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ABSTRACT

Motivation: MicroRNAs (miRNAs) are small non-coding RNAs that

regulate gene expression post-transcriptionally. MiRNAs were shown

to play an important role in development and disease, and accurately

determining the networks regulated by these miRNAs in a specific

condition is of great interest. Early work on miRNA target prediction

has focused on using static sequence information. More recently, re-

searchers have combined sequence and expression data to identify

such targets in various conditions.

Results: We developed the Protein Interaction-based MicroRNA

Modules (PIMiM), a regression-based probabilistic method that inte-

grates sequence, expression and interaction data to identify modules

of mRNAs controlled by small sets of miRNAs. We formulate an opti-

mization problem and develop a learning framework to determine the

module regulation and membership. Applying PIMiM to cancer data,

we show that by adding protein interaction data and modeling co-

operative regulation of mRNAs by a small number of miRNAs,

PIMiM can accurately identify both miRNA and their targets improving

on previous methods. We next used PIMiM to jointly analyze a number

of different types of cancers and identified both common and cancer-

type-specific miRNA regulators.

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 BACKGROUND

MicroRNAs (miRNAs) are a family of small non-coding RNA

molecules that regulate gene expression post-transcriptionally.

These single-stranded RNAs, 19–25 nt long, are initially tran-

scribed as longer independent genes or from introns of protein-

coding genes. MiRNAs are now known to play a major role in

development (Bartel, 2009), various brain functions (Shao et al.,

2010) and diseases (Meola et al., 2009). Since their discovery,

several 100miRNAs were identified in each of several different

species, including mammals, worms, flies and plants (He and

Hannon, 2004). Initial discovery of large sets of miRNAs

relied heavily on sequence and conservation analysis (Bartel,

2009), although recent advances in sequencing capacity are

now allowing researchers to validate and identify additional

miRNAs experimentally (Motameny, 2010). Most miRNAs

target the genes they regulate by binding to the 30-untranslated

region of the target mRNAs (using complementary base pairing)

and recruiting additional machinery to either degrade these

mRNAs or prevent them from being translated. The miRNA

regulation is ubiquitous, and a single miRNA can target 100s

and even 1000s of genes. As the effect of each miRNA on any
single target is often limited, they often work cooperatively with

multiple miRNAs targeting the same mRNA in a specific con-
dition (Krek et al., 2005; Krol et al., 2010).

Although the set of active miRNAs can often be determined
experimentally (by measuring their expression levels), identifying

their targets is much more challenging. Determining such target
set is important for fully understanding the role of various

miRNAs and to model the networks they regulate in a condition
of interest. Initially, computational methods developed to predict

such targets primarily relied on sequence information, in some
cases, also using conservation information and/or secondary

structure predictions. These methods search for base pair com-
plementarity between the mature miRNA and 30-untranslated

regions of all mRNAs, allowing for some mismatches (the pen-
alty for mismatches differs between the methods). Popular meth-

ods include TargetScan (Lewis et al., 2005), miRBase (now called
MicroCosm) (Griffiths-Jones et al., 2006), miRanda (John et al.,

2004) and PicTar (Krek et al., 2005).
Although these predictions are useful, because of the short

length of miRNAs, they lead to many false positives and some
false negatives (Betel et al., 2010). Conservation analysis has

proven especially problematic in this domain, as several real tar-
gets are not well conserved and would be ignored if conservation

is a requirement (Barakat et al., 2007). In addition, sequence data
are static and do not change in different conditions or at different

times. Thus, based on sequence data alone, it is impossible to
map the set of targets for specific miRNA in a condition of

interest (as most genes are not expressed in any specific condition
or tissue). Finally, miRNAs often work cooperatively in small

groups. As miRNA activation is condition specific, using this
cooperative regulation property requires the use of condition-

specific data, which of course cannot be inferred from sequence
information alone.

Transcription factors (TFs) also play a major role in regulating
gene expression, and they have been shown to work combina-

torially with miRNAs (Sun et al., 2012). However, a pre-requisite
for such combinatorial analysis is a list of targets for individual

miRNAs. Unlike TFs, which can serve as activators or repressors
and are often post-transcriptionally regulated, miRNAs are only

transcriptionally regulated and inhibit their direct targets. This
has led to several studies that isolated the miRNA target predic-

tion task by integrating sequence, mRNA and miRNA expres-
sion data (Cheng and Li, 2008; Huang et al., 2007a; Joung et al.,

