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Abstract

Dynamic models based on non-linear differential equations are increasingly being used in

many biological applications. Highly informative dynamic experiments are valuable for the

identification of these dynamic models. The storage of fresh fruit and vegetables is one such

application where dynamic experimentation is gaining momentum. In this paper, we con-

struct optimal O2 and CO2 gas input profiles to estimate the respiration and fermentation

kinetics of pear fruit. The optimal input profiles, however, depend on the true values of the

respiration and fermentation parameters. Locally optimal design of input profiles, which

uses a single initial guess for the parameters, is the traditional method to deal with this

issue. This method, however, is very sensitive to the initial values selected for the model

parameters. Therefore, we present a robust experimental design approach that can handle

uncertainty on the model parameters.

Author summary

Fruit and vegetables need to be stored at low temperature and oxygen conditions as well

as slightly heightened carbon dioxide conditions so that they remain fresh throughout the

entire year. The exact storage conditions are different for each cultivated variety. Optimiz-

ing these storage conditions typically requires a lot of experimentation. Traditionally, this

was done by independently storing the fruit of vegetable product at many different combi-

nations of temperature as well as oxygen and carbon dioxide conditions, and by tracking

the quality of the product and choosing the best of these conditions. This, however, is a

very wasteful approach as the quality tracking at certain conditions do not inform us

about the quality at different storage conditions. Instead, we adopt a model-based

approach, where the product is described as a dynamic system with inputs and outputs.

This model has parameters that must be estimated from experimental data. But once the

model has been calibrated it can be used to make predictions at any storage condition. We

develop the experimental design methodology required to precisely estimate the model

parameters. We do this in a robust manner, meaning we are able to discover the true

model parameter values no matter their specific value.
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Introduction

Model-based approaches are commonly used in the analysis, control and optimization of bio-

logical systems. These models rely on knowledge of physical, chemical and biological laws,

such as mass balances, transport phenomena and reaction kinetics, and are often described by

a system of non-linear differential equations, with inputs and outputs. So, often, the structure

of a model can be determined from first principles. However, the model will generally also rely

on parameters whose numerical values cannot be determined from physical laws. These

parameters must then be inferred from experimental data before the model can be put to use.

The experiments required to estimate these parameters are often laborious and cost prohibi-

tive. It is therefore important to determine experimental conditions which are rich in informa-

tion and thus allow a precise estimation of the unknown model parameters.

At present, the model parameters are often estimated from data collected using multiple

experiments at various combinations of input levels, which are kept constant throughout each

individual experiment. Even if an appropriate experimental design technique is used to reduce

the number of experiments that have to be performed, the experimental effort remains consid-

erable. Alternatively, experiments in which the inputs vary in time can be conducted. This has

been shown to be a cost-effective way to generate a highly informative data set [1]. Such exper-

iments are called dynamic. In optimal design of dynamic experiments, time-varying input pro-

files are constructed to optimize the information content of a single experiment.

The major challenge for experimental design for any non-linear model is the dependence of

the optimal experiment on the true values of the unknown model parameters, whose estima-

tion is the primary goal of the experiment. Most of the experimental design literature uses a

scalar metric of the Fisher information matrix as the measure of information content in an

experiment, as this matrix is inversely related to the covariance matrix of the model parame-

ters. An informative experiment thus ensures a small covariance matrix of the model parame-

ters. Locally optimal design of input profiles uses initial guesses for the model parameters to

calculate this information matrix [2]. This method has already been used to construct informa-

tive time-varying inputs in chemical engineering [3] and in biological fields such as systems

biology [4], predictive microbiology [5, 6], food engineering [7, 8] and synthetic biology [9].

However, an input profile that is highly informative for one set of parameter values may lack

information for other parameter values. Thus, if the initial guesses of the parameters differ sub-

stantially from the true values, then the locally optimal design might not allow precise parame-

ter estimates. So, locally optimal design is sensitive to the initial parameter guesses and is thus

not robust.

Much recent research in experimental design for non-linear models aims at robustifying

the design to the true, but unknown, values of the model parameters. A robust design provides

a large information content regardless of the true values of these parameters. For dynamic

experiments, in particular, a min-max based approach has been used by [10, 11]. Here, the

design is optimized for a worst case scenario. Fisher information matrices are calculated for a

set of possible parameter values and the experiment is scored based on the least informative

matrix in this set. In contrast, an expected value approach is taken by [12, 13]. In this approach,

the average information content of the experiments over all possible parameter values is opti-

mized. The expected value approach tends to perform better than the min-max approach for a

large subset of probable parameter values, but not for extreme sets of parameter values. The

expected value approach is also called pseudo-Bayesian experimental design, because the possi-

ble parameter values can be expressed using a prior distribution [14]. The expected value

approaches of [12, 13] rely on parametric distributions to describe the uncertainty about the

model parameters before the experiment has taken place. However, for non-linear models, a
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parametric distribution will often not be appropriate to quantify the uncertainty about the

model parameters. Therefore, in this work, we allow arbitrary distributions to quantify the

model parameter uncertainty. More specifically, we show how the results of a Bayesian analysis

of historical data using Markov-chain Monte-Carlo can be used as a prior distribution, when

optimizing an experimental design. This Markov-chain can then be used to calculate the aver-

age Fisher information matrix, and has the advantage that it can represent arbitrary distribu-

tions [15].

