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Abstract: This paper presents an improved artificial neural network (ANN) training using response
surface methodology (RSM) optimization for membrane flux prediction. The improved ANN utilizes
the design of experiment (DoE) technique to determine the neural network parameters. The technique
has the advantage of training performance, with a reduced training time and number of repetitions
in achieving good model prediction for the permeate flux of palm oil mill effluent. The conventional
training process is performed by the trial-and-error method, which is time consuming. In this work,
Levenberg–Marquardt (lm) and gradient descent with momentum (gdm) training functions are
used, the feed-forward neural network (FFNN) structure is applied to predict the permeate flux,
and airflow and transmembrane pressure are the input variables. The network parameters include
the number of neurons, the learning rate, the momentum, the epoch, and the training functions. To
realize the effectiveness of the DoE strategy, central composite design is incorporated into neural
network methodology to achieve both good model accuracy and improved training performance.
The simulation results show an improvement of more than 50% of training performance, with
less repetition of the training process for the RSM-based FFNN (FFNN-RSM) compared with the
conventional-based FFNN (FFNN-lm and FFNN-gdm). In addition, a good accuracy of the models is
achieved, with a smaller generalization error.

Keywords: feed-forward neural network; network parameters; response surface methodology; DoE;
membrane biorector; palm oil mill effluent

1. Introduction

The palm oil mill is one of the largest industries in Asia which contributes a large
amount of wastewater discharge to the waterways [1,2]. There are many advanced tech-
nologies for water and wastewater treatment nowadays, including membrane filtration
technology. In the palm oil industry, the membrane bioreactor system is one of the widely
used wastewater treatment technologies for palm oil mill effluent (POME). Membrane tech-
nology is preferable due to its simple operation, lesser weight, fewer space requirements,
and high efficiency [3].

The submerged membrane bioreactor (SMBR) has been proven as a reliable technology
in treating a wide range of water such as wastewater, groundwater, and surface water.
However, fouling phenomena is the main drawback of SMBR filtration systems, which
contribute to high energy consumption and maintenance costs [4]. Fouling occurs when
the membrane pore is clogged by solid materials. It will cause permeate flux to be declined,
and then transmembrane pressure will rise. According to [5–7], fouling may vary with
time during the operation, and this variation can be minimized by controlling the fouling
variables. Stuckey (2012) [8] showed that fouling affects a number of parameters such as
the membrane form, hydrodynamic conditions, the composition of the biological system,
and the operating conditions of the reactor and the chemical system.

From an operational point of view, fouling can be controlled and reduced using vari-
ous techniques such as air bubble (aeration) control, backwashing, relaxation, and chemical
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cleaning [9]. Understanding the dynamic and prediction performance of membrane pro-
cesses is very important, because with that information, the operation and control of the
membrane process can be carried out more effectively in the future. Since the process of
the SMBR filtration system is highly nonlinear and uncertain, it is difficult to represent it
using standard mathematical equations due to the complexity of fouling behavior [8].

Artificial neural networks (ANN) have been proven reliable for the modelling of complex
process involving nonlinear data. An ANN can provide a reliable and robust modelling
approach, but it requires an extra step of a perturb method in the sensitivity analysis. In
addition, for a chosen neural network structure, it is challenging to determine the best
network parameters, which are often based on a trial-and-error basis. The proper design of
ANN training (so-called ANN topology) is crucial in order to produce models with good
accuracy [10–12]. The determination of network parameters requires a large number of its
different configurations and is performed by the trial-and-error method [13,14]. The network
parameters of the number of hidden layers, the neuron in the first hidden layer and the
neuron in the second hidden layer [13], transfer functions, and hidden neurons [14] need to
be varied until their optimal condition is determined.

Works by [15–17] applied a one-variable-at-time (OVAT) method, where, in this single
factor optimization approach, only one factor is variable at a time, while the others are fixed
by default values. This procedure is a very time-consuming and monotonous task, especially
when a huge number of parameters are to be examined simultaneously [18]. The effect
of the interaction between factors is also neglected, leading to a low efficiency in process
optimization, which is not guaranteed to find the optimal value [19]. Works by [20,21] have
successfully optimized the network setting such as the number of neurons, the epoch and
training function using the genetic algorithm (GA), and differential evaluation (DE). There
is no specific rule used in selecting the value of network parameters, and this process is
dependent on the complexity of the modelled system.

It is most important to find the network parameters, which will affect the determi-
nation of weight and bias for model development. Several pieces of literature focus on
the improvement of network training by optimizing the weights and biases using other
optimization approaches such as GA and PSO [21,22]. The response surface methodol-
ogy (RSM) method has successfully adopted in the literature to optimize the data from
process industries, mainly for the membrane bioreactor treatment process [23–25]. RSM
is statistical-based approach which provides a standard procedure of modelling and opti-
mization, including the design of experiment (DoE). The DoE stage increases the accuracy
of RSM model equations [26]. Furthermore, it requires less data to be collected and has
the ability to detect the significant interaction effects of the factors. However, the RSM
is limited to quadratic approximation and is not suitable for the approximation of high
degrees of nonlinearity [27].

ANN has been proven reliable for the modelling of complex processes involving high
degrees of nonlinearity [28], but it requires an extra effort in the training process. This led to
works on the combination of both algorithms, which have gained much attention and have
been successfully implemented as modelling and optimization tools to solve complex and
nonlinear problems [26–33]. In works proposed by [27,28,32], the DoE is obtained using the
RSM technique. The same DoE is utilized for both RSM (RSM-DoE) and ANN (ANN-DoE)
model analyses with respect to their data accuracy and the process of analyses. From the
results, the accuracy of the model obtained by ANN-DoE is preferable to that of RSM-DoE.

In other works presented by [30,34,35], the determination of ANN topology using
RSM has been successfully applied, and the simulation results showed a good performance
in terms of model accuracy. These ANN topologies will affect the weight and bias during
ANN model development. The results showed that ANN topology, such as the step
size, momentum coefficient, and training epoch, has a significant effect on the model
development [34]. These studies, however, do not compare the process and the accuracy of
the conventional method with the proposed (RSM) technique. So, the effectiveness of the
proposed method (RSM) cannot be established. It can be observed that the concept of DoE
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analysis is one of the main contributions for obtaining a good accuracy of the model in an
efficient way.

In this paper, an improved ANN training for feedforward neural networks (FFNN)
is proposed, which utilizes the RSM-DoE-based strategy in determining the optimal con-
ditions of network parameters. The proposed optimization is called FFNN-RSM, and the
main difference, as compared to the previous work, is in terms of the ANN training param-
eters or topology. In this case, the training parameters are the combination of numerical
and categorical factors to achieve a good model accuracy and improve the performance of
training. To realize the effect of combined factors, the proposed FFNN-RSM is compared
with the conventional FFNN using Levenberg–Marquardt (lm) and gradient descent with
momentum (gdm) training functions. The evaluation of model performance is performed
based on real input–output data from the SMBR wastewater treatment plant using palm
oil mill effluent. The accuracy of the model is analyzed based on performance statistical
errors such as the correlation coefficient and mean square error (MSE). The total amounts
of repetition and training time are also measured and compared.

