere-

brospinal fluid (CSF) of MS patients.1,2 It was later shown

that this IgG is produced by B cells in the CSF and CNS.3,4

Other studies have demonstrated clonal expansions of T

and B cells,5,6 and deposition of immunoglobulins,7 in

active demyelinating lesions. Tertiary lymphoid structures,

which could be sites of B-cell differentiation and affinity

maturation, are present in the meninges of some patients

with long-standing disease, and have been linked to corti-

cal pathology.8,9 In further support of the idea that T and

B cells mediate CNS damage in MS, specifically killing

them or hindering their recruitment to the CNS efficiently

suppresses disease activity.10 Finally, genetic studies indi-

cate that adaptive immunity may play a role also in the

initiation of the disease.11,12

T and B cells recognize specific antigens through their

antigen receptors.13 The T-cell receptor (TCR) binds

peptides presented on human leukocyte antigen (HLA)

molecules, whereas the B-cell immunoglobulin (herein

referred to as B-cell receptor, BCR) binds linear or con-

formational epitopes on native antigens (Fig. 1A). If the

lymphocyte receives appropriate co-stimulatory signals,

antigen recognition leads to activation and proliferation

known as clonal expansion. Although immunization with

myelin antigens induces an MS-like disease in rodents,

the target antigens of the T- and B-cell responses in MS

have not been identified. It is a particular paradox that

the specificity of oligoclonal IgG within the CSF of

patients with MS remains unknown, whereas it was pro-

ven more than four decades ago that oligoclonal IgG in

CNS infection target the causative agent.14 Since then, the

target antigens of oligoclonal CSF IgG have also been

identified in patients with noninfectious immune-

mediated diseases, such as Yo antigens in paraneoplastic

cerebellar degeneration.15 This could either suggest that

we need more refined methods to identify MS antigens
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still hiding, or that there are no particular target antigens

in MS. Importantly, the first alternative implies that MS

could be treated by specific immune intervention strate-

gies. In this review, we summarize studies that have sur-

veyed the immune repertoires in MS using earlier

techniques. We discuss how the introduction of high-

throughput sequencing has provided new knowledge, and

anticipate how it may continue to unravel important

aspects of the adaptive immune responses in MS.

Immune Receptors and Repertoires

The TCR and the BCR share structural similarities

(Fig. 1A). Both comprise distinct pair of chains, one a-

and one b-chain for the ab TCR and two heavy- and two

light chains for the BCR, with variable domains mediating

binding to antigens.13 The genes encoding the variable

domains undergo somatic diversification during lympho-

cyte development. In this process, the variable (V), joining

(J), and diversity (D; for the TCR b and BCR heavy chain)

gene segments are rearranged (Fig. 1B). In addition,

nucleotides may be randomly added or removed between

the segments. The greatest diversity is found within the

complementarity determining regions (CDRs), in particu-

lar the CDR3, which contributes most to the specificity of

the receptors. Pairing of the receptor chains leads to fur-

ther divergence of the repertoire, and the potential diver-

sity has been estimated to 1018 ab TCRs and 5 9 1013
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Figure 1. Structure, function, and diversification of antigen receptors. (A) The T-cell receptor (TCR) binds to linear epitopes presented on HLA

molecules by antigen-presenting cells. The B-cell receptor (BCR), in contrast, recognizes linear or conformational epitopes on native antigens. Both

antigen receptors are composed of distinct pair of chains: The TCR of an a- and a b-chain, and the BCR of two heavy and two light chains. The

variable part of the receptor chains, encoded by V, J, and D (TCR b and BCR heavy) gene segments, constitutes their antigen-binding surface. (B)

During T- and B-cell development, the V, J, and D (TCR b and BCR heavy) gene segments are stochastically recombined, and nucleotides may also

be randomly added and deleted between them. The diversity of the receptor genes concentrates in the third complementarity determining region