Post-harvest storage of fresh fruit and vegetables is one biological application where optimal

experimental design is useful. The ideal storage temperature as well as O2 and CO2 partial pres-

sures depend on the respiration characteristics, which in turn depend on species, cultivar, ripe-

ness and multiple other factors. Determining the ideal storage conditions therefore requires

much experimentation. Traditionally, this was done by independently storing the product at

many different combinations of temperature as well as O2 and CO2 partial pressures, and by

monitoring the respiration and fermentation [16]. Many modern storage applications, such as

modified atmosphere packaging [17] and dynamic controlled atmosphere [18], adopt a

model-based approach, where the product is described as a dynamic system with inputs and

outputs. The resulting models enable us to use the tools of optimal dynamic experimental

design to construct informative experiments. The respiration and fermentation kinetics are

generally described by a model of the Michaelis-Menten type [19]. Robust experimental design

is particularly needed for post-harvest applications because of the large biological variability of

fresh fruit and vegetables. As a consequence of that variability, the parameters of the aforemen-

tioned kinetic models vary substantially between seasons and origins. In this paper, we there-

fore focus on constructing robust experimental techniques to estimate the respiration and

fermentation kinetics of pear fruit. This paper describes the first use of robust optimal experi-

mental design techniques in post-harvest research.

Robust optimal experimental design for dynamical systems

In this section, we first present the type of dynamical models considered in this paper. Then,

we show how to quantify the information gained from measurements, using the Fisher infor-

mation matrix. Next, we discuss how to maximize this information content using appropriate

control inputs. Finally, we explain how to make the optimal control inputs robust.

Dynamic models

In this paper, we consider experimental design for dynamic models of the form:

dx
dt
¼ f ðt; x; θ; uðtÞÞ; with xðt ¼ 0Þ ¼ x0;

yk ¼ hðxðtkÞÞ þ �k;
ð1Þ

where t denotes the time ranging from 0 to te, the end time of the experiment. The column

vector yk contains the measurements taken at time point tk, with k ranging from 1 to N,

the number of measurement times. The time between measurements is equally spread, so that

tk = kte/N. A measurement at the end of the experiment is thus included, but not at the start.

The measurements are subject to independent Gaussian noise. More specifically, �k is identi-

cally and independently multivariate normally distributed with zero mean and covariance

matrix R(y), which may depend on the true value of the measurements, uncorrupted by noise.

The measurements depend on the dynamic state column vector x(t) through the measurement

function h. The states x(t) have to be calculated from the system of ordinary differential
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equations f, with initial conditions x0. This system depends on the unknown model parameter

column vector θ, and the controllable input column vector u(t).

Information content of an experiment

Our goal is to optimize the controllable inputs u(t) so that the measurements yk contain as

much information as possible about the unknown parameters θ. A popular way to quantify the

information content of an experiment is the Fisher information matrix (FIM) [2, 21]. The

(m,n)th entry of this matrix is given by:

Fm;nðθ; uðtÞÞ ¼
XN

k¼1

@xðtkÞ
@θm

T
@h
@x

T

R� 1ðyÞ
@h
@x
@xðtkÞ
@θn

þ

 

1

2
Tr R� 1ðyÞ

Xny

i¼1

@R
@yi

@hi

@x
@xðtkÞ
@θm

� �

R� 1ðyÞ
Xny

i¼1

@R
@yi

@hi

@x
@xðtkÞ
@θn

� � !!

;

ð2Þ

with ny the measured output dimension. The sensitivities of the states to the unknown parame-

ters, @x(tk)/@θ, cannot be computed directly, as the evolution over time of the states x(t) is

described by the system of differential equations in Eq (1). However, these sensitivities can be

calculated from the forward sensitivity differential equations [22]:

d
dt
@x
@θ
¼

@

@θ
dx
dt
¼
@f
@x
@x
@θ
þ
@f
@θ
; with

@xðt ¼ 0Þ

@θ
¼ 0: ð3Þ

The FIM is the inverse of the Cramer-Rao lower bound of the variance of an unbiased esti-

mator of θ. This lower bound can be interpreted geometrically as a hyper-ellipsoid defined by

the eigenvectors and the inverse of the eigenvalues of the FIM. We want this lower bound to

be as small as possible, and thus the eigenvalues of the FIM to be as large as possible, because

this implies precise estimates for θ are possible. In the literature, several scalar functions of the

eigenvalues are used to quantify the size of the FIM [23]. To this end, we use the product of the

eigenvalues which equals the determinant of the FIM, and is thus also called the D-optimality

criterion. This criterion is inversely related to the volume of the hyper-ellipsoids, measuring

the uncertainty about the parameter vector θ.

