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Image registration is a fundamental task in medical imaging analysis, which is commonly used during image-guided interventions
and data fusion. In this paper, we present a deep learning architecture to symmetrically learn and predict the deformation field
between a pair of images in an unsupervised fashion. To achieve this, we design a deep regression network to predict a deformation
field that can be used to align the template-subject image pair. Specifically, instead of estimating the single deformation pathway to
align the images, herein, we predict two halfway deformations, which can move the original template and subject into a
pseudomean space simultaneously. Therefore, we train a symmetric registration network (S-Net) in this paper. By using a
symmetric strategy, the registration can be more accurate and robust particularly on the images with large anatomical variations.
Moreover, the smoothness of the deformation is also significantly improved. Experimental results have demonstrated that the
trained model can directly predict the symmetric deformations on new image pairs from different databases, consistently

producing accurate and robust registration results.

1. Introduction

Computer models have become a usable method for solving
biomedical engineering and are applied to the analysis and
measurement of data in the biomedical field (e.g., material
mechanical behavior measurement [1-4], medical image
segmentation [5, 6], and registration [7-9]). Deformable
image registration aims to align subject images onto a
template space by gradually optimizing the spatial trans-
formation fields consisting of voxel-to-voxel correspon-
dences between template and subject images [10].
Deformable registration is a key procedure in clinical ap-
plications such as population analysis, longitudinal data
analysis, and image-guided intervention. Many image reg-
istration algorithms have been proposed and applied to
various imaging analysis tasks [7-9, 11-16]. Conventional
registration algorithms achieve the task via typical

optimization, which can be classified into either intensity-
based registration [11-13] or feature-based registration
[14-16]. In these methods, the deformation field is obtained
by iteratively optimizing the image similarity metric with a
smoothness regularization constraint.

In recent years, deep learning has been widely applied in
medical image analysis [17, 18]. And deep-learning-based
registration methods have shown promising performance
especially for efficiency, as the computational time can be
significantly reduced from minutes to seconds. Since the
ground-truth deformations are difficult to obtain in practice,
some semisupervised [19] and unsupervised learning
strategies [20-22] are more popular currently. Specifically,
the spatial transformation network (STN) [23] is leveraged
in the deep-learning-based registration framework so that
the loss can be defined directly on the image similarity,
instead of using ground-truth deformations as supervised
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information. When the model is well trained, in the ap-
plication stage, the transformation field can be estimated for
unseen image pairs, without the need for iterative optimi-
zation. Therefore, deep-learning-based registration is more
flexible in real clinical use. Additionally, to further improve
the registration accuracy, multiscale strategy [24, 25], dif-
feomorphic strategy [26], and inverse-consistent properties
[27] are also incorporated in the deep-learning-based reg-
istration framework.

However, for the aforementioned registration algo-
rithms, it is difficult to accurately register the images with
large anatomical variation, and the smoothness is even
difficult to preserve and constrain for large deformation.
Thus, it is essential to develop an algorithm, which can
effectively register the images with large anatomical varia-
tions and, meanwhile, keep the transformation field smooth,
so that the topology can be well preserved. In addition,
symmetric diffeomorphic registration has achieved better
performance overall, which estimates symmetrical defor-
mation pathway from two objects (template and subject) to
the intermediate point instead of a single pathway from
template to subject [13, 28]. Inspired by these methods, we
hope to add a symmetric image registration strategy to the
unsupervised model.

In this paper, we further investigate the deep-learning-
based registration by considering the symmetric property.
We propose a symmetric registration network (S-Net) by
simultaneously aligning the subject and template images to
an intermediate space, i.e., the pseudomean space. Specifi-
cally, instead of establishing the voxel-to-voxel correspon-
dences in one pathway, i.e., from template space to subject
space, we move the template and subject images symmet-
rically, until they meet in the pseudomean space. In this
space, the image similarity is maximized. The main con-
tribution of this work can be summarized as follows:

(1) We propose a symmetric registration network that
can register images in the dual direction simulta-
neously. In this framework, the pseudomean space
can be automatically learned by using the symmetric
constraint without any supervised guidance.