(CDR3), which encodes the center of the antigen-binding surface. In the course of antigen-driven immune responses, B cells may go through an

additional round of diversification in germinal centers, where they undergo somatic hypermutation and clonal selection. During this process, they

also switch the isotype of the constant chain. Class switch recombination leading to isotype switching from IgM (encoded by Cl gene segments)

to immunoglobulin G (IgG)1 (encoded by Cc1 gene segments) is depicted.
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BCRs.13 Upon encountering an antigen, B cells undergo

an additional round of diversification in lymphoid germi-

nal centers. This involves the enzyme activity-induced

cytidine deaminase and is known as somatic hypermuta-

tion. The variable domains of TCRs and BCRs can thus be

used as molecular fingerprints to track lymphocytes of

similar specificities. The totality of different antigen recep-

tors with distinct variable domains in a given individual is

here denoted the immune repertoire.

Studies of immune repertoires in MS are important

for several reasons: (1) The composition of the reper-

toires may indicate whether they are the result of anti-

gen stimulation or other means of activation; (2) If the

sequences encoding both antigen receptor chains are

available, it is possible to express recombinant receptors

to search for target antigens; and (3) Dominant clones

could represent potential biomarkers or targets for

selective immunotherapy.

Analyses of Immune Repertoires in
MS

The TCR repertoire

A summary of the techniques most commonly used to

investigate the immune repertoires in MS is given in

Table 1. Using Southern blot, early studies explored the

diversity of the TCR repertoires in the CSF.16,17 The

methods included cloning and in vitro expansion of indi-

vidual T cells. Accordingly, only a limited number of CSF

T-cell clones were studied, and this limitation could

possibly explain conflicting results.16,17 Subsequent inves-

tigations of T-cell clones from CSF and blood using gene-

specific primers mapping to the TCR Vb genes indicated

a common TCR Vb gene usage in some MS patients.18

Combining PCR amplification of TCR Vb genes and con-

ventional Sanger sequencing, another study found an

Table 1. Principles, outcomes, and challenges with techniques used to study immune repertoires in multiple sclerosis.

Technology Principle Outcome Challenges

Southern blot DNA is digested by restriction enzymes,

separated on agarose gels, and blotted

onto nitrocellulose membranes. DNA

fragments are hybridized with gene probes.

Clonal composition

and diversity

� Requires relatively large amounts of DNA

� Does not give the nucleic acid sequence

� Low throughput

CDR3 spectratyping T-cell receptor cDNA is amplified by PCR

across the CDR3 region using primers

mapping to different families of variable

genes. Since T-cell clones differ in CDR3

length, the distribution of lengths of the

resultant PCR products reflects the overall

diversity. Deviations from a bell-shaped

distribution indicate clonal expansions.

Overview of the

clonal composition

and diversity

� Limited resolution

� Does not give the nucleic acid sequence

Flow cytometry based

T-cell receptor

(TCR) Vb repertoire

analysis

A cell sample is stained with antibodies

against different TCR-Vb-families and

analyzed on a flow cytometer.

Overview of the

clonal composition

� Limited resolution

� Only available for T cells and only for

b-chain families

� Does not give the nucleic acid sequence

Sanger sequencing The sequencing technique is based on

selective incorporation of chain-terminating

dideoxynucleotides. The resulting DNA

fragments are separated by electrophoresis.

Nucleic acid

sequence, up to

700 bp

� Low-throughput limits the capacity for

assessing repertoire diversity

High-throughput sequencing technologies

Roche 454 “Sequencing by synthesis,” based on the

release of pyrophosphate on nucleotide

incorporation.

Nucleic acid

sequence, 400 bp

(recently upgraded

to 1000 bp)

� Prone to insertions and deletions

(“indels”), which cannot be distinguished

from true insertions and deletions within

CDR3

Illumina (HiSeq and

MiSeq)

“Sequencing by synthesis,” based on cyclic

reversible termination, which is an

adaption of Sanger sequencing. “Paired

end” sequencing makes it possible to

sequence both ends of a fragment, and

subsequently align the reads to cover

longer sequences.