2. Materials and Methods
2.1. Experimental Methodology

Membrane bioreactor filtration treatment is carried out in a pilot scale of working
volume of 30 L. The sample is collected from the final pond of the treatment plant, with a
biochemical oxygen demand (BOD) of less than 10,000 mg/L, to generate fouling in the
SMBR filtration process. The plant consists of a single bioreactor tank with submerged
hollow fiber installed inside the tank. The hollow fiber membrane is fabricated using
polyethersulfone (PES) with a pore size of approximately 80–100 kDa, and an effective
membrane surface area of about 0.35 m2 was used in the filtration system. Figure 1 shows
the schematic of the pilot plant setup for the experiment, and Table 1 shows the instruments
used in the pilot plant. The data plant was controlled and monitored using the National
Instruments Labview 2009 software with NI USB 6009 interfacing hardware. The total of
4000 data for each parameter were collected from the experiment, including airflow (SLPM),
permeate pump (voltage), transmembrane pressure (mbar), and permeate flux (L m−2 h−1).
Steps input with a random magnitude were excited for the suction pump between 0 to 3
and for the TMP between 0 to 270 mbar to obtain the dynamic behavior of the filtration
process. The setting for the permeate-to-relaxation period is maintained at 120 s permeate
and 30 s relaxation, with continuous aeration airflow. The airflow was set around six to
eight standard liters per minute (SLPM) during filtration to maintain the high intensity of
bubble flow in order to clean the membrane surface. Figure 2 shows the SMBR filtration
dataset, including permeate pump voltage and TMP as the inputs and permeate flux as
an output. The analysis of required data was carried out by using MATLAB R2015a and
Design-Expert version 12.0.
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Table 1. List of instruments in the pilot plant.

Tag No. Description Range

C-101 20L 2HP Air Compressor 0–20 bar
PV-101 Proportional Valve 0–5 Volt
FA-101 Airflow Sensor 0–20 SLPM
PI-101 Pressure Transducer −1–1.5 bar
SV-101 Solenoid Valve Permeate Stream N/A
SV-102 Solenoid Valve Backwash Stream N/A
P-101 Peristaltic Pump 0–0.5 L min−1

P-102 Diaphragm Pump 0–3.8 L min−1

FM-101 Liquid Flow Meter 0–0.5 L min−1

Membrane Hollow Fiber Membrane 80–100 kDa
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2.2. Experimental Analyses

The performance of the filtration process is measured based on permeate flux as follows:

J =
v

A× t
(1)

where J is the permeate flux in (Lm−2h−1), v is the volume flow rate in liters, A is the
membrane surface area (m2), and t is the time (h).

2.3. Simulation Modelling
2.3.1. Artificial Neural Network

The schematic structure of the FFNN is used in the present study for predicting
the permeate flux of POME during membrane filtration processes, as shown in Figure 3.
The input variables are transmembrane pressure and permeate pump voltage. The output
variable is the permeate flux of POME. It was reported in an earlier work [36] that a network
with one hidden layer and a hyperbolic tangent sigmoid (tansig) function is commonly used
for forecasting in practice. In this work, one hidden layer with a tansig transfer function
was considered. For the simulation process, a linear (purelin) function for the output was
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selected to produce a continuous output. The FFNN used in this study is based on the
following equation:

ŷ1(t) = Ei

[
∑nh

j=1 Wij f j

(
∑nϕ

l=1 wij + wj0

)
+ Wi0

]
, (2)

where ŷ1(t) is the prediction output. f j is the function of the network , and ϕ is the input
vector. Wij and wij represent the network connection layer weights and biases, respectively.
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In this work, data normalization and data division were performed prior to the
development of the neural network model. Since the input data for the SMBR system
involved different magnitudes and scales, the dataset is scaled in the range of 0 to 1. This
is to prevent the large original input data from dominating the solution. In addition, it
prevents numerical difficulties during the calculation [37]. Equation (3) is the formula for
normalization [14].

X′ =
yi − ymin

ymax − ymin
1, (3)

where X′ is the scale value, yi is the ith actual value of data, ymax is the maximum value of
data, and ymin is the minimum value of data.

In order to investigate the feasibility of the predictive model, a combination of holdout
validation and K-fold cross validation were applied. For holdout validation, all the data
were randomly separated into the training dataset (Ttraining) and testing dataset (Ttest). The
training dataset is used for training and evaluation of the network, while the testing dataset
is employed to test the performance of the network. The dataset is divided into 60% and
40% for training and testing, respectively.

K-fold cross validation is preferable for a large dataset and is chosen in this work. In
this study, three-fold cross validation is used. To tune the network parameters, the training
dataset is divided into a learning dataset (Tlearning) and validation dataset (Tvalidation). Two
thirds of the learning dataset (Tlearning) are the set of patterns that are used to actually
train the network. The network performance is evaluated using the validation dataset
(Tvalidation), which is the remaining one-third of the pattern in the training data. The
procedure was repeated three times, each time using a different fold of the observations into
the learning dataset and validation dataset. Then, the average of MSECV was calculated.
For the conventional method, the network parameters with a minimum validation error
are selected. On the other hand, for the proposed method (FFNN-RSM), the optimal value
of network parameters suggested by RSM were used. The network then finally tested on
the testing dataset to yield an unbiased estimate of the performance of the network on the
unseen dataset.
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2.3.2. Network Parameters

The network parameter is one of the main factors in achieving a good performance of
a model, including FFNN model structure. Finding the best network parameters is a critical
task, and appropriate ranges should be chosen. For conventional-based FFNN, the training
process considers numerical factors including the number of neurons, the learning rate, the
number of epochs, and the momentum coefficient training parameters. In addition to the
numerical factors, the categorical factors such as training function are also considered in
this paper for the better performance of model prediction.

The training functions used in this case are Levenberg–Marquardt (lm) and gradi-
ent descent with momentum (gdm). The lm training function provides great abilities
such as a fast training function, a non-linear regression with a low mean square error
(MSE), and memory reduction features [38,39], while the gdm has advantages such as
avoiding local minima, speeding up learning, and stabilizing convergence [40]. The gdm
training function depends mainly on two parameters of training: the learning rate and
momentum parameters.

The former parameter aims to find the minimum weight space. Too high of a learning
rate will lead to an increase in the magnitude of the oscillations for MSE, while too low
of a learning rate causes smaller steps to be taken in the weight space. In this case, the
capability of the network to escape from the local minima in the error surface becomes
lower due to a low learning rate. The latter parameter defines the amount of momentum,
where a low momentum causes less of a sensitivity of the network to the local gradient,
while a high momentum causes a divergence of adaptation, which yields unusable weights.
Moreover, it was found in works presented in [40–42] that the optimal values of the learning
rate and momentum provide smooth behavior and speed up the convergence. The works
also claimed that overly low values of the learning rate and momentum slowed down the
converging process, while overly high values of the learning rate and momentum might
lead to network instability and training divergence.