(2) The symmetric property allows for estimating two
short deformation pathways instead of directly es-
timating a long deformation pathway. It is more
effective to register images with large anatomical
variations. The final registration result can be more
accurate and smoother.

(3) Under the symmetric framework, we can directly
obtain the forward (register subject to template) and
backward (register subject to template) transfor-
mation fields by using the trained S-Net. Therefore,
the inverse consistency can be achieved without
introducing any additional model or strategy.

2. Materials and Methods

The S-Net is trained in an unsupervised manner based on the
proposed symmetric way. As shown in Figure 1, the input of
the network is a pair of template image I” and subject image
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IS, together with their difference map. Instead of directly
estimating the deformation field ¢ to register the subject to
template, we make the training of the registration network
symmetric, i.e., the template and subject image both deform
until reaching their pseudomean space. Two deformation
pathways will be estimated under this framework: (1) ¢ is
the deformation pathway between template and pseudo-
mean space and (2) ¢° is the deformation pathway between
subject and pseudomean space.

Mathematically, the optimization of symmetric regis-
tration can be formulated by minimizing the image dis-
similarity in the pseudomean space:

F(I 9% ¢7) = M(7(1%.9°). 7 (1", ¢")) + AR(9", ¢7),
(1)

where 7 (*, %) is a deformation operation that can warp I
by ¢ and M is the dissimilarity between the deformed subject
image I (¢°) and deformed template image I” (¢7). R is a
regularization term to constrain the smoothness of two
symmetric deformations ¢’ and ¢°. A is a weight to balance
the registration accuracy and deformation smoothness. In
the training of the deformable registration network S-Net, M
and R are used to define the loss function and 7 is the spatial
transformation network [23] used to spatially transform the
image based on the estimated transformation field. The
details of training the symmetric registration network S-Net
will be described in Section 2.1.

In the testing stage, giving an unseen image pair and
their difference maps, we can get their symmetric defor-
mations ¢° and ¢”. As shown in Figure 2, the final symmetric
registration results can be obtained by composing the two
predicted deformation pathways: the forward deformation
can be formulated as F = ¢ o (¢%)"", which can register the
subject to template. The backward deformation can be
formulated as F~!'=¢%o (¢7)"' which can register the
template to the subject. ¢” o (¢%)' is the inverse field of
@5 (¢7)7", and “o” denotes the composition operator [28].

2.1. Symmetric Network Design. For symmetric registration,
the pseudomean is an intermediate space on the image
manifold, and the distance between the pseudomean and the
template should equal that between the pseudomean and the
subject. Therefore, for each location/voxel, the deformation
magnitudes of ¢ and ¢° should be equal to each other, while
the direction should be opposite. Thus, during the training,
the output of the network is only ¢’, and we can set
¢% = —¢T. There are two advantages to using this symmetric
setting. (1) The large local deformation can be more effec-
tively estimated since we shorten the deformation pathway
during registration. (2) We can easily keep the inverse
consistency without introducing any additional constraint.

The S-Net was designed based on the network archi-
tecture designed in VoxelMorph [20], which is lighter than
the original U-Net [6] by reducing the redundant connec-
tions to adapt to the analysis of 3D images. The network
output is the halfway deformation ¢”. Since we do not have
the ground-truth deformations, herein, we apply the
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FIGURE 1: Overview of our method. Learning the parameters of S-Net by unsupervised training. The input consists of subject image I°, the
template image I7 , and their difference map; the outputs are the 3D displacement maps.
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FIGURe 2: The symmetric image registration scheme. (a) Illustration of the hypothesis of the symmetric image registration; (b) the whole

deformation field from template to subject can be calculated by F = ¢

can also be obtained by Fl= ¢S ° (</5T)_1-

unsupervised training strategy [20-22]. Specifically, a spatial
transformer network [23] provides a fully differentiable
spatial transformation layer I that can transform the input
image I by the output deformation ¢, which is the output of
the S-Net. Specifically, we use the trilinear interpolation in
STN, and the operation I can be formulated as