Nucleic acid

sequence,

2 9 150 bp for

HiSeq and

2 9 300 bp for

MiSeq

� Due to shorter read length, HiSeq does

not cover the entire immunoglobulin

heavy-chain variable and therefore not all

somatic mutations
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oligoclonal TCR repertoire in the CSF of patients with

MS and also other inflammatory neurological condi-

tions.19 Through PCR amplification of TCR Vb genes and

a subsequent immunoenzymatic approach, Gran and col-

leagues found a skewed TCR Vb usage in the blood.20

In CDR3 spectratyping, the lengths of the CDR3

sequences are investigated. This technique showed an

overrepresentation of certain Vb genes in the blood,21

clonal T cell expansions in the CSF,22 a diversification of

the TCR repertoire after autologous stem cell transplanta-

tion,23 and more recently that the drugs natalizumab and

fingolimod might influence the peripheral TCR reper-

toire.24,25 It is also possible to explore the TCR Vb reper-

toire by flow cytometry using fluorochrome-labeled

antibodies against different Vb families.26 A study using

this technique demonstrated clonal expansions mainly

among CD8+ T cells in the CSF.27

Oksenberg and colleagues were the first to explore the

TCR repertoires expressed in brain lesions.28 Through

specific PCR amplification, they found a restricted TCR

Va usage. In contrast, another early study using PCR

amplification and Southern blot reported a polyclonal

TCR repertoire in MS brains.29 Later studies combining

CDR3 spectratyping with Sanger sequencing of candidate

T-cell clones have indicated that the TCR repertoire in

MS brains is diverse, but nevertheless dominated by

expanded clones.30,31 Many of these are CD8+ T cells,

and at least some can also be detected in the CSF and

blood at different time points.30 Interestingly, some

expanded clones within MS lesions express TCR b
sequences that are similar on the amino acid level, but

encoded by different nucleotide combinations.6,31 The

existence of such shared TCR sequences is suggested to be

due to “convergent recombination,” which makes some

TCRs to be produced more frequently than others.32

Since similar TCRs are believed to share specificity, the

presence of such sequences within an MS brain argues

that they have been recruited by the same antigen.