2007; Ooi et al., 2011). Unlike sequence data, expression data are
dynamic and condition-specific and thus provide useful clues

about the set of active miRNAs and mRNAs. A number of
methods, mostly based on (anti) correlation or regression ana-

lysis using the expression levels of miRNAs and predicted*To whom correspondence should be addressed.
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mRNA targets, were suggested for this task (Huang et al., 2011;
Wang and Li, 2009). A representative example for this group is
GenMiRþþ (Huang et al., 2007a), one of the first methods to

integrate miRNA and mRNA expression profiles in a unified
probabilistic model. Given an expression dataset for both
miRNAs and mRNAs and a set of putative miRNA–mRNA

interactions (inferred from sequence data), GenMiRþþ uses a
generative probabilistic regression model to assign targets to
miRNAs. It was successfully applied to identify targets of let-

7b in retinoblastoma. Another approach is to project mRNA
expression data on pathway databases and compute the correl-
ation between miRNAs and average pathway expression levels to

identify likely regulators of signaling pathways (Ooi et al., 2011).
Although this method does not identify specific targets, it can be
used to infer the function of specific miRNAs based on the path-

ways they regulate. A number of other methods for integrating
miRNA and mRNA expression data have been proposed, see
(Muniategui et al. 2012) for a recent review.
Finally, there is growing evidence that interacting proteins are

more likely to be co-regulated by the same miRNAs (Hsu et al.,
2008; Liang and Li, 2007). It has also been shown that some
miRNAs coordinately target protein complexes (Sass et al.,

2011). Although such complementary information may be im-
portant, few previous works have taken advantage of it to pre-
dict condition-specific interactions. An exception is a recent work

by Zhang et al. (2011), which developed SNMNMF to integrate
protein interactions with miRNA and mRNA expression data.
The method is based on a non-negative matrix factorization ana-

lysis, which factorizes the two expression data matrices such that
the two share one common factor, which is assumed to be the
module basis matrix W. Note, however, that although this

method was successfully applied to analyze Ovarian cancer
data, it does not use a regression model to explain mRNA ex-
pression levels, or requires that miRNAs and mRNAs in

the same module be anti-correlated; therefore, the resulting mod-
ules do not fully use current knowledge regarding the inhibitory
role of miRNAs, which may lead to missing important

interactions.
The methods discussed earlier in the text successfully inte-

grated expression and sequence data. However, a major point

that is often ignored by these prediction methods is the combina-
torial aspect of miRNA regulation. Several studies have shown
that individual miRNAs have only limited impact on their tar-

gets (Malumbres, 2012) and multiple (different) miRNAs are
needed to drastically reduce transcription levels of targets. To
allow the use of such group- or module-based regulatory

model, we have recently developed GroupMiR (Le and Bar-
Joseph, 2011), which uses a non-parametric Bayesian prior
based on the Indian Buffet Process (IBP; Griffiths and

Ghahramani, 2006) to identify modules of co-regulated
miRNAs and their target mRNAs. As we have shown, by
using a module-based approach, we can improve on methods

that treat miRNAs or mRNAs individually improving the set
of correctly recovered miRNA–mRNA interactions (Le and
Bar-Joseph, 2011).

Here, we present the Protein Interaction based MicroRNA
Modules (PIMiM) method, which extends the regression frame-
work of GroupMiR by using an additional type of data: protein

interactions (Fig. 1). As we show, by defining a new target

function that encourages interacting proteins to belong to the

same module, we can use such data and integrate it with expres-

sion and sequence-based data in a probabilistic model. We de-

velop an iterative learning procedure to learn the parameters of

our model and show that it converges to a local minima.

Comparison of PIMiM with previous methods indicates that

by combining a module-based approach with protein interaction

data, we can improve on both methods that only rely on modules

(GroupMiR) and methods that rely on protein interaction

(SNMNMF). We used PIMiM to study miRNA in several

types of cancers, allowing us to identify novel regulators that

either span multiple cancer types or are unique to specific

cancers.

2 METHODS

2.1 Overview

We developed PIMiM, a module-based method that predicts targets for

miRNAs by assigning them, together with the mRNAs they regulate, to

one of K modules. Modules may contain several miRNAs and many

mRNAs, and both miRNA and mRNAs can be assigned to 0, 1 or

multiple modules, and thus modules may overlap.

The input to PIMiM is condition-specific miRNA and mRNA expres-

sion data (usually multiple measurements from patients or different time

points). In addition, we use sequence-based predictions of miRNA–

mRNA interactions (any probabilistic predictions can be used) and

static protein interaction data. Using these datasets we learn a regularized

probabilistic regression model in which mRNA data are regressed to the

expression data of miRNAs assigned to modules regulating it. The down-

regulation effect of an miRNA on the expression of its target mRNA is

aggregated across all modules, allowing information to be shared between

modules in the learning process. Our probabilistic model rewards the

assignments of predicted miRNA–mRNA pairs to the same module

and also rewards assignment of mRNAs of interacting proteins to the

same module. Combined, the modules explain the observed mRNA ex-

pression data as a function of their regulating miRNAs and the set of

proteins they interact with.