Discretizing the controls

Optimal experimental design for dynamic systems is an infinite dimensional optimization

problem since it requires finding optimal controls u(t) for every t 2 [0, te]. To make this prob-

lem tractable, the controls have to be discretized in time. We utilize a bounded piecewise con-

stant discretization allowing u(t) to switch values at M equally spaced time points,

umin � uðtÞ ¼
XM

j¼1

ujw½ðj� 1Þte=M;jte=M½
ðtÞ � umax; ð4Þ

where uj is the constant control vector during the interval ðj � 1Þte=M;
jte=M½

�
, and χA is the

indicator function,

wAðtÞ ¼
1 t 2 A

0 t=2A;

(

ð5Þ

and umin and umax are the minimum and maximum control values allowed. Piecewise constant
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input profiles do not only have the benefit of making our optimization problem tractable, but

they are also easy to implement in practice.

Robustifying the experiment

Another issue with experimental design for models that are non-linear in the parameter vector

θ, such as the model we described in Eq (1), is the dependence of the FIM on θ. This presents

us with a cyclic problem because we are performing the experiment to quantify those parame-

ters. Locally optimal experimental design is the traditional method to deal with this issue. In

this approach, the FIM is calculated using a single initial guess θ� obtained from available prior

knowledge. A locally optimal experimental design is thus given by:

arg max
u1...uM

jFðθ�; uðtÞÞj subject to umin � uðtÞ � umax: ð6Þ

This method might give poor results if the initial guess deviates from the true value, and is

thus not robust. One method to robustify the optimal experimental design can be achieved by

averaging the information content of the experiment over multiple possible values of the

parameters, taking into account the likelihood of each parameter value. More specifically, a

weighted average is used to quantify the information content, where the weights are given by a

prior distribution of the parameters p(θ). This distribution represents the belief of uncertainty

concerning these parameters, before the experiment has been performed. A robust optimal

experimental design is therefore given by:

arg max
u1...uM

Z

jFðθ; uðtÞÞjpðθÞdθ subject to umin � uðtÞ � umax: ð7Þ

This criterion is also called the pseudo-Bayesian D-optimality criterion, because it uses a

prior distribution, a tool from Bayesian statistics, in combination with the Fisher information

matrix, a tool from classical frequentist statistics. Replacing the Fisher information matrix with

the Bayesian information matrix [15] and the determinant with a log-determinant would lead

to the fully Bayesian and decision theory based approach of [14].

Generally, the integral in Eq (7) cannot be evaluated analytically. To approximate it numeri-

cally, we draw R random model parameter vectors, θr, from the prior distribution p(θ) and

average the determinant of the FIM over these values:

Z

jF θ; u tð Þð ÞjpðθÞdθ �
1

R

XR

r¼1

jF θr; uðtÞð Þj θr � pðθÞ: ð8Þ

The robust criterion in Eq (7) is thus calculated by averaging the determinant of the FIM

over a sample drawn from the prior distribution.

Numerical details

The entire optimization problem was implemented in the Julia programming language [24].

All differential equations were solved using the Tsitouras 5/4 Runge-Kutta method [25], as

implemented in OrdinaryDiffEq.jl [26], with relative and absolute tolerances equal to 1 × 10−3

and 1 × 10−6, respectively. The piecewise constant control switches were implemented using a

periodic callback, provided by DiffEqCallbacks.jl. Note that u(te) in Eq (4) is undefined, but

this value does not influence the FIM.

Because coding the sensitivity differential equations in Eq (3) by hand is quite laborious

and error prone, we calculated them exploiting the automatic differentiation capabilities of
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DiffEqSensitivity.jl [27], more specifically its implementation of the discrete forward sensitiv-

ity analysis method.

To solve the non-linear optimization problems, we used the box constrained optimization

capabilities of NLopt.jl [28], specifically the method of moving asymptotes [29], with a relative

tolerance on the objective function of 1 × 10−3. The required gradients for this method are cal-

culated using the nested differentiation capabilities of ForwardDiff.jl [30]. This optimization

method requires an initial experimental design to improve upon and is a local optimizer.

Thus, it is not guaranteed to find the absolute best experimental design. To deal with this issue,

we utilize multiple starts, each with a different initial design. The TikTak global optimization

algorithm [31] can carefully select these initial designs from the design space, using Sobol

points. We use 1000 starts of the interior point optimization method in combination with the

TikTak implementation in MultiStartOptimization.jl.

Respiration and fermentation model of pear fruit

In this paper, we apply our robust experimental design methodology to precisely estimate the

respiration and fermentation characteristics of pear fruit. First, we present a respiration and

fermentation model of pear fruit inside a jar. We then quantify the initial uncertainty concern-

ing the various parameters in this model using a published data set.

Model description

The respiration and fermentation of pear fruit inside a jar is modeled by two mass balances for

O2 and CO2:

Vj
d½O2�

dt
¼ QinðtÞ½O2�inðtÞ � QoutðtÞ½O2� � mprO2

ðtÞ;

Vj
d½CO2�

dt
¼ QinðtÞ½CO2�inðtÞ � QoutðtÞ½CO2� þmprCO2

ðtÞ:

ð9Þ

The square brackets in these expressions represent concentrations in mol/m3. These differ-

ential equations describe the change of O2 and CO2 concentrations inside a jar with volume

Vj, which equals 5 dm3 in our examples. A time varying air mixture with an oxygen concentra-

tion [O2]in(t) and a carbon dioxide concentration [CO2]in(t) is blown into the jar with flow

rate Qin(t) (units: m3/h). These three time varying functions form the controllable inputs to

our system. Our measurement set up is schematically shown in Fig 1.