gme= Yy I1» [] (@

VeN(urg()  defxyz}

—|”d + ¢ (ug) - Vdi)s

(2)

where u = [x, y,z] is the voxel coordinate, N (u + ¢ (1)) is
the eight neighbor voxels of u + ¢ (1) in I, and d indicates

o (¢5)7', and the inverse deformation field from subject to template

three directions in 3D space. With STN, the loss defined by
the image similarity can backpropagate to the S-Net, and the
registration network can be trained in an unsupervised
manner.

2.2. Loss Definition

2.2.1. Symmetric Similarity Loss. The similarity loss of the
registration task is used to evaluate the registration accuracy,
and here, we define the similarity loss by SSD. Conven-
tionally, the subject image should be warped to the template
space by the output deformation field, and the loss is



calculated in the template space. For the symmetric regis-
tration network, we define the similarity loss in the pseu-
domean space to penalize the symmetric property.
Mathematically, it can be formulated as
S 4S T T2 S T
Lom=T(0.¢)-T(I'.¢"), ¢=-¢".

Sim
By minimizing the symmetric similarity loss Zq., the
template and subject image will gradually register with each
other, until they reach their pseudomean space. To further
enhance the symmetric constraints and registration accu-
racy, we also define the similarity loss in both template and
subject image space:

s __, T -1
S "= TP (¢7) ) -1

gl — 1 _ 9(IT’¢T . (¢S)‘1> e

Sim

(4)

where ¢°0 (¢7)"! indicates the forward deformation
pathway, which can transform the subject image to the
template space, while ¢ o (¢%)”! indicates the backward
deformation pathway, which can transform the template
image to the subject space. It worth noting that the output of
the S-Net is the halfway deformation ¢”, and the symmetric
loss Zgm defined in the pseudomean space can well preserve

. . ST S

the symmetric property, while Zg; and Z, de-
fined in the end image space can make the registration
accurate. Therefore, the whole symmetric similarity loss can

; _ pSym s — 17 T — 1
be summarized as L, = Zg, + Lsim +Lm -

2.2.2. Field Regularization Loss. The regularization loss is
used to constrain the smoothness of the estimated defor-
mation field ¢, which is important to preserve the topology.
In S-Net, this regularization loss is only defined on ¢*
(output of the network). The smoothness of ¢s can be au-
tomatically constrained since ¢° = —¢”. In our work, three
kinds of regularization loss, i.e., Laplace smoothness, zero
constraint, and antifolds constraint, are used to penalize the
smoothness.

(1) Laplace smoothness Lj, ,.: constraining the
smoothness of the field ¢, which is defined as

gLaplace = ; v2¢T (u)é’ (5)

where V2¢ (1) is the second derivative of the field ¢ (1)
at the voxel u.

(2) Zero constraint: modifying the displacement value
for avoiding unreasonable large deformations:

3Zero = Zu: ¢T (u)% (6)

(3) Antifolds constraint: adding an antifolds constraint
[27] in the loss function to further enhance the smoothness
constraint, avoiding folds, or crossing in the final
deformation:

o = TR @ +1), o

u
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where V¢ (1) is the gradient of the displacement map and the
term R(V¢(u)+ 1) is an index function to penalize the
gradient of the deformation field with folds. If Q<0,
R(Q) =|Q)|, and R(Q) = 0, for otherwise.

The final loss function for training the S-Net is

_ _ cpsym 5 — 1T I — 1
gLoss _QSim-’—gReg _QSim +$Sim +gSim
+ “gLap + ﬂgZero + ygAnti’
(8)

where «, f, and y are used to balance the weight for each
term. In this work, we set « =1 and y = 100 in our ex-
periment. For zero constraint term Ly, we set the weight f3
a small value as 8 = 0.01, since the large value may influence
the accuracy when estimating the large deformations.