2.2 Notations

We use the following notation in the rest of the article. We assume there

are M miRNAs and N mRNAs in each sample. We denote expression

profiles of miRNAs by X ¼ ðx1, . . . ,xMÞ
T and of mRNAs by

Y ¼ ðy1, . . . , yNÞ
T, where xi and yj are vectors with the expression

levels of miRNA i and mRNA j, respectively, in all samples. Both matri-

ces have P columns corresponding to the P-matched samples. In addition,

let � (sparse N�N matrix) be the weighted adjacency matrix of the

Fig. 1. Data used as input for PIMiM. In addition the miRNA and

mRNA expression data, PIMiM uses sequence-based predictions of

miRNA–mRNA interactions and protein–protein interactions. These

datasets are integrated as discussed in Section 2
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protein interactions [obtained from databases, such as BioGRID (Stark

et al., 2011) or TRANSFAC (Wingender et al., 2000)] and � (sparse

M�N matrix) be the list of predicted interactions of miRNAs and

mRNAs from sequence data (obtained from prediction databases, such

as MicroCosm; Griffiths-Jones et al., 2006). We also define I� and I� as

binary matrices indicating whether an entry of � and �, respectively, is

non-zero.

For learning K modules, our goal is to determine (learn) the values of

the membership parameters uik and vjk, which represent the propensity

that miRNA i or mRNA j belong to module k. Naturally, we restrict

these parameters to be non-negative: uik � 0 and vjk � 0, where we inter-

pret that an miRNA or an mRNA is not assigned to a module if the

corresponding parameter is zero. We use matrices U ¼ ðu1, . . . , uMÞ
T and

V ¼ ðv1, . . . , vNÞ
T to represent this complete set of membership param-

eters. Finally, we use the following subscript such as u, k or v, k to denote

the kth column of the matrices.

U,V : miRNA and mRNA module membership

K : number of modules

ui, vj : ith or jth rows of the matrices

u, k, v, k : kth columns of the matrices

I�, I� : binary indicators of �,�

2.3 Probabilistic regression model

Following previous works (Huang et al., 2007b; Le and Bar-Joseph,

2011), we use a regression-based method to link the expression profiles

of miRNAs and mRNAs. Expression values of mRNAs are assumed

to be downregulated from a baseline expression level by a linear com-

bination of expression profiles of all their predicted miRNA regulators.

For example, mRNA j’s expression values are distributed as:

yj � N ��
P

i2Sj
wijxi,�

� �
, where � is the baseline expression level, wi

are weights associated with miRNAs (which previous methods learn in-

dividually for each mRNA) and Sj is the set of predicted miRNA regu-

lators of mRNA j.

We depart from these previous models in how we specify miRNA

regulators and how we learn the weights wi. First, each mRNA is

assumed to be a target of all miRNAs assigned to the modules it belongs

to as long as they are predicted to regulate it (�ij 6¼ 0). Formally, mRNA j

is the target of the set of miRNAs Sj ¼ fi : uTi vj40 and �ij 6¼ 0g. Second,

the downregulation weights are aggregated across all modules, such as

wij ¼ uTi vj.

Given these assumptions, the likelihood of the observed expression

values is

p YjU,V,X,�,�ð Þ ¼
Y
j

N yjj��
X
i2Sj

uTi vjxi,�

0
@

1
A

¼
Y
j

N yjj�� XTððI�Þ, j � ðUvjÞÞ,�
� � ð1Þ

where � ¼ diag ð�21 , . . . , �2PÞ is the per-sample variance terms.

2.4 Using protein interactions

So far PIMiM only uses expression values in a regression setting (al-

though we constrain the regulators to come from the sequence-based

predicted set, the regression model itself does not directly encourage the

assignment of miRNA and predicted mRNA targets to the same

module).