Since the pressure inside the jar should remain equal to the atmospheric pressure, we can

calculate the outflow Qout(t) from the jar using the ideal gas law:

QoutðtÞ
Patm
�RT
¼ QinðtÞ

Patm
�RT
� mprO2

ðtÞ þmprCO2
ðtÞ; ð10Þ

with �R the universal gas constant, Patm the atmospheric pressure. Concentrations throughout

the jar and at the outlet are considered to be similar, due to the assumption of well mixing. In

our constructed experiments the temperature equals 293.15 K, the amount of O2 consumed

and CO2 produced is proportional to the mass of the pears mp, taken to be 4 kg and the initial

conditions for O2 and CO2 will be equal to regular air.
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The respiration rates in Eq (10) are specified using models of the Michaelis-Menten type

[19]:

rO2
ðtÞ ¼

Vm;O2
½O2�

ðKm;O2
þ ½O2�Þ 1þ

½CO2�

Kmn;CO2

 ! ;

rCO2
ðtÞ ¼ rqrO2

ðtÞ þ
Vm;f ;CO2

1þ
½O2�

Km;f ;O2

:

ð11Þ

The models for these respiration rates contain six parameters that have to be identified.

Vm;O2
and Vm;f ;CO2

are the maximum respiration and fermentation reaction rates, respectively.

The Michaelis-Menten constant Km;O2
represents the saturation of respiration at high oxygen

levels, whereas Kmn;CO2
models the inhibition of respiration by CO2. The respiration quotient

rq represents the percentage of O2 that is converted to CO2 by respiration. Finally, Km;f ;O2
mod-

els the inhibition of fermentation by O2.

The measured gas concentrations [O2]m and [CO2]m at time point tk are assumed to be

equal to the true concentrations plus the additive Gaussian noise terms zk and ηk, respectively:

½O2�mðtkÞ ¼ ½O2�ðtkÞ þ zk; zk � N ð0; s2
O2
½O2�ðtkÞ þ 0:01Þ;

½CO2�mðtkÞ ¼ ½CO2�ðtkÞ þ Zk; Zk � N ð0; s2
CO2
½CO2�ðtkÞ þ 0:01Þ:

ð12Þ

Since the two gasses are measured with different sensors, we assume that the two noise

terms are independent. We assume that the noise variances scale linearly with the gas concen-

trations, plus a small value to ensure positive definiteness of the R matrix in Eq (2). s2
O2

and

s2
CO2

are nuisance parameters that must be estimated, such that the respiration and fermenta-

tion of pear fruit can be studied, but their precise estimation is not of direct interest to us.

Since the variance of a gas concentration measurement must have the units of squared concen-

tration, both s2
O2

and s2
CO2

must have units of concentration. Several sensor principles are

Fig 1. Schematic representation of the measurement setup.

https://doi.org/10.1371/journal.pcbi.1009610.g001
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available for measuring O2 concentrations in a practical setting, including gas chromatogra-

phy, zirconium based sensors, paramagnetic sensors and fluorescence based optical sensors;

CO2 concentrations can be measured using gas chromatography, infrared absorption and

chemical gas sensors.

Before considering experimental design for this model, we first checked whether the model

parameters can be correctly identified at all. This is because it is possible that two different

model parameter values result in exactly the same output behavior, making it impossible to

distinguish the true value of the model parameters from the data. We confirmed, using the

STRIKE-GOLDD Matlab toolbox [32], that our respiration and fermentation model is struc-

turally identifiable even with constant input levels, that do not change in time. Our piecewise

constant input profiles form a super-set of the set of constant input profiles, which thus

ensures that our experimental designs will result in an identifiable model.

Prior information

Optimal experimental design for our non-linear respiration and fermentation model requires

prior information, concerning the six respiration and fermentation parameters. Such prior

information for pear respiration and fermentation can be found in [20]. We cannot directly

utilize the published results, as [20] only report confidence intervals for each individual param-

eter, but no correlations between estimates. To deal with this problem, we reanalyzed 50 time

series data-sets, each containing O2 and CO2 measurements from a single jar, made available

to us by the authors, and which can be found in the S1 Table of this paper. We used a Bayesian

data analysis technique to achieve this. More specifically, we utilized a Markov-chain Monte-

Carlo method to re-estimate the parameters and quantify the uncertainty in the data [33]. The

Markov-chain can be found in the S2 Table of this paper. The Markov-chain stores values sam-

pled from the posterior distribution of the parameters. The chain can thus be utilized for

numerically approximating the expectation in the robust criterion in Eq (7). In other words,

we use the MCMC chain as an input to the expression in Eq (8).

Because the data of [20] were collected at different temperatures, our analysis took into

account the effect of temperature on the maximal respiration and fermentation rate by means

of the Arrhenius equations:

Vm;O2
¼ Vm;O2 ;Tr

exp
Ea;O2

�R
1

Tr
�

1

T

� �� �

;

Vm;f ;CO2
¼ Vm;f ;CO2;Tr

exp
Ea;CO2

�R
1

Tr
�

1

T

� �� �

;

ð13Þ

where Vm;O2 ;Tr
and Vm;f ;CO2 ;Tr

are the maximal respiration rates at a reference temperature Tr of

293.15 K, and Ea;O2
and Ea;CO2

are activation energies that describe how the reaction rates

increase with the temperature T. These activation energies are nuisance parameters in our com-

putation of optimal input profiles, as we only consider experiments at the reference temperature.