2.3. Implementation and Training. The S-Net is imple-
mented in Keras and trained on an NVIDIA Tesla V100
GPUs with 32 GB of video memory. The network is trained
by using the Adam strategy [29]. We use four public da-
tabases, i.e., LONI LPBA40 [30], IBSR18 (https://www.nitrc.
org/projects/ibsr), CUMCI12 [31], and MGH10 [32] in our
experiments. All images were preprocessed by using a
standard pipeline, including skull stripping, resampling, and
affine registration to the MNI152 template [33] by using
FLIRT [34]. After preprocessing, the data are with the same
size 192 x 224 x 192 (voxel size 1 mm X I mm x 1 mm).

We used 30 subjects from LONI LPBA40 dataset as the
training data, and 30 x 30 = 900 image pairs can be derived.
The remaining 10 images were used as the testing data,
where 10 X 9 = 90 image pairs can be derived. The other
three datasets are also used as the testing data to further
evaluate the effectiveness of the proposed method, and we
have 18 x 17 = 306 image pairs from IBSR18, 12 x 11 = 132
image pairs from CUMCI2, and 10 x 9 = 90 image pairs
from MGH10. For more effective training, we trained S-Net
in two stages. First, the network was pretrained with a small
dataset, where we chose one image as template and all the
remaining images as subject. In this scenario, we totally have
1 x 30 =30 image pairs for training. The network was
trained for 200 iterations per image pair at a learning rate of
le — 4. Then, we draw each two images as a template and
subject pair, and we totally have 30 x 30 = 900 image pairs
for further training the S-Net. 20 epochs were trained in this
scenario, the learning rate is set to 1e — 5, with a decay weight
of 0.5 for every 2 epochs.

3. Results

We have compared our results with three state-of-the-art
registration methods, namely, D. Demons [12], SyN [13], and
VoxelMorph [20]. Demons and SyN are typical deformable
registration methods enforced successfully for the medical
image registration task, and VoxelMorph is a learning-based
framework that defines registration as a learnable parametric
function. We conducted the experiment and measured the
registration accuracy based on the volumetric overlap of brain
ROIs. The overall registration accuracy was computed in the
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TaBLE 1: Dice score (%) for subject-to-subject alignment using Demons, SyN, VoxelMorph, and the proposed S-Net.

Dataset D. Demons SyN (CC) VoxelMorph (CC) VoxelMorph (MSE) Proposed method
LPBA40 68.7 + 2.4 71.3 + 1.8 712 £ 2.8 71.6 + 2.4 71.8 + 2.1
IBSR18 546 + 2.2 574 + 2.4 542 + 3.4 552 + 2.9 56.8 £ 2.5
CUMCI12 531 + 34 54.1 + 2.8 51.8 + 4.1 531 + 3.5 544 + 3.2
MGH10 60.4 + 2.5 62.1 + 2.4 59.6 £ 2.9 60.2 + 2.6 624 + 24
Time (s) 114 1330 0.31 0.31 3.6

TaBLE 2: Folds (1], (p)| < 0) results for subject-to-subject alignment using Demons, SyN, VoxelMorph, and the proposed S-NET. Folds refer
to the average number of folds.

Dataset D. Demons SyN (CC) VoxelMorph (CC) VoxelMorph (MSE) Proposed method
LPBA40 13.71 + 2.91 0 28.52 + 14.92 44.04 + 13.83 3.28 £ 0.78
IBSR18 15.59 + 8.14 0 44.26 = 15.31 67.57 £ 19.59 7.56 = 1.86
CUMCI12 21.02 + 9.38 0 39.37 £ 11.65 48.92 + 15.28 7.29 + 1.47
MGHI10 18.92 + 6.54 0 42.17 + 13.26 56.72 + 16.76 6.63 + 1.53
form of a Dice Similarity Coefficient (DSC) score  of this S-Net does not require the known deformation field,

Dice (R}, RT) = 2RPnRT)/(IR?| + | RT|), for each ROI, with
R? and R! being the corresponding anatomical regions i in the
subject and template image. Additionally, we also evaluate the
smoothness of the transformation map by using the Jacobian
determinant | ¢ (u). Transformation map is considered
smoothness when P (u) >0, where Js (u) = D¢~ ()] [35].
And, the overall folds of the estimated displacement map are
defined in I{u: Tg (u) < O}I.