The number of neurons in the hidden layer plays a decisive role in the network
performance, both for the gdm and lm training functions. For FFNN in particular, a small
number of hidden neurons will cause less of an adaption in the simulation modelling.
However, too big of a number of hidden neurons will cause a low ability of neural network
learning, which yields system memory errors [35,40]. There is no systematic method for
determining the structure (number of hidden neurons) of the network, mostly by the
trial-and-error method. To achieve an accurate neural network approximation, there is an
upper bound for the number of hidden neurons, as proposed by [43], which is given in
Equation (4):

Nα ≤ 2Nβ + 1, (4)

where Nα is the number of hidden neurons and Nβ is the number of inputs.
To avoid an over-fitting problem in the training data, the work in [44] proposed a

relationship between the number of samples of the training data and the number of hidden
neurons, given in Equation (5):

Nα ≤ Nθ

Nβ + 1
, (5)

where Nθ is the number of samples of the training data.
Finally, the number of epochs was selected. The number of epochs or training cycles is

important to determine network models. In process modelling, a small number of epochs
limits the ability of the network, while too many epochs can lead to an overtraining of the
network and increase the error [35,40,45]. To train the FFNN model using different training
functions (BR, LM, and GD), the maximum setting of the number of epochs is 1000 [38].

For a conventional-based FFNN, to search for optimal conditions, networks were
trained under a wide range of parameter settings based on the trial-and-error method.
The number of neurons in the hidden layer, the learning rate, the momentum, the number
of epochs, and the training function are considered in building an optimum network
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structure. The optimization was carried out by applying holdout validation and K-fold
cross validation on training the datasets. The training dataset was divided into two subsets
in order to train the network (Tlearning) and to validate the network (Tvalidation). Mean squared
error cross validation (MSECV) is used to estimate the training network. The selection of
corresponding FFNN parameters is based on the lowest MSECV for each parameter, which
is then used for the testing dataset to verify the reliability of the network models.

The following network parameters were chosen for FFNN optimization: the number
of neurons in the hidden layer, the learning rate, the momentum, the epoch number,
and the training function. The range of network parameters for FFNN training, both for
conventional (lm and gdm) models and the proposed (RSM) model, is shown in Table 2.

Table 2. The range of ANN training parameters for conventional and RSM models.

Symbol Method Conventional Proposed

Model FFNN-lm FFNN-gdm FFNN-RSM

Network Parameters Low (−1) High (+1)

A Number of neurons 1–30 1–30 1 31
B Learning rate 0.1–1 0.1–1 0.01 0.31
C Momentum 0.1–1 0.1–1 0.6 0.9
D Number of epochs 100–1000 100–1000 700 1000
E Training function trainlm traingdm trainlm traingdm

Number of repetitions 60 60 60

2.3.3. Proposed FFNN-RSM Training Method

This section describes the proposed RSM-based FFNN (FFNN-RSM) optimization
method. A complete description of the process behavior requires a quadratic or higher
order polynomial model. With the use of the least square method, the quadratic models
are established to describe the dynamic behavior of the process. The quadratic type of
model is usually sufficient for industrial applications and, hence, is used in this work for
the modelling of the permeate flux for the POME industry. For k factors, the following
quadratic model is utilized and given in Equation (6).

Y =β0 + ∑k
i=1 βixi + ∑k

i=1 βiixixi + ∑k−1
i=1 ∑k

j=i+1 βijxixj + εij, (6)

where Y is the predicted response or dependent variable, xi and xj are the independent
variables, and βi and β j are the constants. The term β0 is the intercept term, βi is the linear
term, βii and β jj are the squared terms, and βij is the interaction term between the variables.
The input is called a factor, and the output is known as a response.

In this case, there are five factors which consider four numerical factors (number
of neurons, learning rate, momentum, and number of epoch) and one categorical factor
(training function); therefore, k = 4 was set, which is involved for the numeric factor only.
The lowest and the highest levels of variables are coded as −1 and +1, respectively, and
are given in Table 2, including the axial star points of (−α and +α), where α is the distance
of the axial points from the center and makes the design rotatable. In this study, the
α value was fixed at 1 (face centered). The total number of experimental combinations
should be conducted based on the concept of central composite design (CCD) by applying
Equation (7).

2k + 2k + n0, (7)

where k is the number of independent variables (numerical factors) and n0 is the number
of experiments repeated at the center point. Then, 2k is stated as the factorial point, while
2k is stated as an axial point. In this case, n0 = 6 and k = 4. Since this study involves one
categoric factor with two levels (trainlm and traingdm), the number of experiments repeated
at the factorial point, axial point, and center point are doubled (24

trainlm = 16, 24
traingdm = 16;
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2ktrainlm = 8, 2ktraingdm = 8; n0 trainlm = 6, n0 traingdm = 6;). Therefore, the total number of
runs needed is 60.

A matrix of 60 experiments with four numerical factors and one categorical factor
was generated using the software package Design-Expert version 12.0. A total of 12 center
points were used to determine the experimental error and reproducibility of the data.
Table 3 shows the complete design matrix of the experiments performed and the obtained
results of the MSECV. The responses were used to develop an empirical model for the
permeate flux of POME. Analysis of variance (ANOVA) at a 5% level of significance, using
the Fisher F-test, was used in determining the experimental design, interpretations, and
analyses of the training data. An arithmetical method that sorts out the components of
a given variation in a set of data and provides a significance test is called the F-test. The
predicted response is transformed so that the distribution of the response variable is closer
to the normal distribution. The Box-Cox plot is applied to improve model fitting. The
transformations used are λ = −1, λ = 0, λ = 0.5, and λ = 1, which respectively represent
the inverse, natural log, square root, and no transformation functions [35].

Table 3. MSECV results obtained by various conditions of network parameters using CCD.