Another difference between the experiments of [20] and our experiments is that they used

closed jars, instead of flow through experiments. Their system dynamics thus differ:

Vj
d½O2�

dt
¼ � mprO2

ðtÞ;

Vj
d½CO2�

dt
¼ mprCO2

ðtÞ:

ð14Þ
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Fig 2 provides a summary of the results of our Bayesian analysis. On the diagonal of this fig-

ure, histograms of of the Markov-chain values of the six model parameters of interest (Vm;O2
,

Km;O2
, Kmn;CO2

, rq, Vm;f ;CO2
and Km;f ;O2

) are shown. The bullet at the horizontal axis of every histo-

gram shows the average value for every parameter. Below the diagonal, two-dimensional heat-

maps are shown, which visualize the correlation between the Markov-chain values for pairs of

model parameters. The figures above the diagonal provide similar information, but show only

100 pairs of values from the Markov-chain. Histograms of the Markov-chain values for the nui-

sance parameters Ea;O2
, Ea;CO2

, s2
O2

and s2
CO2

are depicted in Fig 3. The estimation of the respira-

tion inhibition parameter, Kmn;CO2
, from the available data was problematic. For this reason, we

had to reparametrize the model using the inverse of Kmn;CO2
. As can be seen in the third histo-

gram in Fig 2, K � 1
mn;CO2

takes values close to zero, which means Kmn;CO2
tends to infinity. The lack

of information about Kmn;CO2
can be explained as follows: to precisely estimate this parameter,

both high O2 and CO2 concentrations are needed. A high O2 concentration is required because

otherwise there is no respiration that can be inhibited, and a high CO2 concentration is

required because otherwise the inhibition has a negligible effect. Data points in which both gas-

ses posses a high concentration do not occur in the data of [20]. The issues with the uncertainty

about Kmn;CO2
were the catalyst for the development of our robust experimental design method.

Fig 2. Summary of the posterior distribution resulting from a Bayesian data analysis of the data in [20] for the parameters of interest.

https://doi.org/10.1371/journal.pcbi.1009610.g002
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Fig 3. Summary of our Markov-chain Monte-Carlo analysis of the data in [20] for the nuisance parameters Ea;O2
,

Ea;CO2
, s2

O2
and s2

CO2
.

https://doi.org/10.1371/journal.pcbi.1009610.g003
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We found no other reliable way to quantify the uncertainty on this parameter, except working

with a Markov-chain. Km;f ;O2
is the second hardest parameter to identify from the data of [20],

because the O2 concentration needs to be in a specific range for this parameter to have an effect

on the outputs. An O2 concentration much higher than Km;f ;O2
means no fermentation is hap-

pening at all, while an O2 concentration much lower than Km;f ;O2
implies maximal fermenta-

tion. The third most difficult to identify parameter is Km;O2
, because the model is only sensitive

to this parameter when O2 concentrations are close to the value of this parameter.

Markov-chain details

The data analysis was performed using the No U-Turn Sampling Markov-chain Monte-Carlo

algorithm [34], as implemented in Turing.jl [35]. We ran 4 parallel Markov-chains, each start-

ing from the maximum likelihood estimates of the parameters, and each chain comprises 1500

steps. We utilized truncated wide Gaussian distributions as prior distributions in the physically

possible regions of the unknown parameters. For all parameters only positive values are possi-

ble, with rq being at most 1. The means and standard deviations of these wide Gaussian distri-

butions are found in Table 1. We used the posterior distribution resulting from our Bayesian

analysis of the experiments in [20] as a prior distribution for the generation of the robust

designs in this paper. However, as calculating robust optimal designs with the entire Markov-

chain is numerically quite intensive, we discarded the first 500 step, and thinned the remaining

1000 by a factor 40. This gave us 100 samples to calculate the robust D-optimality criterion in

Eq (7). These are also the 100 values shown in the top right half of Fig 2.

Results

In our examples, we consider experiments lasting 24 h with measurements taken every minute,

i.e. te = 24 h and N = 1440. The maximum and minimum flow rates are equal to 4 l h−1 and 0.1

l h−1, respectively. The input gas concentrations are allowed to vary between 0 kPa and 21 kPa.

We did not use a minimum flow rate of 0 l h−1, because at zero flow there is no difference in

system response between a maximal or minimal gas input concentration. This implies that the

design selection criteria from Eqs (6) and (8) are flat in certain directions, causing numerical

issues for gradient based optimizers. Working with a strictly positive minimum flow rate

avoids this issue. We also tried remedying this issue using gradient free optimizers, such as the

subplex method and the Nelder-Mead method [36, 37]. However, these methods did not con-

verge for our robust experimental design methodology, even after 36 hours of computation

time, nor did they find a better robust design than the gradient based methods during that

time. All computations were run on an Intel Core i7–6700K CPU @ 4.00GHz.

