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INTRODUCTION

Primary membranous nephropathy (MN) is one of the most 
common causes of primary nephrotic syndrome in adults and 

is associated with progression to kidney failure in approxi-
mately one third of patients.1 Although kidney transplanta-
tion is the preferred treatment modality in kidney failure, 

Kidney Transplantation

Background. Recurrent membranous nephropathy (MN) posttransplantation affects 35% to 50% of kidney transplant 
recipients (KTRs) and accounts for 50% allograft loss 5 y after diagnosis. Predictive factors for recurrent MN may include HLA-D 
risk alleles, but other factors have not been explored with certainty. Methods. The Australian and New Zealand Dialysis and 
Transplant registry was used to develop 3 prediction models for recurrent MN (Group Least Absolute Shrinkage and Selection 
Operator [LASSO], penalized Cox regression, and random forest), which were tuned using tenfold cross-validation in a deriva-
tion cohort with complete HLA data. KTRs with MN but incomplete HLA data formed the validation cohort. Model performance 
was evaluated using area under the receiver operating characteristic curve (AUC-ROC). Results. One hundred ninety-nine 
KTRs with MN were included, and 25 (13%) had recurrent MN (median follow-up 5.9 y). The AUC-ROCs for Group LASSO, 
penalized Cox regression, and random forest models were 0.85 (95% confidence interval, 0.76-0.94), 0.91 (0.85-0.96), and 
0.62 (0.57-0.69), respectively, in the derivation cohort, with moderate agreement in selected variables between the models 
(55%-70%). In their validation cohorts, the AUC-ROCs for Group LASSO and penalized Cox regression were 0.60 (0.49-0.70) 
and 0.73 (0.59-0.86), respectively. Variables of importance chosen by all models included recipient HLA-A2, donor HLA-DR12, 
donor-recipient HLA-B65, and HLA-DR12 match. Conclusions. A penalized Cox regression performed reasonably for 
predicting recurrent MN and was superior to Group LASSO and random forest models. These models highlighted the impor-
tance of donor-recipient HLA characteristics to recurrent MN, although validation in larger datasets is required.

(Transplantation Direct 2022;8: e1357; doi: 10.1097/TXD.0000000000001357).
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recurrent MN occurs in 35% to 50% of kidney allografts 
and is associated with subsequent graft loss in half of these 
patients.2-4 Autoantibodies against the podocyte antigen 
phospholipase-A2 receptor (PLA2R) underpins 70% of pri-
mary MN, and in 2 small case series, detectable anti-PLA2R 
antibodies at time of kidney transplantation were associ-
ated with recurrent MN with a positive predictive value of 
57% to 83% and negative predictive value of 42% to 60%.5,6

Genome-wide association studies have also revealed the 
importance of the immune system in the pathogenesis of MN, 
identifying risk alleles associated with primary MN in the 
general population: HLA-DQA1*0501 (DQ2 by serology) in 
Europeans, DRB1*1501 (DR15 by serology) in East Asians, and 
HLA-DRB1*0301 (DR17 by serology) in both ethnicities.7,8 In 
kidney transplant recipients with MN, a multicenter case series 
of 93 recipients (55 with recurrent MN) found an association 
with recipient HLA-A3 but not HLA-DR or HLA-DQ sero-
types.9 Targeted PLA2R1 and HLA-D loci sequencing in 145 
kidney transplant recipients with primary MN (54 with recur-
rent MN) found an association with 2 noncoding HLA-D single 
nucleotide polymorphisms (SNPs) (rs9271550 and rs9271705) 
when present on the donor but not the recipient.10 Prediction 
models for recurrent MN were improved using a genetic risk 
score built using these risk SNPs at the HLA-D locus and 
PLA2R1 locus in addition to clinical variables (area under 
the curve [AUC] 0.81 compared with AUC 0.71 with clinical 
variables alone).10 These studies, however, are largely focused 
on Caucasian populations, and next-generation sequencing of 
HLA-D and PLA2R1 loci are not routinely available to assist in 
the prediction of recurrent MN after kidney transplantation. In 
this study, we aimed to develop prediction models for recurrent 
MN in a national cohort of kidney transplant recipients using 
routinely collected clinical data including donor-recipient HLA 
serotypes and HLA mismatch characteristics.

MATERIALS AND METHODS

Study Population
This study was reported in adherence to the Transparent 

Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis statement.11 Ethics approval was 
obtained from the Sydney Children’s Hospitals Network 
Human Research Ethics Committee (HREC/ETH00021). We 
performed a cohort study in kidney transplant recipients with 
MN as the primary kidney disease from the Australian and 
New Zealand Dialysis and Transplant (ANZDATA) registry 
between 1963 and 2020. Indications for kidney allograft 
biopsy were determined by each individual transplant unit and 
were not standardized across the cohort. Recurrent MN was 
defined as biopsy-proven MN posttransplantation and non-
recurrent MN was defined as the absence of biopsy-proven 
MN posttransplantation because data on proteinuria and 
anti-PLA2R antibody titers were not available in ANZDATA. 
Because of the association between HLA and MN, donor and 
recipient pairs without complete HLA serotyping for HLA-
A/B/DR/DQ were excluded from the derivation cohort used 
for building the prediction models. Although imputation 
based on HLA serological typing is potentially feasible using 
the Allele Frequencies Net Database,12 Haplostats,13,14 and the 
IMGT/HLA Database,15 these are unlikely to be as accurate 
as using computational analysis with modern next-generation 
sequencing techniques.16-19 For recipients who had recurrent 

MN in >1 kidney transplant, only the first episode of recur-
rence was included.