Run Space Type A: No. of
Neurons

B: Learning
Rate C: Momentum D: No. of

Epochs
E: Training
Function MSECV

1 Axial 16 0.16 0.75 1000 trainlm 0.0257

2 Factorial 31 0.31 0.6 1000 traingdm 0.9581

3 Axial 16 0.16 0.6 850 trainlm 0.0279

4 Axial 16 0.16 0.75 700 traingdm 0.1463

5 Factorial 31 0.01 0.6 1000 traingdm 0.1027

6 Center 16 0.16 0.75 850 trainlm 0.0246

7 Axial 16 0.16 0.9 850 trainlm 0.0250

8 Factorial 1 0.01 0.6 1000 trainlm 0.0310

9 Factorial 1 0.31 0.9 1000 traingdm 0.7342

10 Factorial 1 0.01 0.6 700 trainlm 0.0311

11 Center 16 0.16 0.75 850 trainlm 0.0243

12 Factorial 1 0.31 0.9 1000 trainlm 0.0309

13 Center 16 0.16 0.75 850 trainlm 0.0256

14 Factorial 31 0.31 0.6 1000 trainlm 0.0251

15 Axial 31 0.16 0.75 850 traingdm 0.7759

16 Center 16 0.16 0.75 850 traingdm 0.2568

17 Factorial 31 0.01 0.9 700 traingdm 0.9892

18 Factorial 31 0.01 0.9 1000 traingdm 0.9729

19 Factorial 1 0.31 0.6 1000 trainlm 0.0312

20 Center 16 0.16 0.75 850 traingdm 0.2548

21 Factorial 31 0.31 0.9 1000 trainlm 0.0238

22 Factorial 31 0.31 0.9 1000 traingdm 0.9859

23 Factorial 31 0.01 0.6 1000 trainlm 0.0250

24 Factorial 31 0.01 0.6 700 trainlm 0.0235

25 Factorial 31 0.31 0.6 700 traingdm 0.9744
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Table 3. Cont.

Run Space Type A: No. of
Neurons

B: Learning
Rate C: Momentum D: No. of

Epochs
E: Training
Function MSECV

26 Factorial 1 0.31 0.6 700 traingdm 0.0312

27 Factorial 1 0.01 0.9 700 traingdm 0.1039

28 Axial 16 0.01 0.75 850 traingdm 0.0721

29 Factorial 31 0.31 0.9 700 traingdm 0.9237

30 Center 16 0.16 0.75 850 trainlm 0.0264

31 Factorial 1 0.31 0.9 700 trainlm 0.0309

32 Factorial 1 0.31 0.6 1000 traingdm 0.0313

33 Center 16 0.16 0.75 850 traingdm 0.1818

34 Axial 16 0.01 0.75 850 trainlm 0.0243

35 Axial 16 0.31 0.75 850 traingdm 0.8620

36 Factorial 1 0.01 0.9 1000 trainlm 0.0314

37 Axial 16 0.31 0.75 850 trainlm 0.0256

38 Center 16 0.16 0.75 850 trainlm 0.0248

39 Factorial 1 0.01 0.9 700 trainlm 0.0309

40 Axial 31 0.16 0.75 850 trainlm 0.0264

41 Center 16 0.16 0.75 850 traingdm 0.1030

42 Factorial 31 0.31 0.9 700 trainlm 0.0261

43 Factorial 1 0.01 0.9 1000 traingdm 0.1664

44 Axial 16 0.16 0.9 850 traingdm 0.1913

45 Factorial 1 0.01 0.6 700 traingdm 0.0615

46 Axial 16 0.16 0.75 700 trainlm 0.0262

47 Axial 1 0.16 0.75 850 traingdm 0.1048

48 Axial 16 0.16 0.75 1000 traingdm 0.0863

49 Factorial 31 0.01 0.9 1000 trainlm 0.0252

50 Axial 1 0.16 0.75 850 trainlm 0.0311

51 Factorial 31 0.01 0.6 700 traingdm 0.1022

52 Factorial 31 0.31 0.6 700 trainlm 0.0261

53 Factorial 1 0.31 0.9 700 traingdm 0.2292

54 Center 16 0.16 0.75 850 traingdm 0.1480

55 Factorial 1 0.01 0.6 1000 traingdm 0.0412

56 Factorial 31 0.01 0.9 700 trainlm 0.0243

57 Factorial 1 0.31 0.6 700 trainlm 0.0312

58 Center 16 0.16 0.75 850 trainlm 0.0259

59 Center 16 0.16 0.75 850 traingdm 0.0266

60 Axial 16 0.16 0.6 850 traingdm 0.0306

The detailed methodology of the development of the proposed FFNN-RSM is depicted
in Figure 4.
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The proposed framework of FFNN-RSM can be described as the following steps:

1. Divide all datasets into training datasets (Ttraining) and testing datasets (Ttest);
2. Subdivide Ttraining into threefold: 2/3-fold data used to train the network (Tlearning)

and 1/3-fold data used to validate the network (Tvalidation);
3. Create DoE settings based on RSM;
4. Train different network parameters on Tlearning and evaluate its performance on Tvalidation;
5. Repeat step (4) for each fold and calculate the average MSECV; e.g., for no. of neu-

ron = 1, [(MSECVfold-1 + MSECVfold-2 + MSECVfold-3)/3] = average MSECVneuron-1;
6. Iteratively determine the network parameters by changing different network parame-

ters based on the DoE settings;
7. Analyze the DoE data using RSM and select the best neural network parameters;
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8. Retrain these network parameters on Ttraining;
9. Test for the generalization ability using Ttest;
10. Compare to determine if it meets the criteria. If not, return to step (1).

2.4. Performance Evaluation

The performance evaluation of the model development is measured using the correla-
tion coefficient ® and mean square error (MSE), as given in Equations (8) and (9):

R =
∑n

i=1(yi − y)
(
ŷi − ŷ

)√{
∑n

i=1(yi − y)2
}{

∑n
i=1
(
ŷi − ŷ

)2
} , (8)

MSE =
1
N

n

∑
i=1

(ŷi − yi)
2, (9)

where yi, ŷi, ŷi, and ŷ denote the i-th independent variable, i-th dependent variable, the
mean of dependent variables, and the mean of dependent variables, respectively. The
independent and dependent variables are measured by the permeate flux and predicted
permeate flux of POME, respectively. Thus, the correlation coefficient was used to assess
the strength of the relationship between the inputs (permeate pump and TMP) and the
permeate flux output. The MSE value near zero (0) and the R value near one (1) indicate
the high accuracy of the prediction model.

3. Results and Discussions

This section is divided into three parts. In the first part, the results of conventional-
based FFNN training in selecting neural network parameters are described. The RSM-
based FFNN training (FFNN-RSM) results are presented in the second part. All data
were normalized. Holdout validation and K-fold cross validation were used to ensure
the robustness of the network parameters and to avoid overtraining. Finally, the model
validations for permeate flux using optimal parameters from both techniques (conventional
FFNN and FFNN-RSM) are presented and discussed. The accuracy of the FFNN models
was measured using training and testing regressions.