Locally optimal designs for the respiration and fermentation model

We take the average values of the Markov-chains of the parameters of interest, as well as the

average of the Markov-chain values of the parameters s2
O2

and s2
CO2

to evaluate the local D-

Table 1. Prior distribution for the Markov-chain Monte-Carlo analysis.

Vm;O2
Km;O2

K � 1
mn;CO2

rq Vm;f;CO2
Km;f;O2

Ea;O2
Ea;CO2

s2
O2

s2
CO2

units mmol
kg s

kPa 1

kPa - mmol
kg s

kPa kJ
mol

kJ
mol

mmol
m3

mmol
m3

mean 0.3 5 0.005 0.6 0.1 0.2 70 60 0.03 0.07

std 0.3/3 5/3 0.005 0.6/3 0.1/3 0.2/3 70/3 60/3 0.03/3 0.07/3

https://doi.org/10.1371/journal.pcbi.1009610.t001
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criterion in Eq (7). These values are shown in Table 2, and indicated by a bullet in the histo-

grams on the diagonal of Fig 2. We start by analyzing the effect of an increasing refinement of

the discretization of the inputs u(t). In Fig 4, which shows the local D-criterion value as a func-

tion of the number of times M the input signal is allowed to switch, we see that the D-criterion

no longer improves noticeably after M = 24, which corresponds to a switch every hour. The

experimental design obtained with M = 12, which corresponds to a switch every two hours,

already performs well. Therefore, in the remainder of this work, we consider O2, CO2 and flow

rate inputs that remain constant for two-hour time periods. The computational time required

to optimize the designs are also shown in Fig 4. The optimization time increases linearly as the

discretization becomes finer, but, even for M = 48, the optimization of the locally optimal

design only requires 7 minutes.

The locally optimal design for the scenario in which the inputs are allowed to vary every

two hours is shown in detail in Fig 5a and 5b, together with the simulated outputs in Fig 5c,

evaluated at the values of the model parameters used to optimize the design. During the first

half of the experiment, no pumping actions occur, which causes the CO2 concentration to rise

inside the jar. However, the gas concentrations cannot remain high throughout the entire

experiment, since the O2 concentration must be low to learn about non-saturated respiration,

and fermentation. The CO2 concentration is not allowed to run up too high, as this compro-

mises the ability to precisely determine the fermentation parameters. This can be intuitively

understood by considering the system in an extreme scenario where the atmosphere in the jar

consists entirely of CO2. In this scenario, the outflow will also be pure CO2 regardless of the

values of the fermentation parameters. Information about the fermentation parameters is then

only incorporated in the outflow rate, but this is not a measured output. This illustrates how

optimal experiments automatically take into account the specifics of the measurement setup.

Fig 4. Convergence of the local D-optimality criterion and required computing time for finer discretizations of

the controls.

https://doi.org/10.1371/journal.pcbi.1009610.g004

Table 2. Parameter values used for the optimization of the locally optimal designs.

Vm;O2
Km;O2

Kmn;CO2
rq Vm;f;CO2

Km;f;O2
s2
O2

s2
CO2

μmol kg−1 s−1 kPa kPa - μmol kg−1 s−1 kPa μmol m−3 μmol m−3

0.283 4.43 182.5 0.637 0.136 0.187 0.063 0.093

https://doi.org/10.1371/journal.pcbi.1009610.t002
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Fig 5. Locally optimal experiment and simulated output, with control input switches every two hours.

https://doi.org/10.1371/journal.pcbi.1009610.g005
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The importance of low CO2 concentrations is the reason why air, with almost zero O2 and

CO2 inlet concentrations is pumped into the jar in the interval between 12 h and 14 h. The

pumping action at 20 h, again involving zero O2 and CO2 concentrations, is performed for

similar reasons.

Fig 6a shows the coefficients of variation of all six model parameters, defined as the ratio

of the standard errors, as given by the diagonal elements of the inverse of the FIM, and the

model parameter values used for the generation of the local optimal design. The three

inhibition parameters (Km;O2
, Kmn;CO2

and Km;f ;O2
) remain the most difficult to estimate ones.

Now, however, in our experiment involving a single jar, instead of using the data from 50

jars, made available to us by [20], the model parameters can be estimated much more

precisely.

Fig 6b shows a map of the absolute values of the correlations of the estimates that would be

obtained if the locally optimal experiment were to be used. Because there are no strong correla-

tions between the first three parameters and the last three parameters, we can thus visualize

the FIM in Eq (2) using two ellipsoids. The axes of the first ellipsoid are in the directions of the

eigenvectors of the inverse of the top left quarter (a 3 by 3 matrix) of the FIM, and the lengths

of the axes are the corresponding eigenvalues. The second ellipsoid is similarly based on the

bottom right quarter. More specifically, we can use one ellipsoid to show the gain in informa-

tion for the parameters Vm;O2
, Km;O2

, and Kmn;CO2
and another ellipsoid to show the gain in

information for the parameters rq, Vm;f ;CO2
and Km;f ;O2

. These ellipsoids are shown in red in Fig

7a and 7b for the experiment allowing changes in inputs every two hours, and are compared to

the ellipsoids in blue resulting from the heuristic experimentation technique used by [20] with

the volume of the jar, mass of pears, initial conditions, sampling times and total experimenta-

tion time equalized between the two methods. The volume of the ellipsoids of the locally opti-

mal experiment are smaller.