The results of DSC scores and runtimes are shown in
Table 1 compared with those state-of-the-art registration
methods (Demons, SyN, and VoxelMorph). The results
show that the proposed method performs significantly
better than VoxelMorph (learning-based method without
using a symmetric training manner). For some datasets,
our approach even outperforms SyN, which was among
the state-of-the-art brain image registration algorithms
and only took about 3.6 seconds to register two brain
volume data efficiently. Those learning-based methods,
compared with the regular scenario, have shorter runtime,
and also performance hardly deteriorates. In Table 2, we
present the folds in the estimated displacement maps of
the proposed method and the baseline method. The results
show that the displacement maps are estimated by the
proposed symmetric registration network smoothness
more than by the model without asymmetric strategy in
most cases by a large margin.

The respective results and intermediate results are also
shown in Figures 3(b)-3(e) (final warped template image,
middle warped subject image, middle warped template
image, and final warped subject image, respectively). The
S-Net works better than directly registering images in a
single pathway: not only the registration accuracy but also
the smoothness is also largely improved. This indicates that
the proposed symmetric training strategy can effectively
estimate large local deformations and the estimated field is
smoother.

It is worth noting that S-Net achieves image registration
tasks in an unsupervised end-to-end fashion by using an
image similarity metric for optimization so that the training

which is difficult to obtain for medical image registration.
Furthermore, we have also evaluated our framework for the
number of folds with the traditional registration method and
single-direction deep-learning-based registration method.
The deformation maps estimated by the proposed S-Net
tend to be smoother, since the symmetric displacement map
only needs half pathway, instead of a long pathway, which is
easier to penalize the smoothness. Experimental results
showed that our method successfully reduces the folds of
estimated maps while providing more accurate registration
results.

4. Discussion

S-Net learns for image registration tasks in an unsuper-
vised end-to-end fashion using an image similarity metric
for optimization so that the training for this S-Net does
not require the known deformation field, which is difficult
to obtain for medical image registration. Furthermore, we
have also evaluated our framework for the number of folds
with the traditional registration methods and single-di-
rection deep-learning-based registration methods. The
deformation maps estimated by the proposed S-NET tend
to be smoother, since the symmetric displacement map
only needs a half pathway, instead of a long pathway,
which is easier to penalize the smoothness. Experimental
results showed that our method successfully reduces the
folds of estimated maps while providing more accurate
registration results.

The total loss function in S-NET consists of two types
of six losses. However, the multiple losses weight
(hyperparameters) of our S-NET training is hard to
balance. Therefore, we did some experiments to deter-
mine the weight of multiple losses in Figure 4. We set
a =1 and B =0.01 that can achieve good performance,
and after y > 100, it has little effect on the results. In our
experiment, we set a« =1, f=0.01, and y =100. It is
difficult to balance multiple losses is a common problem
in deep-learning-based registration methods. In future
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FIGURE 3: The results of the S-Net. From left to right, the column shows subject, final warped template image, middle warped subject image,
middle warped template image, final warped subject image, and template image. (a) Subject image. (b) Final warped template image.
(c) Middle warped subject image. (d) Middle warped template image. (e) Final warped subject image. (f) Template image.
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work, we hope that we can learn hyperparameters
through learning.

5. Conclusion

We presented a new symmetric training strategy for an
unsupervised deep-learning-based registration framework,
which can better estimate the large local deformation during
registration. In particular, we utilize a pseudomean as an
intermediate target registration space, and a long defor-
mation pathway can be divided into two short deformation
pathways. Experimental results have shown promising
registration performance for both accuracy and field
smoothness.

Data Availability

The databases of LPBA40, IBSR18, CUMCI12, and MGH10
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