3.1. Conventional-Based FFNN Training

This section discusses the selection of the optimum number of training parameters
for the conventional FFNN. The training parameters include the number of neurons, the
learning rate, the momentum coefficient, and the number of epochs. Figure 5 shows the
MSECV with a varying number of neurons for FFNN-lm and FFNN-gdm. The determina-
tion of the optimum number of network parameters is based on the lowest MSECV value.
The number of neurons determines the number of connections between inputs and outputs
and may vary depending on specific case studies. If too many neurons are used, the FFNN
becomes over-trained, causing it to memorize the training data, which affects finding the
best prediction model [30,35,45,46]. In this case, the number of neurons is varied from 1
to 30, which required 30 runs. It can be seen that the optimum number of neurons was
obtained at 29 and 8 for FFNN-lm and FFNN-gdm, respectively, with the lowest MSECV
values of 0.0238 and 0.0533 for FFNN-lm and FFNN-gdm, respectively. The MSECV values
presented by FFNN-gdm tend to fluctuate as the number of neurons varies compared with
the FFNN-lm, which is more consistent, as shown in Figure 5.
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Figure 5. MSECV with a varying number of neurons for (a) FFNN-lm and (b) FFNN-gdm.

Figures 6 and 7 present the MSECV with varying values of learning rate and momen-
tum, respectively. In this case, both the learning rate and momentum were trained with
values set at 0.1 to 1, with 10 runs required for each parameter. As depicted in Figure 6a,
it was found that the learning rates of 0.3 (MSECV = 0.0238), 0.5 (MSECV = 0.0239), and
0.7 (MSECV = 0.0232) would probably produce good results for FFNN-lm. However,
the learning rates for conventional-based FFNN were obtained at 0.7 and 0.2 for lm and
gdm, respectively, which gave the lowest MSECV of 0.0232 and 0.3403 for lm and gdm,
respectively.
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Figure 7 shows the optimum values of the momentum coefficient for FFNN-lm and
FFNN-gdm. Both lm and gdm provide same value of momentum at 0.5. At this momentum
value, the lowest MSECVs of 0.0243 and 0.0297 were obtained for lm and gdm, respectively.
It can be observed in Figure 7b that the MSECV values of FFNN-gdm are slightly consistent
at minimum values for the number of momentums at 0.1 until 0.7, with MSECVs of 0.0313,
0.0334, 0.0308, 0.0351, 0.0297, 0.0334, and 0.0303, respectively. Then, the increase in the
momentum values for FFNN-gdm showed a sudden increment in MSECV to almost 1.

Figure 8 shows the MSECV with varying numbers of epochs for FFNN-lm and FFNN-
gdm. In this case, the number of epochs is varied from 100 to 1000, and 10 runs are required.
As illustrated in Figure 8b, it was found that the number of epochs that may produce a good
outcome is 600 and 1000 with MSECVs of 0.0310 and 0.0302, respectively. Therefore, the
optimum values of each epoch are obtained at 300 for lm, and 1000 for gdm was selected,
which gave the lowest MSECV values of 0.0234 and 0.0302, respectively.
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Table 6 summarizes the optimal values of the training parameters obtained for the
conventional-based FFNN (FFNN-lm and FFNN-gdm).

3.2. RSM-Based FFNN Training

This section presents the optimum number of training parameters obtained using
the RSM-based FFNN training. In this case, the proposed FFNN-RSM method utilized a
face-central composite design (CCD) of four numerical factors (number of neurons, learning
rate, momentum, and number of epochs) and one categorical factor (training function), and
a two-level (trainlm and traingdm) design matrix was selected. The experimental design
matrix is shown in Table 3. There are 60 sets of conditions (run) which consist of 32 factorial
points, 16 axial points, and 12 center points. The different conditions of the neural network
parameters were designed and trained to model the best MSE performance on the Tvalidation
dataset using the Design-Expert software.

In this work, the quadratic model was chosen to yield the correlation between the
neural network effective factors (input) and the response of MSECV (output). Using the
Box-Cox method, the MSECV response is transformed to a natural log (ln(MSECV)), with
α equal to 1. The transformation will make the distribution of the response closer to the
normal distribution and improve the fit of the model to the data [35]. The quadratic model
in terms of coded factors for ln(MSECV) of the FFNN-RSM model is given in Equation (10):

ln(MSECV) = −2.840 + 0.3902 A + 0.2335 B + 0.3684 C + 0.0196 D + 0.9651 E + 0.1013 AB
−0.0805 AC− 0.0390 AD + 0.4983 AE − 0.0448 BC + 0.0286 BD + 0.2241 BE
+0.0636 CD + 0.3759 CE + 0.0218 DE + 0.4167 A2 + 0.2801 B2 − 0.2819 C2

−0.0985 D2

(10)

where the A, B, C, D, and E parameters are the code values of the number of neurons, the
learning rate, the momentum, the number of epochs, and the training function, respectively,
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as presented in Table 3. Equation (10) is used for predictions of the response at a given
level of each factor. The coded equation is useful for identifying the relative impact of the
factors by comparing the factor coefficients. Negative and positive values of the coefficients
represent antagonistic and synergistic effects of each model term, respectively. The positive
value causes an increase in the response, while the negative value represents a decrease in
the response. The values of the coefficients are relatively low, due to the low values of the
MSECVs responses of the system [47].

The accuracy of the RSM model is determined using ANOVA. The ANOVA contains
the set of evaluation terms such as the coefficient of determination (R2), adjusted R2,
predicted R2, adequate precision, F-value, and p-value, which are used to explain the
significance of the model. Table 4 illustrates the ANOVA for the response surface of the
quadratic model. The statistical test factor, F-value, was used to evaluate the significance
of the model at the 95% confidence level [30]. The p-value serves as a tool to ensure the
importance of each coefficient at a specified level of significance. Generally, a p-value of
less than 0.050 showed the most significance and contributes largely toward the response.
The smaller the p-value, the more significant the corresponding coefficient. Other values
that are greater than 0.050 are less significant.

Table 4. Analysis of variance (ANOVA) for the response surface of the quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 87.29 19 4.59 15.35 <0.0001 significant
A: No. of neurons 5.48 1 5.48 18.32 0.0001 significant
B: Learning rate 1.96 1 1.96 6.56 0.0143 significant
C: Momentum 4.89 1 4.89 16.33 0.0002 significant

D: No. of epoch 0.0139 1 0.0139 0.0464 0.8305
E: TrainFunc 55.88 1 55.88 186.76 <0.0001 significant

AB 0.3281 1 0.3281 1.10 0.3013
AC 0.2072 1 0.2072 0.6924 0.4103
AD 0.0486 1 0.0486 0.1624 0.6891
AE 8.94 1 8.94 29.88 <0.0001 significant
BC 0.0643 1 0.0643 0.2149 0.6454
BD 0.0261 1 0.0261 0.0874 0.7691
BE 1.81 1 1.81 6.04 0.0184 significant
CD 0.1292 1 0.1292 0.4319 0.5148
CE 5.09 1 5.09 17.00 0.0002 significant
DE 0.0172 1 0.0172 0.0574 0.8120
A2 0.8998 1 0.8998 3.01 0.0906
B2 0.4066 1 0.4066 1.36 0.2506
C2 0.4117 1 0.4117 1.38 0.2477
D2 0.0503 1 0.0503 0.1681 0.6840