Robust optimal designs for the respiration and fermentation model

We now continue by searching a more robust design than the locally optimal design in Fig 5.

Instead of optimizing the determinant of the FIM in Eq (2) for the means of the Markov-chain

values, we optimize the mean determinant for a thinned version of the Markov-chain. These

100 values from the thinned chain are graphically shown by the blue bullets in the upper right

hand part of Fig 2. The design found by maximizing the robust optimality criterion in Eq (8) is

shown in Fig 8a and 8b. The simulated output for all values of the thinned Markov-chain is

shown in Fig 8c. The robust design exhibits several similarities to the locally optimal design,

with one key difference: the second pumping action occurs two hours earlier in the robust

design. Fig 9 shows the difference in performance between the robust and the locally optimal

experiment. More specifically, the histogram shows the difference between the determinant of

the FIM in Eq (2) for both the robust and locally optimal design at all 6000 model parameter

values from four parallel Markov-chains. For many possible model parameter values, the local

and robust design perform almost equally well. However, the histogram clearly has a heavy

right tail, showing that, for some parameter values, the robust design performs significantly

better. As the histogram does not posses a heavy left tail, the reverse is not true. The robust

design is thus substantially less sensitive to the exact values of the model parameters. It there-

fore provides a better guarantee for a highly informative experiment than the locally optimal

design. Since this result holds for the entire Markov-chain and not just the thinned version we

can be confident that the thinned version is sufficient to summarize the prior uncertainty, and

that the resulting robust design does not only work well for the specific model parameter
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values used to evaluate the optimality criterion in Eq (8), but also for parameter values other

than the 100 values used in this equation. The heavy right tail consists of those elements of the

Markov-chain which have a low value for the hard to estimate parameter Kmn;CO2
. For low val-

ues of this parameter, the parameter is best estimated at lower CO2 concentrations in the jar,

Fig 6. Summary of the information gained from the locally optimal experiment in Fig 5.

https://doi.org/10.1371/journal.pcbi.1009610.g006
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while there is also still enough O2 left for the inhibition effect on respiration to be noticeable.

This explains the earlier pump in the robust experiment. Finally, the positive mean value for

the difference in determinants, indicated by the orange dot in Fig 9, proves that the robust

design is expected to do better for the region of prior uncertainty. We also calculated the

locally optimal design for one of the model parameter values out of the right tail of Fig 9 and

found that the locally optimal design for this parameter value was identical to the robust

design. So, it seems that the robust design is influenced heavily by a few parameter values.

However, for the parameter value for which the locally optimal design in Fig 5 performs the

best, the robust design does not perform much worse, relative to the difference in performance

between those two designs for model parameter values in the tail of Fig 8. To summarize: the

robust design does significantly better for a few of the possible parameter values and only

slightly worse for the majority of possible parameter values.

In Table 3, we also compare, using the full Markov-chain, our robust experimental design

method based on a thinned Markov-chain, which can approximate arbitrary distributions,

Fig 7. 95% confidence ellipsoids comparing the locally optimal experimental design (red) and the heuristic

experimental design technique from [20] (blue). a. first three parameters (Vm;O2
, Km;O2

, Kmn;CO2
) b. last three

parameters (rq, Vm,f,, Km;f ;O2
).

https://doi.org/10.1371/journal.pcbi.1009610.g007
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Fig 8. Robust optimal experiment and simulated output, obtained using 100 parameter values from the Markov-

chain and control input switching every two hours.

https://doi.org/10.1371/journal.pcbi.1009610.g008
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to the robust experimental design method of [12], which uses 13 sigma-points to summarize

the uncertainty on the model parameters, and is thus computationally less intensive. These

sigma-points can be found in the S3 Table of this paper. This method requires a mean and

covariance matrix summarizing the prior uncertainty on the model parameters to calculate

the sigma-points. We used the mean and covariance matrix our Markov-chain for this pur-

pose. For the hard to estimate parameter Kmn;CO2
, we again reparametrized the model using

the inverse, K � 1
mn;CO2

. We followed the recommendation of [12] regarding the weights of the

sigma-points. The sigma-point method results in a design that performs slightly worse than

the locally optimal design, showing that sigma-points do not always provide good summary

of the uncertainty in the model parameters. The inputs of the sigma-point based design are

very similar to the locally optimal design. They only very slightly differ in the gas inputs

between 4–8h. Table 3 also shows the computing times for the locally optimal design, the

design based on the Markov-chain, and the design based on the sigma-point method. The

robust design requires a computational time that is roughly 100 times longer than that of

than the locally optimal design and 10 times longer than that of the design based on the

sigma-point method.

Fig 9. Histogram of difference in determinants of the FIM of the robust and locally optimal designs for 6000

parameters from the prior distribution. Positive values mean the robust design performs better. Note that the most

right bin of the histogram spans a wider interval than other bins. This is done to better showcase the heavy right tail of

the histogram.

https://doi.org/10.1371/journal.pcbi.1009610.g009

Table 3. Parameters used for the optimization of the construction of the locally optimal designs.