To incorporate the input interaction data (predicted miRNA–mRNA

pairs � and protein interactions �), we use a function that rewards

assignments to the same module based on the strength of the predicted

edge as follows:

pðI�ij ¼ 1jU,VÞ ¼
1

1þ expð�� 4�ijuTi vjÞ
¼ �ð� 4�ijuTi vjÞ

pðI�ij ¼ 0jU,VÞ ¼ 1� �ð� 4uTi vjÞ

pðI!
jj
0 ¼ 1jVÞ ¼ �ð� 4!jj0 v

T
j vj0 Þ

ð2Þ

Where � and � are positive tuning parameters that are used to adjust

the contributions of the two types of interaction data in our model and

�ð:Þ is the logistic-sigmoid function. If available (as is the case for the

miRNA–mRNA interaction data), we use probabilities for � and �

derived directly from the prediction or experimental databases (see

Section 4). We deliberately do not include penalty terms for zero entries

of � because this interaction matrix is extremely sparse (the number of

known protein–protein interactions is small compared with the total

number of possible interactions). Penalizing zero entries when using

such a sparse matrix would lead to small modules and may be less bio-

logically accurate, as not all co-targets of a miRNA interact.

These terms indicates that the higher the probability of interaction

(both miRNA–mRNA and protein–protein) the more likely it is that

the interacting entities would be assigned to the same set of modules.

This is done globally across all modules. For instance, if �ij is positive,

we have previous knowledge that miRNA i and mRNA j interact. To

maximize the likelihood pð�ijjU,VÞ, we would need to learn parameters

that lead to large values of uTi vj, which means that the method is more

likely to place them in the same module.

2.5 Overall log-likelihood

To summarize, our target is to minimize the following negative log-

likelihood:

LðY,X,(,:Þ ¼ � log pðYjU,V,X,l,�Þ

�
X
i, j

log pðI�ij jU,VÞ �
X
j6¼j
0

log pðI!
jj
0 ¼ 1jVÞ ð3Þ

The first term evaluates how well the miRNA expression explains

the observed mRNA expression, whereas the second and third terms

are rewards for assigning predicted miRNA–mRNA pairs and protein

interaction pairs to the same module, respectively. This function is non-

convex and thus can have multiple local minima solutions. To constrain

the set of solutions, we add a number of regularization terms. First, we

add two sets of ‘1 norm constraints for the vectors fuig and fvjg. ‘1 norm

contraints encourage sparsity leading to smaller and tighter modules. As

our goal is to reduce false positives, such constraints are useful, as they

reduce the set of predicted miRNA–mRNA pairs. Specifically, we require

that

jjuijj1 � C1, i ¼ 1, . . . ,M

jjvjjj1 � C2, j ¼ 1, . . . ,N

We are using two different regularization parameters C1 and C2. This

is because the number of miRNAs and mRNAs are different; therefore, a

single number does not yield good solutions. Moreover, we choose to use

these constraints explicitly instead of adding them to the objective func-

tion (using Lagrangian multipliers), as this formulation is simpler to solve

in our optimization procedure.

Together, our learning phase solves the following optimization:

min
U�0,V�0,�,�

F ¼ LðY,X,�,�Þ

s:t: jjuijj1 � C1, i ¼ 1, . . . ,M

jjvjjj1 � C2, j ¼ 1, . . . ,N

ð4Þ
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2.6 Learning the parameters of our model

In this section, we discuss how to solve the optimization problem from (4)

to determine values for the parameters of our model. As aforementioned,

this problem is non-convex, and we cannot analytically compute general

solutions. However, we notice that by holding U and V fixed, we can

solve for � and � in a closed form using standard linear regression:

�̂p ¼
1

N

XN
j¼1

ðzjp þ yjpÞ �̂2p ¼
1

N

XN
j¼1

ð�̂p � yjp � zjpÞ
2

where zjp ¼ xT, pððI�Þ, j � ðUvjÞÞ for j ¼ 1, . . . ,N and p ¼ 1, . . . ,P.

To solve for U and V for given values of � and �, we use a projected

quasi-Newton (PQN) method (Schmidt et al., 2009). Quasi-Newton

methods construct an approximation to the Hessian by using the

observed gradients at successive iterations. We use the MATLAB imple-

mentation min_PQN (http://www.di.ens.fr/mschmidt/Software/PQN.

html). There are several reasons why we chose this method instead of

directly working with the Hessian. First, our set of constraints is convex,

and the projection on this set can be done analytically. Second, although

we can compute both the gradients and Hessian of F , the memory

required to store the Hessian is often too large given the dimensions of

the expression data (OððMþNÞ2K2Þ). Moreover, because of interactions

between miRNAs and mRNAs, the Hessian is not necessary sparse even

if both � and � are. During the projection step, to speed-up the conver-

gence of the algorithm, we set the entries of U, which do not have pre-

dicted interactions to zero.