Residual 11.97 40 0.2992
Lack of Fit 8.35 30 0.2782 0.7680 0.7262 not significant
Pure Error 3.62 10 0.3622 15.35 <0.0001
Cor Total 99.26 59 4.59 18.32 0.0001

R2 0.8794
Adjusted R2 0.8221
Predicted R2 0.7183

Adeq. Precision 14.8721

Table 4 presents the ANOVA for the response surface of the quadratic model. The
highest F-value (15.35) had a p-value lower than 0.0001, confirming that the model is
statistically significant. The lack-of-fit test for the model showed insignificance with an
F-value of 0.7680 and a p-value of 0.7262. This indicates that the model adequately fitted
the experimental data. The value of R2 of 0.8794 showed a good correlation between the
predicted and actual values of the responses. The value of predicted R2 of 0.7183 is in
reasonable agreement with the adjusted R2 of 0.8221, also indicating the significance of
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the model [33]. The closer the R2 value is to unity, the better the model will be, as it will
yield predicted values closer to the actual values. The adequate precision measures the
signal-to-noise ratio, and in this analysis, (14.8721) indicates an adequate signal. A ratio
greater than 4 is desirable. Thus, the model can be used to navigate the design space [30].

The p-values less than 0.050 (A, B, C, E, AE, BE, CE) indicate significant effects of
the prediction process. The statistical analysis showed that the first order effect or linear
term of training functions (E) is the most significant term in the ln(MSECV) response,
followed by the number of neurons, the momentum, and the learning rate. The number of
epochs depicted a less significant effect on the response, with an F-value = 0.0464 and a
p-value = 0.8305. In addition, the p-values of AB, AC, AD, BC, BD, CD, DE, A2, B2, C2, and
D2 are greater than 0.050 and, hence, less important in the ANN training process.

Figure 9 shows the plot of response (ln(MSECV)) and the interaction factors (number
of neurons, learning rate, momentum, and number of epoch) obtained from the model
graph of the Design-Expert version 12.0 software. Figure 9a shows the interaction plot
of the number of neurons versus the ln(MSECV) of the training function with the other
interaction factors, which are constant at their midpoints. In Figure 9a, the different shapes
of curves depend on the type of training function (E). It can be observed that, with an
increased number of neurons (from 1 to 30) and with traingdm as a training function, the
ln(MSECV) increases up to 0.7. This indicates that too many hidden neurons yield more
flexibility for the weight adjustment and, hence, a better learning process, particularly with
noise present in the system.
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neurons, (b) learning rate, (c) momentum, and (d) number of epochs. trainlm—red; traingdm—green.
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Almost similar trends can be seen for an increased learning rate and momentum.
However, by increasing the number of epochs (i.e., from 700 to 1000), it showed less of an
effect on the ln(MSECV) response from the curves depicted in Figure 9d. These findings
confirmed the statistical results obtained in Table 4—the number of neurons, the learning
rate, and the momentum were significant variables for ln(MSECV), while the epoch number
is not trivial. There is very little change or interaction shown by ln(MSECV) for FFNN-lm
compared with ln(MSECV) for FFNN-gdm. This is because the MSECV value produced by
FFNN-lm is too small, since Levenberg–Marquart (lm) has advantages such as the fastest
training function and a good function fitting (non-linear regression) with a lower mean
square error (MSE).

The comparisons of the actual and predicted ln(MSECV) responses based on 60 runs of
various conditions of the network parameters using CCD are given in Table 5. From Table 5,
the overall actual values of ln(MSECV) matched with the predicted values of ln(MSECV).
This indicates that the quadratic model in Equation (10) can be established to identify the
relationship between the MSECV and the network parameters.

Table 5. Comparisons of the actual and predicted ln(MSECV) by various conditions of network parameters.

Run Space
Type

A: No. of
Neurons

B:
Learning

Rate

C:
Momentum

D: No. of
Epochs

E:
Training
Function

MSECV Actual
ln(MSECV)

Predicted
ln(MSECV)

1 Axial 16 0.16 0.75 1000 trainlm 0.0257 −3.6600 −3.9100

2 Factorial 31 0.31 0.6 1000 traingdm 0.9581 −0.0428 −0.7624

3 Axial 16 0.16 0.6 850 trainlm 0.0279 −3.5800 −4.0800

4 Axial 16 0.16 0.75 700 traingdm 0.1463 −1.9200 −2.0100

5 Factorial 31 0.01 0.6 1000 traingdm 0.1027 −2.2800 −2.0300

6 Center 16 0.16 0.75 850 trainlm 0.0246 −3.7100 −3.8000

7 Axial 16 0.16 0.9 850 trainlm 0.0250 −3.6900 −4.0900

8 Factorial 1 0.01 0.6 1000 trainlm 0.0310 −3.4700 −3.4600

9 Factorial 1 0.31 0.9 1000 traingdm 0.7342 −0.3090 −1.1400

10 Factorial 1 0.01 0.6 700 trainlm 0.0311 −3.4700 −3.3500

11 Center 16 0.16 0.75 850 trainlm 0.0243 −3.7200 −3.8000

12 Factorial 1 0.31 0.9 1000 trainlm 0.0309 −3.4800 −3.3200

13 Center 16 0.16 0.75 850 trainlm 0.0256 −3.6700 −3.8000

14 Factorial 31 0.31 0.6 1000 trainlm 0.0251 −3.6800 −3.4300

15 Axial 31 0.16 0.75 850 traingdm 0.7759 −0.2537 −0.5696

16 Center 16 0.16 0.75 850 traingdm 0.2568 −1.3600 −1.8700

17 Factorial 31 0.01 0.9 700 traingdm 0.9892 −0.0109 −0.5575

18 Factorial 31 0.01 0.9 1000 traingdm 0.9729 −0.0275 −0.4826

19 Factorial 1 0.31 0.6 1000 trainlm 0.0312 −3.4700 −3.5000

20 Center 16 0.16 0.75 850 traingdm 0.2548 −1.3700 −1.8700

21 Factorial 31 0.31 0.9 1000 trainlm 0.0238 −3.7400 −3.5700

22 Factorial 31 0.31 0.9 1000 traingdm 0.9859 −0.0142 0.6025

23 Factorial 31 0.01 0.6 1000 trainlm 0.0250 −3.6900 −3.8000

24 Factorial 31 0.01 0.6 700 trainlm 0.0235 −3.7500 −3.5300

25 Factorial 31 0.31 0.6 700 traingdm 0.9744 −0.0259 −0.6975
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Table 5. Cont.