Markov-chain Monte-Carlo optimal design locally optimal design sigma point optimal design

Robust D-criterion 1.07×1016 1.05×1016 1.04×1016

Optimization time (s) 11266 100 1430

https://doi.org/10.1371/journal.pcbi.1009610.t003

PLOS COMPUTATIONAL BIOLOGY Robust dynamic experiments for respiration and fermentation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009610 January 12, 2022 18 / 23

https://doi.org/10.1371/journal.pcbi.1009610.g009
https://doi.org/10.1371/journal.pcbi.1009610.t003
https://doi.org/10.1371/journal.pcbi.1009610


Discussion and future work

Alternative design selection criteria

In this paper, we presented a robust experimental design methodology for dynamic models

and applied that methodology to precisely estimate the respiration and fermentation

parameters of fruit and vegetables. We achieved this by quantifying the information con-

tent of the experiments using the determinant of the Fisher information matrix averaged

over a prior distribution, represented by a Markov-chain. However, the Fisher information

matrix is only an approximation of the inverse of the model parameter covariance matrix.

Another approach to approximate the covariance matrix based on simulating multiple pos-

sible data-sets, and estimating the model parameters from each data-set is suggested by

[38]. This approach is numerically much more intensive than an approach based on the

FIM, and is therefore infeasible in the context of optimal experimental design. Another

promising approach would be to quantify information based on the expected Kullback-Lei-

bler divergence (KL-div) between the prior and posterior distributions [39]. For experi-

ments with a large number of observations, the expected KL-div is asymptotically equal to

our robust D-optimality criterion. For a small number of measurements, the KL-div

approach might be superior as it does not utilize normal approximations. One major down-

side of using the KL-div is its computational complexity, as it involves calculating a high

dimensional integral over all possible outcomes y of the experiment. This is generally done

using a double loop Monte-Carlo integration method [40]. Some research has been done

using this method for determining optimal sampling times of dynamic systems [41], but

this work does not consider optimal control. Therefore, the dynamic system in [41] does

not need to be solved repeatedly for different control actions. Instead, only a single dynamic

system needs to be solved that can be evaluated at different possible sampling times. Selec-

tion of input profiles based on the KL-div is considered in [42], but only for a small discrete

set of possible input profiles. In contrast, in our paper, we optimize the experimental design

over a large continuous space of possible experimental designs. Recently, advances have

been made in lowering the computational burden of the KL-div based approach by consid-

ering surrogate functions that approximate the KL-div based on polynomial chaos expan-

sions [43]. Another approach to lower the computational burden is based on variational

Bayesian techniques [44], where the inner Monte-Carlo loop is replaced by optimizing a

variational distribution. This technique then allows for jointly optimizing the design and

variational parameters [45]. In future work, we will employ these variational Bayesian tech-

niques for adaptive dynamic experiments, where the design is modified online as data is

collected.

Model uncertainty

Throughout this paper, we have assumed that the model structure has been identified cor-

rectly, and that only the model parameters must be estimated. However, often there is also sub-

stantial uncertainty about which model structure is correct. An experiment (or sequence of

experiments) must then be constructed such that a precise determination of both the model

structure and the model parameters is ensured. For robust experimental design, this involves

constructing a joint prior distribution over the possible model structures and their model

parameters. For the techniques used in this paper, constructing such a joint prior would be dif-

ficult, since the Markov-chain Monte-Carlo methods we employed, such as NUTS, can only

deal with continuous parameters, and not discrete ones like different possible model structures

[33]. Possibly, this issue could be overcome using Gibbs sampling [35]. We also assumed that
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the measurement noise was heteroscedastically normally distributed. Since the gas concentra-

tions should always be positive, other distributions, such as the log-normal distributions might

also be considered. For these distributions, however, the definition of the Fisher information

matrix in Eq (2) would have to be generalized [2], which would lead to much more complex

optimization problems.

State discretization

In this work, we discretized only the controls u, but not the states x. The discretization of states

is applied using multiple shooting and collocation based dynamic optimization approaches

[46]. Generally, these methods lead to optimization problems that are faster to solve, but which

might result in poorer designs. Besides the faster computing time, one additional reason to con-

sider discretization of the states would be the presence of additional constraints on the states,

which our problem does not contain. This is because violations of such constraints are difficult

to check without a discretization, and adding these discretized states as variables to the optimi-

zation problem. In our work, the dynamic states are integrated away by the differential equation

solver. We could still use the solution of the differential equation to check state violations and

add a term to the optimization objective that punishes such violations. A more detailed discus-

sion on the incorporation of constraints into optimal dynamic experiments is provided by [13].

Reverse automatic differentiation

We used forward mode automatic differentiation to calculate the sensitivities to the unknown

parameters θ, required to obtain the FIM in Eq (2), and this was further nested to calculate the

gradient of the D-criteria in Eqs (6) and (8) with respect to the control parameters u. Forward

mode automatic differentiation generally performs well for functions with a small number of

inputs, relative to the number of outputs. For our respiration model, it thus was a good choice

for calculating the unknown parameter sensitivities present in the FIM. Reverse mode auto-

matic differentiation performs better for functions with many more inputs than outputs. It

thus seems like a natural choice to calculate the gradients necessary for the optimization of the

control parameters. However, there is currently not yet a mature implementation of reverse

over forward mode automatic differentiation in the Julia ecosystem [27].
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