Using the updated values for U and V, we once again solve for � and

� and so on. These two steps lead to an iterative procedure to solve (4)

along the lines of coordinate-descent methods. This procedure converges

to the local minima because of the fact that the objective function is

bounded below, and the sequence of function values is monotonically

decreasing, and the gradients at the convergence are zeros. As the prob-

lem is non-convex, we perform the learning process several times, ran-

domly initializing the parameters each time. After repeating this process

several times (10 iterations in our experiments), we select the parameters

from the result that leads to the lowest value for our objective function.

Finally, the regularization and data-type–weighting parameters

�,�,C1 and C2 are chosen based on an external evaluation discussed in

Section 4.

3 CONSTRAINT MODULE LEARNING FOR
MULTIPLE CONDITION ANALYSIS

So far we have discussed our approach for identifying miRNA-

regulated modules using a condition-specific expression dataset.

Although the optimization problem in Equation (4) can be used

with expression data from multiple conditions (e.g. different

types of cancer), the output is one set of modules for all condi-

tions. In some cases, directly identifying similar and divergent

modules across conditions is an important goal. Consider, for

example, joint analysis of multiple types of cancers. Although

some researchers may be interested in regulatory modules that

are activated in all different cancer types, others may be inter-

ested in unique aspects, or modules, of a specific cancer type

when compared with other types of cancer.
In our problem, we would like to learn a set of modules for T

different conditions. The interaction input matrices � and � are

fixed, whereas for each condition t, we have a set of expression

measurements Xt and Yt. Given this input, we jointly learn T sets

of modules fUt,Vtgt¼1, ... ,T. The number of modules is also fixed

for all conditions.

This type of learning is called multi-task learning (Caruana,
1997) in the machine-learning community, where many related

models are learned simultaneously using the same internal rep-
resentation. Such learning allows different models (or cancer

types) to share some parameters, which improves learning
while at the same time it can also identify unique parameters

for specific types. In several cases, such framework was shown
to lead to better solutions (Caruana, 1997). Many existing meth-

ods proposed for multi-task learning focus on multi-output re-

gression problems, where it is often desirable to obtain sparse
solutions by performing covariate selection. They rely on regu-

larization technique to jointly select a set of covariates that are
relevant to many tasks. One can apply ‘1=‘2 penalty of group

lasso to select covariates relevant to all tasks (Obozinski et al.,
2010).

Here, we adopt the ‘1=‘2 penalty of group lasso to regularize
the modules over T conditions with the following penalty:

�
X
i, k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðutikÞ
2

r
þ
X
j, k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðvtjkÞ
2

r !

This penalty encourages entries futikgt¼1, ... ,T and fvtjkgt¼1, ... ,T to

be selected together, which means that miRNAs and mRNAs are
assigned to the same modules across conditions. As the penalty is

not differentiable at 0, we reformulate the optimization problem

by moving the non-differentiable part to the constraints as sug-
gested in (Liu et al., 2009):

min
U�0,V�0,�,�, faik, bjkg

F þ �
X
i, k

aik þ
X
j, k

bjk

 !

s:t:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðutikÞ
2

r
� aik;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðvtikÞ
2

r
� bik

jjuijj1 � C1; jjvjjj1 � C2

i ¼ 1, . . . ,M; j ¼ 1, . . . ,N; k ¼ 1, . . .K

ð5Þ

Here, we have introduced new variables faikg and fbjkg into the

problem. We update the projection step in Section 2.6 with the

projection on the new ‘2 norm balls in the constraint set as
shown in Liu et al. (2009) (Theorem 4).

4 RESULTS

4.1 MiRNA regulation in ovarian cancer

To test PIMiM and to compare it with previous methods for
determining condition-specific miRNA regulation (SNMNMF

and GroupMiR), we use the ovarian cancer dataset from

Zhang et al. (2011). This dataset contains 385 samples from
cancer patients, each measuring the expression of 559 miRNAs

and 12456 mRNAs and was downloaded from the Cancer
Genome Atlas data portal (TCGA) (https://tcga-data.nci.nih.

gov/tcga/). In addition to expression data, the sequence-based
prediction of miRNA–mRNA interactions was downloaded

fromMicroCosm (Griffiths-Jones et al., 2006), and protein inter-
action data were downloaded from TRANSFAC (Wingender

et al., 2000). We only use MicroCosm here to allow a fair com-

parison with SNMNMF, which only uses these data. In subse-
quent analysis, we use other sequence-based prediction methods

as well. To evaluate the accuracy of each method, we used a set
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of 115 cancer miRNAs that were determined to participate in

ovarian cancer in a recent review article (Koturbash et al., 2011;