Run Space
Type

A: No. of
Neurons

B:
Learning

Rate

C:
Momentum

D: No. of
Epochs

E:
Training
Function

MSECV Actual
ln(MSECV)

Predicted
ln(MSECV)

26 Factorial 1 0.31 0.6 700 traingdm 0.0312 −3.4700 −2.9200

27 Factorial 1 0.01 0.9 700 traingdm 0.1039 −2.2600 −2.0500

28 Axial 16 0.01 0.75 850 traingdm 0.0721 −2.6300 −2.0500

29 Factorial 31 0.31 0.9 700 traingdm 0.9237 −0.0794 0.4133

30 Center 16 0.16 0.75 850 trainlm 0.0264 −3.6300 −3.8000

31 Factorial 1 0.31 0.9 700 trainlm 0.0309 −3.4800 −3.5700

32 Factorial 1 0.31 0.6 1000 traingdm 0.0313 −3.4600 −2.8300

33 Center 16 0.16 0.75 850 traingdm 0.1818 −1.7000 −1.8700

34 Axial 16 0.01 0.75 850 trainlm 0.0243 −3.7200 −3.5300

35 Axial 16 0.31 0.75 850 traingdm 0.8620 −0.1485 −1.1400

36 Factorial 1 0.01 0.9 1000 trainlm 0.0314 −3.4600 −3.1000

37 Axial 16 0.31 0.75 850 trainlm 0.0256 −3.6700 −3.5200

38 Center 16 0.16 0.75 850 trainlm 0.0248 −3.7000 −3.8000

39 Factorial 1 0.01 0.9 700 trainlm 0.0309 −3.4800 −3.2400

40 Axial 31 0.16 0.75 850 trainlm 0.0264 −3.6300 −3.5000

41 Center 16 0.16 0.75 850 traingdm 0.1030 −2.2700 −1.8700

42 Factorial 31 0.31 0.9 700 trainlm 0.0261 −3.6500 −3.6700

43 Factorial 1 0.01 0.9 1000 traingdm 0.1664 −1.7900 −1.8200

44 Axial 16 0.16 0.9 850 traingdm 0.1913 −1.6500 −1.4100

45 Factorial 1 0.01 0.6 700 traingdm 0.0615 −2.7900 −3.6600

46 Axial 16 0.16 0.75 700 trainlm 0.0262 −3.6400 −3.9000

47 Axial 1 0.16 0.75 850 traingdm 0.1048 −2.2600 −2.3500

48 Axial 16 0.16 0.75 1000 traingdm 0.0863 −2.4500 −1.9300

49 Factorial 31 0.01 0.9 1000 trainlm 0.0252 −3.6800 −3.7600

50 Axial 1 0.16 0.75 850 trainlm 0.0311 −3.4700 −3.2800

51 Factorial 31 0.01 0.6 700 traingdm 0.1022 −2.2800 −1.8500

52 Factorial 31 0.31 0.6 700 trainlm 0.0261 −3.6500 −3.2800

53 Factorial 1 0.31 0.9 700 traingdm 0.2292 −1.4700 −1.4800

54 Center 16 0.16 0.75 850 traingdm 0.1480 −1.9100 −1.8700

55 Factorial 1 0.01 0.6 1000 traingdm 0.0412 −3.1900 −3.6800

56 Factorial 31 0.01 0.9 700 trainlm 0.0243 −3.7200 −3.7400

57 Factorial 1 0.31 0.6 700 trainlm 0.0312 −3.4700 −3.5000

58 Center 16 0.16 0.75 850 trainlm 0.0259 −3.6500 −3.8000

59 Center 16 0.16 0.75 850 traingdm 0.0266 −3.6300 −1.8700

60 Axial 16 0.16 0.6 850 traingdm 0.0306 −3.4900 −2.9000

Figure 10a,b show the perturbation plots for the lm and gdm training functions,
respectively. The perturbation graph is required to see how the response changes to the
changes of its factor from the reference point, with other factors held at constant reference
values. In this case, the reference points default at the middle of the design space (the coded
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zero level of each factor). Figure 10a presents good interaction variables of the ln(MSECV)
response with FFNN-lm. At the center point, factors A (number of neurons), B (learning
rate), and C (momentum) produce a relatively higher effect for changes in the reference
point, while only a small effect is produced by factor D (number of epoch).
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Figure 10. Perturbation plot for training functions, (a) trainlm and (b) traingdm.

Notice that the optimum values of ln(MSECV) for the network parameters (A, B, C,
and D) can be found at 0.0000 (coded value), as shown in Figure 10a for the lm training
function and in Figure 10b for the gdm training function. In this case, the optimum values
for A, B, C, and D are, respectively, 16, 0.16, 0.75, and 850, as presented in Table 6. It
can be observed that both Figures 9 and 10 present similar plots of ln(MSECV), but the
former plot represents the interaction graph which uses the actual value of the variables,
while the latter represents the perturbation graph which uses coded values. Both graphs
describe the relationship of the network parameters. As shown in Table 6, the best network
parameters obtained from the conventional and proposed methods are presented for all
network parameters. Therefore, the optimum values suggested by RSM were as follows:
number of neurons = 16, learning rate = 0.16, momentum = 0.75, and number of epochs
= 850, and trainlm has been selected as a training function. The best network parameters
for FFNN-lm had minimum MSECVs when the number of neurons, the learning rate, the
momentum, the number of epoch and the training function were 29, 0.7, 0.5, 300, and
trainlm, respectively. Furthermore, the minimum MSECV was obtained by employing
the following optimum condition for the FFNN-gdm network parameters: number of
neurons = 8, learning rate = 0.2, momentum = 0.5, number of epochs = 1000, and training
function = traingdm. These optimum values were applied for predicting the permeate flux
of POME.

Table 6. The best network parameters for the FFNN-lm, FFNN-gdm, and FFNN-RSM models.

Method Conventional Proposed

Model FFNN-lm FFNN-gdm FFNN-RSM

Network Parameters Optimal Value MSECV Optimal Value MSECV Optimal Value ln(MSECV)

A: Number of neurons 29 0.0238 8 0.0533 16 0.0264
B: Learning rate 0.7 0.0232 0.2 0.3403 0.16 0.0264
C: Momentum 0.5 0.0243 0.5 0.0297 0.75 0.0264
D: Number of epochs 300 0.0234 1000 0.0302 850 0.0264
E: Training function trainlm traingdm trainlm
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It may be concluded that too few hidden neurons limit the ability of the FFNN-lm
to model the process well. Too many hidden neurons cause over-fitting and increase the
computation time. The learning rate determines the time needed to find the minimum in
the weight space. Too small of a learning rate leads to smaller steps being taken in the
weight space, a slow learning process, and the network being less capable of escaping from
the local minima in the error surface. Too high of a learning rate leads to an increased
magnitude of the oscillations for the mean square error and a resulting slow convergence
to the lower error state. Moreover, if the momentum is too small, then it will lengthen the
learning process.