The repertoire of myelin basic protein (MBP)-specific

T cells in blood has been studied by PCR amplification of

TCR Vb genes followed by Southern blotting or conven-

tional Sanger sequencing in combination with antibodies

against different Vb families.33–37 While some of these

studies demonstrated a restricted TCR repertoire,33–35

other research groups found a broader and more diverse

composition.36,37 Later studies focusing on the change in

the MBP-specific T-cell repertoire over time showed some

cases of preserved specificities,38 but also instances of

diversification of the repertoire due to epitope spread-

ing,39 which may have implications for antigen-specific

tolerization strategies.40

Previous studies using restriction fragment length

polymorphisms (RFLP) as genetic markers have

reported conflicting results regarding the influence of

TCR gene polymorphisms on MS risk.41–44 A more

recent study used single-nucleotide polymorphism

markers to revisit this and identified three potential

loci of interest in TCR alpha V and constant gene

regions.45

The BCR repertoire

PCR amplification, cloning, and Sanger sequencing of

immunoglobulin heavy-chain V (IGHV) genes in CSF B

cells from MS patients have demonstrated clonal expan-

sion and somatic hypermutation.46–48 Using similar tech-

niques, clonal expansions of B cells have also been

identified in the brain and meninges.5,49,50 Moreover,

antigen-experienced B cells within the CSF and CNS tend

to preferentially use VH4 germline segments, which is

indicative of an antigen-driven response,5,46,49,50 and it

has been suggested that certain patterns of somatic muta-

tions within these VH4 segments could be used as a diag-

nostic tool.51

PCR amplification of IGHV transcripts from single

sorted B cells allows faithful pairing of the heavy and light

chains, and has enabled researchers to express expanded

CSF and CNS B-cell clones as recombinant antibodies to

identify target antigens. This approach has proven suc-

cessful for aquaporin-4-specific B cells from the CSF in

neuromyelitis optica and measles-specific B cells from the

brain in subacute sclerosing panencephalitis.52,53 Initial

attempts to identify the specificity of recombinant anti-

bodies from expanded CSF B cells in MS, in contrast, was

not conclusive.54 However, some of these antibodies has

recently been found to bind to astrocytes and neuronal

antigens, and to cause complement-mediated tissue

destruction in spinal cord explants.55 Other studies have

found evidence of myelin reactivity of recombinant Fab

fragments and antibodies from the CSF.56,57 A very recent

study investigating recombinant antibodies from

expanded B cells in MS brains did not succeed in identi-

fying specificities unique to the disease.58 Taken together,

the evidence so far show that BCRs from MS patients

have a mutation pattern compatible with an antigen-dri-

ven immune response, but does not unambiguously point

to a particular target antigen.

Some earlier genetic association studies have explored

BCR gene polymorphisms. The use of DNA probes map-

ping to different V gene segments and RFLP showed sig-

nificant associations.59,60 On the other hand, the use of

microsatellite markers within the IGH cluster produced

negative results.61,62 One study using gene-specific pri-

mers to explore an IGHV4-39 germline deletion did not

detect any association linking the polymorphism to

disease susceptibility or progression.63

298 ª 2016 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Immune Repertoires in Multiple Sclerosis A. Lossius et al.



High-Throughput Sequencing of
Immune Repertoires

As described above, molecular methods such as Sanger

sequencing and CDR3 spectratyping have provided impor-

tant insights on the clonality of intrathecal T- and B-cell

repertoires, and have provided promising tools for studies

of the specificity of CSF and CNS B cells. Cloning and con-

ventional Sanger sequencing, however, only allows interro-

gation of a small fraction of the immune repertoires. CDR3

spectratyping, on the other hand, gives an “eagle eye” per-

spective, but no information about the sequence determin-

ing receptor specificity. These constraints have hampered

an unbiased characterization of the complete immune

repertoires within each immunological or anatomic com-

partment. High-throughput sequencing overcomes these

limitations and offers the best of both worlds. It enables

sequencing of millions of short templates in parallel, cap-

turing even infrequent clones. The diversity is accurately

determined by estimating the contribution of single clones

to the total repertoire.

Although the theoretical diversity of the ab TCR reper-

toire in the human body is assumed to be 1018,13 the

number of different TCRs present in a given individual

was estimated in an earlier study only to 106 different b
chains, each potentially pairing with one of 25 different a
chains.64 High-throughput sequencing has recently been

used to revisit this, and revealed that the true number of

different b chains present is higher. By combining high-

throughput sequencing with a computational approach,

Robins and colleagues found that the TCR b diversity was

at least fourfold greater than previous estimates.65 Qi and

colleagues found an even higher estimate of 108 different

TCR b chain genes in young adults.66 It has been claimed

that these approximations could be biased by sample size,

and that the true diversity of the TCR repertoire might

still be greater.67

Although well suited to study immune repertoires,

high-throughput sequencing poses new experimental and

computational challenges.68 For T cells, one has to decide

whether to sequence TCR a or b chain genes. Up to 10%

of T cells may express two functional a chains, whereas it

has been estimated that less than 1% express two func-

tional b chains.69 Consequently, the distribution of TCR

b genes more accurately reflects the repertoire on a cellu-

lar level in a given sample, and high-throughput sequenc-

ing of TCR b genes would often be preferable to TCR a
genes to estimate the number of T cells expressing a given