Tables 1 and 2). Using this set we compute the precision, recall

and F1 score (the harmonic mean of precision and recall) of the

set of miRNAs identified by each method.
The number of modules K was set to 50 for the non-negative

matrix factorization method (SNMNMF) as suggested in Zhang

et al. (2011). PIMiM also requires setting regularization and

weight parameters �,�,C1 and C2. To set these, we performed

an iterative line search (holding three of the four parameters

fixed and adjusting the value of the fourth until convergence)

to determine the values of these parameters using the F1 score

as the target function to optimize. Based on this analysis, we

selected K¼ 40 for PIMiM (see Supplementary Fig. S3 for de-

tails). SNMNMF was also run with the optimized set of param-

eters and input data described in Zhang et al. (2011). Unlike

PIMiM and SNMNMF, GroupMiR uses a non-parametric

Bayesian prior for the number of modules; therefore, this

number cannot be fixed in advance. Thus, for GroupMiR, we

report modules and interactions with posterior probability at

least 0.3 to get a set of comparable size with other methods.

Previously, GroupMiR was shown to outperform several other

methods (Le and Bar-Joseph, 2011) including GenMiRþþ

(Huang et al., 2007b); therefore, we omitted comparison with

these methods here. Figure 2 presents a graphical view of the

modules identified by PIMiM and SNMNMF. We color inter-

action edges between genes using different colors for each

module. The modules identified by PIMiM are more dense

and, hence, are in better agreement with previous findings re-

garding the regulation of interacting proteins by miRNAs.

4.1.1 Evaluation: identifying cancer miRNAs We first looked at
the set of miRNAs identified by each method (those belonging to

the modules returned by each of the methods). The results in

Table 1 demonstrate that using the protein interaction data

greatly increases precision, recall and the F1 score. Both methods

that use these data (PIMiM and SNMMNF) clearly outperform

GroupMiR on this set. In addition, using a regression model also

helps as indicated by the increase in F1 score PIMiM obtains

over SNMNMF.

4.1.2 Expression coherence In addition to analyzing the set of
identified miRNAs, we also computed the average anti-correl-

ation between miRNAs and mRNAs in the modules identified

by each of the methods (Table 1). In this analysis, GroupMiR

achieves the highest anti-correlation between miRNAs and the

mRNAs they regulate in a module. This is the result of a much

smaller module size identified by GroupMiR. As protein inter-

actions are not used, mRNAs in these modules are selected be-

cause they are strongly anti-correlated with the miRNAs

predicted to regulate the modules. This requirement leads to

smaller modules and a better (anti) correlation between

miRNAs and mRNAs. Still, PIMiM improves on SNMNMF

in identifying anti-correlated miRNA–mRNA pairs.

SNMNMF’s objective function does not explicitly include a

component for expression anti-correlation between miRNAs

and mRNAs, which may explain why it does not capture the

inhibitory role of miRNAs. Thus, PIMiM provides a useful com-

promise between relying strongly on protein interactions, which

improves accuracy and using the observed expression values in a

regression setting.

4.1.3 MSigDB enrichment analysis To test the biological func-

tion of the modules, we used 880 gene sets of canonical pathways

(C2-CP, v.3.0) from MSigDB (Subramanian et al., 2005). We

used the hypergeometric distribution to compute enrichment

P-values for each of the modules with each of the MSigDB

gene sets. To correct for the multiple hypothesis testings, we

used the Benjamini–Hochberg procedure implemented in the R

function p.adjust, which computes a q-value for each intersec-

tion. The results are presented in Figure 3, which depicts the

number of modules with at least one enriched set in the

Table 1. Evaluation of all methods on the ovarian cancer dataset

F1 score Cancer miRNAs Expression

correlation

Number of

genes/module

F1 Precision Recall

PIMiM 0.3768 0.3230 0.4522 �0.0131 67.80

SNMNMF 0.3588 0.3197 0.4087 0.0745 79.26

GroupMiR 0.1227 0.2083 0.0870 �0.0408 54.82

Note: The expression correlation values and number of genes are averaged across

modules. Expression correlation: the correlation of expression values of miRNAs

and mRNAs. Bold values are the best values for the column (highest or lowest

depending on the context).

Fig. 2. Interactions between genes of the modules. We show an edge

between two genes if they are members of a module and their interaction

exists in the database. Each color corresponds to one module. Genes with

no edges are omitted to improve visualization

Table 2. miRNAs specifically identified for a cancer type

MiRNAs Predicted

type

BRCA GBM AML

hsa-miR-663 BRCA Khoshnaw

et al. (2009)

– –

hsa-miR-433 GBM – Hua

et al. (2012)

–

hsa-miR-99b AML – – Garzon

et al. (2007)
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MSigDB enrichment analysis and the total number of unique

enriched gene sets. PIMiM outperforms SNMNMF, achieving

both better enrichment for individual modules and better cover-

age of different MSigDB sets. MSigDB pathways are biased

toward cancer pathways and so may be more relevant for the

data we are analyzing here than Gene Ontology analysis. In

addition to cancer hits, top hits for MSigDB include signatures

for � cells that have been linked to cancer (Pelengaris and Khan,

2001) and several translation-related categories.