3.3. Model Validation

Figure 11a shows the training results for the permeate flux outputs for the FFNN-lm,
FFNN-gdm, and FFNN-RSM models. These models are plotted based on the best ANN
training parameters. From Figure 11a, it can be observed that the predicted datasets for
all ANN models have similar trends to the actual or measured datasets. The permeate
flux models for FFNN-lm have a slightly different shape with FFNN-gdm, but it is almost
similar to FFNN-RSM. This is because FFNN-RSM also uses the trainlm training function
as a model setting.
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Figure 11. (a) Permeate flux for FFNN−measured, FFNN−lm, FFNN−gdm, and FFNN−RSM
models. Comparison of the measured and predicted permeate flux of POME between (b) FFNN−lm,
(c) FFNN−gdm, and (d) FFNN−RSM for the training dataset.
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The dotted lines in Figure 11b–d represent the (perfect result—outputs = targets), and
the solid line represents the best fit linear regression between the target and the output
for FFNN-lm, FFNN-gdm, and FFNN-RSM using training data, respectively. Moreover,
the FFNN model trained with trainlm using the conventional method (FFNN-lm) showed
the highest accuracy with the correlation coefficient, with the R and MSE at 0.9888 and
0.0223, respectively, followed by FFNN-RSM (0.9881 and 0.0237) and FFNN-gdm, which
were 0.9851 and 0.0296, respectively (refer to Figure 11b–d). In terms of accuracy, FFNN-lm
and FFNN-RSM are comparable.

The training model was then validated using the testing dataset, and good agreement
with the actual dataset was achieved, as shown in Figure 12a–d. Figure 12a shows the plot
of FFNN-lm, FFNN-gdm, and FFNN-RSM permeate flux models for the SMBR filtration
system during testing datasets. From Figure 12b–d, it can be seen that all the models
demonstrated good prediction, with a slightly higher performance of accuracy for FFNN-
lm, followed by FFNN-RSM and FFNN-gdm. The FFNN-lm model resulted in 0.9873 and
0.0253 for R and MSE, respectively. The R and MSE for FFNN-RSM are, respectively, 0.9866
and 0.0265, while the performance of the FFNN-gdm testing model was 0.9847 and 0.0303
for the R and FFNN-RSM models during the training and testing datasets.
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From Table 7, it was found that all FFNN models produced comparable results for
both the training and testing accuracy performance. Nevertheless, in terms of the amount
of repetition and training time of the proposed method and the conventional method,
the proposed method (FFNN-RSM) only required 60 runs in 233 s (00:03:53) to determine
the optimal value of ANN training parameters for the FFNN model. The conventional
method required 60 runs for each model (a total of 120 runs), with a total training time
of 543 s for both models, which is 151 s (00:02:31.02) for FFNN-lm and 392 s (00:09:03.07)
for FFNN-gdm. It is proven that the RSM technique depicted a high performance and the
fastest model training technique when compared with the conventional method.

Table 7. Overall performance accuracy of the FFNN-lm, FFNN-gdm, and FFNN-RSM models for the
SMBR filtration system.

Method Conventional Proposed

Model FFNN-lm FFNN-gdm FFNN-RSM

Parameters MSE R MSE R MSE R

Training 0.0223 0.9888 0.0296 0.9851 0.0237 0.9881
Testing 0.0253 0.9873 0.0303 0.9847 0.0265 0.9866
Training time (s) 151.02 392.68 233.22
No. of runs or repetitions 60 60 60
Total training time (s) 543.7 233.22
Total no. of runs or
repetitions 120 60

Despite the well-known advantage of the neural network in predicting larger datasets,
these results show that the combined FFNN-RSM model can predict well and provide a
comparable result in relation to the conventional method in this case. The FFNN-RSM
shows a robust generalization ability with a small generalization error. With a smaller
number of repetitions, RSM is also effective in avoiding monotonous tasks, where several
different network parameters must be constructed, trained, and tested. Moreover, RSM has
an ability to analyze the significant parameters and interaction effects of the parameters
that affect the output response, which is the MSECV of the model. Hence, RSM is observed
as satisfying the requirement for the optimization of ANN training parameters in order to
obtain a good prediction model.

4. Conclusions

The FFNN model has been successfully developed for the permeate flux of POME
during the submerged membrane bioreactor (SMBR) filtration process. The combined
FFNN-RSM model has been developed to determine the network parameters, and it has
been compared with conventional trial-and-error models (FFNN-lm and FFNN-gdm). The
model validation results showed that good validity of the training and testing models
was obtained for all models. The simulation results showed the comparable performance
accuracy of the FFNN-RSM model in relation to both conventional FFNN models. The opti-
mization of the ANN training parameters for the FFNN-RSM models shows an improved
training time and number of repetitions—by about 57% and 50%, respectively—compared
to the conventional FFNN model. The benefit of RSM is due to the application of the design
of experiment (DoE), which requires less repetition of the training process but can provide
a huge sum of information. In this work, the RSM successfully determines the best network
parameters for the FFNN model. Moreover, it learned the significance and the relationship
between the ANN training parameters and the MSECV.

The FFNN models (FFNN-lm, FFNN-gdm, and FFNN-RSM) demonstrated good and
comparable prediction models, with a slightly higher performance of accuracy for FFNN-lm
(0.9873), followed by FFNN-RSM (0.9866) and FFNN-gdm (0.9847). However, FFNN-RSM
only required 60 runs in 233 s to determine the optimal value of ANN training parameters.
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Meanwhile, the conventional method required 60 runs for each model (a total of 120 runs),
with a total training time of 543 s for both models, which is 151 s for FFNN-lm and 392 s for
FFNN-gdm. The FFNN-RSM technique showed an improvement over the conventional
FFNN model in terms of the number of repetitions, the training time, and the estimation
capabilities. This significant improvement can be later used in control system development
to improve membrane operation.
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Abbreviations
List of abbreviations:

ANN artificial neural network
ANOVA analysis of variance
BOD biochemical oxygen demand
BR Bayesian regulation
CCD central composite design
DE differential evaluation
DoE design of experiment
FFNN feed-forward neural network
FFNN-gdm conventional gradient descent with momentum-based FFNN
FFNN-lm conventional Levenberg–Marquardt-based FFNN
FFNN-RSM proposed RSM-based FFNN
GA genetic algorithm
GD gradient descent
gdm gradient descent with momentum
HP host power
kDa kilo Daltons
L liter
L m−2 h−1 liter per meter square hour
L min−1 liter per minute
lm Levenberg–Marquardt
ln(MSECV) natural log mean square error cross validation
mbar millibar
mg L−1 milligram per liter
MSE mean square error
MSECV mean square error cross validation
N/A not available
NI USB national instruments universal serial bus
OVAT one-variable-at-time
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PES polyethersulfone
POME palm oil mill effluent
PSO particle swarm optimization
purelin linear function
R correlation coefficient
R2 coefficient of determination
RSM response surface methodology
SLPM standard liter per minute
SMBR submerged membrane bioreactor
tansig hyperbolic tangent sigmoid
TMP transmembrane pressure
traingdm gradient descent with momentum training function
trainlm Levenberg–Marquardt training function
Volt voltage
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