TCR. Another important question is whether one should

use complementary DNA (cDNA) that are reverse tran-

scribed from mRNA, or genomic DNA (gDNA) for the

investigation of immune repertoires. Due to multiple

copies of the same RNA transcript per cell, the use of

cDNA is much more sensitive than gDNA. This is advan-

tageous if cell numbers are low, as for CSF B cells.70,71

The use of cDNA also excludes introns and simplifies the

sequencing strategy, and it reduces the number of unpro-

ductive sequences.72 However, RNA copy number

depends on the activation status, and may consequently

not be proportional to the number of cells. Activation of

T cells, for instance, modifies the expression of TCR

genes.73 Moreover, antibody-secreting effector cells, such

as plasmablasts in the CSF, show increased levels of BCR

transcripts.74 The amount of gDNA, on the other hand,

has been shown to correlate well with cell numbers if

PCR bias is eliminated.75

There are different options for sequencing technolo-

gies, and a few have been used in MS (Table 1). The

Roche 454 technology has been utilized to study the

BCR repertoires in CSF and blood.70,76–78 This technol-

ogy provides longer sequence reads than other platforms,

but has a high rate of artifactual insertions and dele-

tions, which might be impossible to distinguish from

true insertions and deletions introduced during receptor

gene recombination. We and others have applied Illu-

mina sequencing technology to study the TCR79–83 and

the BCR71,84 repertoires. Artifacts are rarer, but the

sequence lengths on the HiSeq platform are shorter, and

consequently not covering all possible somatic mutations

within IGHV genes.

Strategies to process and analyze high-throughput

sequencing data of antigen receptors have recently been

reviewed.68,85 The raw sequence reads must first be fil-

tered and clustered in order to correct for sequencing and

PCR errors,86 and some software solutions that perform

these algorithms have been developed.87,88 Next, the

sequences are classified according to their V(D)J germline

segment, which can be achieved using web-based tools

such as IMGT/HighV-QUEST or IgBLAST,89,90 or avail-

able software.91,92 Several software packages and web-

based analysis tools, such as Adaptive Biotechnologies

ImmunSEQ platform, is accessible for further analysis of

sequencing data.93–95

The need for publicly available databases dedicated to

rearranged TCR and BCR sequences are becoming

increasingly clear.96 This would simplify the search for

previously published identical or highly similar CDR3

sequences that may represent public TCRs or BCRs.

Moreover, there is also a need for standardization of

sequencing protocols and data handling, which would

enable analyses of meta data.97 For the time being, the

National Center for Biotechnology Information (NCBI)

BLAST search engine is a valuable tool to identify

sequences in the nonredundant protein database obtained

with previously available sequencing technology.98 For

high-throughput sequencing data deposited in the NCBI
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Sequence Read Archive, it is possible to perform a BLAST

search within files of published projects.99

High-Throughput Sequencing of TCRs in
Multiple Sclerosis

Autologous stem cell transplantation and the monoclonal

antibody alemtuzumab are assumed to “reset” the

immune system. To test this hypothesis in MS patients

treated with stem cell transplantation, Muraro, Robins

and colleagues followed the renewal of the T-cell reper-

toire applying high-throughput TCR b sequencing.80 This

allowed a comprehensive assessment of the regenerated

CD4+ and CD8+ T-cell repertoires, including the impact

of individual surviving clones on the new repertoire.

Interestingly, whereas the CD4+ T-cell repertoire after

transplantation were largely composed of newly generated

clones, the CD8+ T-cell repertoire were reestablished from

clones already present before treatment.80 The latter

mechanism, known as homeostatic proliferation, was

shown by assessment of thymic output by TCR excision

circles also to be prominent after treatment with alem-

tuzumab.79 Less diverse TCR repertoires were associated

with a poor response to stem cell transplantation and

with the development of secondary autoimmunity after

treatment with alemtuzumab.79,80 These results show that

high-throughput sequencing may enable monitoring of

disease-relevant T-cell clones following therapies with

fundamental effects on the immune system.

We have recently used high-throughput sequencing to

explore the TCR b repertoires of MS patients and con-

trols with other types of neuroinflammation.81 Compared

to previously available technology, high-throughput

sequencing allowed a better estimate of the diversity in

the CSF and blood, and a precise quantitation of the

overlap between the two compartments. We found highly

diverse repertoires both in CSF and blood, and a signifi-

cant overlap between the compartments, indicating that

most CSF T cells have entered from blood. The most fre-

quent clones within the CSF were, however, infrequent in

blood, indicating that they had expanded locally.81 Such

dominant clones only made up a small proportion of the

total TCR b repertoire in CSF, but were remarkably stable

for at least one year. Applying high-throughput TCR

sequencing in peripheral blood, another recent study

demonstrated that children with MS were characterized

by a long VJ junction region, indicating a self-reactive

TCR repertoire, and a skewed TCR Vb family usage.95

MS is associated with Epstein–Barr virus (EBV).100 In

order to track EBV-reactive T cells and determine if they

accumulate in the CSF, we created reference TCR b
libraries by sorting and sequencing EBV-reactive CD4+
and CD8+ T cells in blood.81 Because the TCR b