4.1.4 The effect of � on the performance of PIMiM To test the
effects of using the protein interaction data in PIMiM, we re-run

PIMiM with different � values. The results are presented in

Figure 4. As the figure shows, when decreasing the value of �,
the performance of PIMiM on all evaluation metrics decreases

indicating the protein protein interactions (PPI) data are useful

for identifying coherent modules. On the other hand, increasing

� too much leads to high weight for PPI data at the expense of

the expression information, which also negatively affects the per-

formance of PIMiM. Thus, balancing the two data types, which

is done by setting an intermediate value for � is key to the success

of PIMiM.

4.2 Integrating data from multiple types of cancers

To further investigate miRNA control of different cancers, we

applied PIMiM to a dataset of three cancer types using the multi-

task learning framework described in Section 3. We learn three

sets of modules for three types of cancer: breast invasive carcin-

oma (BRCA), Glioblastoma multiforme (GBM) and acute mye-

loid leukemia (AML). The miRNA and gene expression profiles

of 89 BRCA, 498 GBM and 173 AML patients were downloaded

from the TCGA. This set has 285miRNAs and 10922 mRNAs

in common. Here, we combine the miRNA–mRNA predicted

interactions from three public databases [MicroCosm

(Griffiths-Jones et al., 2006), miRanda (John et al., 2004) and

TargetScan (Lewis et al., 2005)] and protein interaction data

from TRANSFAC (Wingender et al., 2000). For each cancer

type, PIMiM learns 1 set of 50 modules. The parameters were

set by optimizing for the F1 score of identifying miRNAs rele-

vant to this dataset based on the set of cancer-related miRNAs

from Koturbash et al. (2011). Figure 5 displays the miRNA-

regulating modules in all three cancer types.

4.2.1 Analysis of identified miRNAs Several of the modules
identified by PIMiM are regulated by known cancer miRNAs.

The overall F1 score for cancer miRNAs for the joint analysis

was high for all three cancer types: BRCA (0.6167), GBM

(0.5789) and AML (0.6111). Well-known cancer miRNAs re-

ported by PIMiM include the let-7b/c/d/e (active in BRCA: Yu

et al., 2007, GBM: Lee et al., 2011 and AML: Jongen-Lavrencic

et al., 2008), mirR-302a/b/c/d cluster [suppression of the CDK2

and CDK4/6 cell cycle pathways (Lin et al., 2010)] and miR-96

(active in BRCA: Guttilla and White, 2009, AML: Zhao et al.,

2010, miR-34a (active in BRCA: O’Day and Lal, 2010, GBM: Li

et al., 2009, AML: Zenz et al., 2009, miR-15a/b (active in AML:

Calin et al., 2008). Some members of the miR-17-92 cluster

(miR-18b, miR-19a, miR-20a/b and miR-93) are also identified

by PIMiM (active in BRCA: Mendell, 2008, GBM: Ernst et al.,

2010, AML: Mi et al., 2010). Note that some well-known cancer

miRNAs, including miR-17 and miR-92, are missing from the

modules because their expression is not available for enough of

the samples. Several other subsets of miRNAs were assigned to

Fig. 3. MSigDB enrichment analysis: pathway enrichment analysis was

done using 880 gene sets of canonical pathways (C2-CP) from MSigDB

(Subramanian et al., 2005). P-values were computed using hypergeo-

metric test (with 10000 random permutations) on the intersection of

the set of genes in each module with MSigDB gene sets. Benjamini–

Hochberg procedure was used to control the false discovery rate.

Top: Number of modules significantly enriched for at least one

MSigDB category for different significance cut-offs. Bottom: Number

of MSigDB categories identified as in enriched in at least one of the

modules for different significance cut-off

Fig. 4. The effect of protein interaction data to the result. We varied the

value of � and tested the different metrics discussed in Section 4. As can

be seen, both high and low values lead to reduced performance
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cooperatively regulate modules in multiple types of cancer as

shown in Figure 5.

4.2.2 Cancer-specific miRNAs In addition to finding common
cancer regulators, PIMiM can be used to identify cancer-type–
specific regulators. These can either be used as biomarkers for a

sub-type or can be studied to determine the unique properties of
each cancer type. Although it is hard to obtain negative infor-

mation (i.e. an article that mentions that a certain miRNA does
not regulate a specific cancer type) several of the predictions

made by PIMiM agree with current literature that, at least so
far, only mentions their role in the cancer they were assigned to

by PIMiM. Table 2 lists a few of these miRNAs and the cancer
type they were predicted to regulate.

4.2.3 Analyzing the miRNAs and mRNAs in an identified

module In addition to identifying important miRNAs for this
particular study, PIMiM returns a set of modules providing

predictions of cooperative regulation of miRNAs and their

mRNAs targets. To demonstrate the informative power of this

modular structure, we analyze in more details one of these mod-

ules (see also Supplementary Results for detailed discussion of

other modules). Figure 6 depicts a network of miRNAs and

mRNAs identified as part of Module 11. Across all cancer

types, PIMiM identified a set of 14 strongly connected proteins.

MiR-200a/b/c, miR-141 and miR-429 are predicted to regulate

this set of mRNAs in all types of cancer. These miRNAs have

previously been reported to play a role in cancer and cell prolif-

eration (Korpal et al., 2008; Peter, 2009). Interestingly, the miR-

200 family is located in two chromosomal regions on 1p36.33

(200b, 200a and 429) and 12p13.31 (200c and 141), respectively

(Uhlmann et al., 2010), which may support our prediction of

their cooperative regulation. Applying Gene Ontology analysis

[using FuncAssociate (Berriz et al., 2009)] and MSigDB enrich-

ment analysis to the set of 14 mRNAs in this module indicates

Fig. 5. Inferred miRNA modules of the three cancer types (BRCA, GBM and AML). The x-axis shows the 50� 3 modules learned for the three cancer

types (each x-axis bar is subdivided into three with the color corresponding to the cancer type). The y-axis shows miRNAs ordered by hierarchical

clustering of their module membership vector. In several cases, the same miRNAs are predicted for all or two of the three cancer types
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that this set is enriched with members of transcription factor

TFTC/STAGA and TFFIID complexes. Recent findings sup-

port the link between these complexes and cancer (Kurabe

et al., 2007). This module also includes a tumor suppressor

gene MSH2 (Wada-Hiraike et al., 2005) and a famous breast

cancer susceptibility gene BRCA1 (Miki et al., 1994).

5 CONCLUSIONS

We presented PIMiM, a new method for inferring condition-spe-

cific regulation of miRNAs and for identifying their targets.

PIMiM combines sequence, expression and interaction data to

discover miRNA-regulated modules of mRNAs. We use a prob-

abilistic model that combines regression with network informa-

tion to discover these modules. We developed an iterative

learning procedure to learn the parameters of our model and a

multi-task learning method for combining data from multiple

conditions.
We tested PIMiM on ovarian cancer expression data and have

shown that it correctly identifies miRNAs regulating this cancer

type, and that it is able to group relevant genes together.

Comparison with other methods indicates that by using protein

interaction data, we can improve accuracy while at the same time

PIMiM also maintains expression coherence among mRNAs

and anti-correlation between miRNAs and the mRNAs they

are predicted to regulate improving on previous methods that

have also used protein interaction data. Application of the

method to compare and contrast three types of cancer identified

both common and unique regulators, which can allow re-

searchers to determine the core cancer regulatory network and

the differences in regulation among the various cancers we

studied.
Although we believe PIMiM can already be of use to re-

searchers that collect mRNA and miRNA expression data,

there are a number of extensions that can further improve it.
As aforementioned, we follow several other articles in isolating

the miRNA target prediction task from the combinatorial ana-
lysis of miRNA–TF regulation. Although such an approach

leads to good results as discussed earlier in the text, our longer
term goal is to develop a method that can incorporate both types

of regulation in a single-modeling framework. For this, we would
need to determine the role a specific TF plays (activator or re-

pressor) and its activity level [either based on its expression levels
or on the set of its targets (Shi et al., 2009)]. With this informa-

tion, we can incorporate TFs into our regression model to ac-
count for their part in regulating expression, which will hopefully

lead to better results regarding the role played by specific

miRNAs. The regression component that we considered in
PIMiM uses a simple linear model to explain the regulation

effect of multiple miRNAs. We could also extend this to incorp-
orate other complex combinatorial analysis (for example, AND,

OR logic). However, this requires an extension of the methods
derived in the article. We thus leave this for future work. In

addition, we would like to incorporate additional types of
high-throughput data, for example, epigenetic data to our ana-

lysis framework.
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