sequence is unique for each memory clone, the

sequences of EBV-reactive T cells from blood could be

used to track T cells from the same clone in CSF. By

these means, we found an enrichment of EBV-reactive

CD8+ T cells in the CSF of MS patients, but not the

controls.81 Among the EBV-reactive CD8+ T cells in the

CSF, we identified several public TCR b sequences.

These sequences are known to be shared across individ-

uals, and to be carried by TCRs that recognize common

viral antigens in the context of particular HLA mole-

cules. To our surprise, one of the public EBV-specific

sequences, and another almost identical sequence, had

previously been identified in MS lesions.31 This confirms

that EBV-specific T cells gain entry to the crime scene

in MS, and that high-throughput sequencing can catch

them in flagrante.

Combining high-throughput sequencing and CDR3

spectratyping, a recent study compared the TCR b reper-

toires in MS lesions, CSF, and blood from the same indi-

viduals.82 The repertoire in the CNS appeared to be

closer to the repertoire in the CSF than to that in blood,

and closer to the CD8+ than to the CD4+ peripheral

T-cell compartment. Characterization of clonally

expanded CD8+ T cells in blood by flow cytometry

showed that these cells were biased toward a memory

phenotype with increased expression of CCR5, CD11a,

and Granzyme B.82 Another study used high-throughput

sequencing to explore the TCR repertoire present in so-

called pattern II MS lesions, which are believed to be

associated with antibody-mediated pathology.83 The

authors identified expanded T-cell clones and were subse-

quently able to isolate them from the CSF of the same

patient and show that they secreted Th2 cytokines and

were able to provide B cell help.83 They did not observe

identical TCR sequences encoded by different nucleotide

combinations, a phenomenon observed by others and

taken in support of an antigen-driven T cell response.6,31

However, several sequences had identical CDR3 sequence

but slightly different TCRb V gene segments.83 The CDR1

and CDR2 sequences in these TCRs were highly similar,

which might indicate that the TCRs recognize the same

antigen/HLA combination.

These examples demonstrate the ability of high-through-

put sequencing to track disease-relevant T cells in different

compartments, and the possibility of combining the tech-

nique with functional characterization of T-cell clones.

High-Throughput Sequencing of BCRs in
Multiple Sclerosis

While previously available technology enabled expression

of recombinant antibodies from a limited number of CSF

B cells, high-throughput sequencing made it possible to
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sequence previously unattainable numbers of IGHV genes

from CSF and blood. This paved the way for identification

of related B-cell clones in CSF and blood, first shown by

von B€udingen and colleagues and later by us.70,71 Figure 2

shows data from two MS patients, based on high-through-

put sequencing of IGHV genes as described elsewhere.71 By

comparing the BCR transcriptome with the IgG proteome

characterized by mass spectroscopy, we were able to ensure

that the sequence data are correct and reflect B cells pro-

ducing IgG within the CSF. Somatic hypermutation of the

IGHV genes makes it possible to track the maturation of

B-cell clones in CSF and blood. This can be visualized as

“trees” where distinct B-cell clones that have acquired

somatic mutations are depicted as different “branches”

emerging from a hypothetical germline clone. In the pre-

sent data, we detected related B-cell clones in CSF and

blood of the patients investigated (Fig. 2). Previous publi-

cations have shown that some related clones present in

both compartments match CSF IgG.71,76 One of the B-cell

lineages presented here has members matching both CSF

and serum IgG (Fig. 2, MS-1, rightmost tree).

Stern and colleagues applied high-throughput sequenc-

ing on B cells in paired samples from cervical lymph

nodes and brains of MS patients.84 They found consider-

able overlap between the B-cell repertoire in the CNS and

the lymph nodes. On the other hand, some clones were

only present in a single compartment, and the repertoire

tended to be more focused in the CNS compared to the

periphery. Most importantly, they found that a greater

proportion of clonal founders within cervical lymph

nodes, suggesting that initiation of the B-cell maturation

occur in secondary lymphoid tissue outside the CNS.84

The findings of clonally related T cells and B cells on

both sides of the blood–brain barrier are particularly

interesting in the light of the discovery of the drainage of

the interstitial fluid of the brain through the so-called

“glymphatic” pathway,101 and more recently of a lym-

phatic drainage system from the brain to deep cervical

lymph nodes.102,103 These findings corroborate early stud-

ies suggesting that the afferent arm of the immune system

is operating in the brain.104 The existence of such lym-

phatic vessels also offers a path for the egression of

immune cells from the CNS, and could thus contribute

to explain the finding of identical and clonally related T

cells and B cells, as well as IgG, in blood and CSF.

Prospects and Promise

High-throughput sequencing of immune repertoires in

MS has so far been limited to genes encoding one of the

two antigen receptor chains. Paired sequencing of both

chains will significantly increase the resolution of the

analysis. For BCR sequencing, paired data will make it

possible to explore somatic mutations also in the V

region of the light chain, capturing a more accurate pic-

ture of the affinity maturation. Importantly, paired-chain

sequencing will also enable recombinant expression of

TCRs and BCRs for studies of receptor specificities.

For high-frequency B-cell clones, it is possible to pair

heavy and light chains based on their relative frequen-

cies,105 and a combinatorial approach has recently been

developed to match the a- and b-chains in high-through-

put TCR sequencing.106 Recent technological advances

have also made it possible to increase the throughput of

single-cell analyses.107 By barcoding transcripts from the

same cell or by linking sequences during cDNA synthesis,

it is possible to perform high-throughput sequencing on

paired templates in heterogeneous samples.108,109 More-

over, in order to link TCR and BCR sequences to func-

tional T- and B-cell phenotypes, it is possible to

simultaneously assess the receptor sequences and the tran-

script expression from single cells.110
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Figure 2. Maturation of four immunoglobulin G (IgG)-producing

B-cell clones from two multiple sclerosis (MS) patients. High-

throughput sequencing of immunoglobulin heavy-chain variable

(IGHV) transcripts from cerebrospinal fluid (CSF) and blood was

performed, and IgG from CSF and serum was analyzed by mass

spectrometry. Each node represents a single IGHV sequence. The

hypothetical germline (GL) sequence is set as origo, and the

connecting lines depict somatic mutations. Lines without numbers

denotes a single-nucleotide exchange, “2” denotes two mutations,

and so on. Gray nodes represent sequences only detected in CSF, the

red node is a sequence only detected in blood, and blue nodes are

identical sequences detected in both CSF and blood, whereas white

nodes represent hypothetical intermediates. Larger nodes represent

the most abundant transcripts. The CDR3 of all lineage trees matched

CSF IgG. The rightmost tree of MS-1 also matched IgG from serum.
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It has been shown that immunoglobulin V region poly-

morphisms may have a profound impact on immune

responses,111 and high-throughput sequencing has

recently revealed that there is a plethora of undiscovered

immunoglobulin V gene segment alleles.112 By detailed

mapping of germline immunoglobulin segments in large

cohorts of MS patients and controls, high-throughput

sequencing technology may reveal novel disease-associated

V gene polymorphisms.

As our knowledge of the MS pathogenesis expands,

new applications of high-throughput sequencing of

immune repertoires will likely emerge. Novel strategies

for antigen-specific tolerization have recently been sug-

gested.40 If selective immunotherapy were to become a

reality, high-throughput sequencing would be well suited

to monitor pathogenic clones posttreatment. This would

parallel the tracking of minimal residual disease, which

shows great promise in the follow-up of lymphoid malig-

nancies.113
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