Data Collection
Biopsy-proven recurrent MN was the outcome of interest. 

Covariates of interest included recipient characteristics (age, 
ethnicity, weight, dialysis vintage, blood group, and comor-
bidities), donor characteristics (age and blood group), and 
transplant characteristics (HLA-A/B/DR/DQ serotypes from 
donor and recipient pairs, HLA-matched serotypes from 
donor and recipient pairs, total HLA mismatch, donor type, 
regraft status, maximum pretransplant panel reactive anti-
body, biopsy-proven rejection, induction immunosuppression 
regime, maintenance immunosuppression regime upon trans-
plantation, and transplant era based on decade of transplanta-
tion). We also assessed HLA-matched serotypes from donor 
and recipient pairs in the same model because of an associa-
tion between zero HLA mismatch and recurrent glomerulone-
phritis after kidney transplantation.20,21

Statistical Analysis
In the derivation cohort, Group Least Absolute Shrinkage 

and Selection Operator (LASSO) regression, a form of penal-
ized logistic regression, was performed for variable selection 
using the R package “grpreg.” In a simple regression, the 
model may put considerable weighting on certain variables 
that are deemed to be important, resulting in overfitting. 
In contrast, LASSO regression performs L1 regularization, 
where a penalization parameter (λ) is multiplied to the sum 
of the absolute values of the regression coefficients, imposing 
a penalty on the size of regression coefficients and shrinking 
some coefficients to zero during model building. As a result, 
regularization incorporates both model fitting and variable 
selection simultaneously, which is useful in high-dimensional 
datasets.22,23 Multinomial variables (ethnicity, recipient and 
donor blood group, and smoking status) and ordinal variables 
(total HLA mismatch and HLA-A/B/DR/DQ loci mismatch) 
were grouped together. Group LASSO was chosen over ridge 
regression because LASSO performs variable selection and 
yields a sparse model by shrinking coefficient estimates of 
some variables to zero. In comparison, ridge regression per-
forms L2 regularization, which also shrinks some coefficient 
estimates but not to zero and therefore does not eliminate vari-
ables. Group LASSO was chosen over stepwise logistic regres-
sion, which would be prone to false-positive variable selection 
because of multiple testing in a high-dimensional dataset. 
Furthermore, LASSO handles sparse events well and there-
fore is suitable for building prediction models for rare events 
such as recurrent MN.24,25 The λ that minimized the bino-
mial deviance was chosen by tenfold cross-validation, which 
involved dividing our dataset into 10 subsets (9 for training 
and 1 for validation). The error rates were then averaged 
across 10 trials to obtain the total efficiency of the modeling. 
Multiple imputation for missing data was performed using 
the R package “mice” before variable selection. We generated 
100 imputed datasets in which cross-validated Group LASSO 
was performed. Model performance was assessed using the 
mean area under the receiver operating characteristic curve 
(AUC-ROC) and model accuracy (defined as the number of 
correct classifications divided by the total number of classi-
fications) in the datasets created by tenfold cross-validation 
with their corresponding 95% confidence interval (CI), which 
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was calculated by the R package “pROC.” Variable impor-
tance was determined by calculating its frequency of being 
selected in the tenfold cross-validation.

Sensitivity Analysis
In the subgroup of kidney transplant recipients in the 

derivation cohort with recorded time-to-recurrent MN, we 
performed group penalized Cox regression using the “cv.grp-
surv” function in the R package “grpreg.” Time-to-graft loss 
was chosen as the time variable for kidney transplant recipi-
ents without recurrent MN. The λ that minimized the partial 
likelihood deviance was chosen by tenfold cross-validation. 
Random forest was also performed in the derivation cohort 
to determine the sensitivity of algorithm variable selection 
using penalized regression. Random forest was chosen over 
single decision tree regression because it builds multiple deci-
sion trees (reducing high variance associated with single trees) 
on bootstrapped training samples using a random selection of 
variables at each split to decorrelate the trees (reducing corre-
lation associated with multiple decision trees utilizing all vari-
ables) and therefore reduces overfitting. We performed tenfold 
cross-validation repeated 5 times to select the number of ran-
dom variables used at each split and number of trees used in 
the forest, which maximized the AUC-ROC. Variable impor-
tance plots based on the mean decrease of accuracy over all 
out-of-bag cross-validated predictions were evaluated in the 
100 imputed datasets using the tuned random forest model. 
Variables are ranked in descending order of importance in the 
variable importance plot, and variables above the inflection 
point when the curve of the variable importance plot flattens 
were selected as previously described.26 Variables selected in 
at least 50 of the 100 variable importance plots were com-
pared with variables selected using Group LASSO. Random 
forest, parameter tuning, and variable importance plots were 
performed using the R package “caret.” Model performance 
of penalized Cox regression and random forest was assessed 
using the cross-validated AUC-ROC and model accuracy cal-
culated by the R package “pROC.”

Validation Cohort
To further evaluate the model performance of the Group 

LASSO, penalized Cox regression, and random forest mod-
els, we created separate validation cohorts from kidney trans-
plant recipients initially excluded because of incomplete HLA 
serotyping, though retaining predictors driving each model. 
Model performance was assessed using AUC-ROC and model 
accuracy with their corresponding 95% CI calculated by the 
R package “pROC.” Multiple imputation on non-HLA vari-
ables was performed in the validation cohort separate from 
the derivation cohort.

RESULTS

Population Characteristics
Of the 32 858 kidney transplant recipients in the ANZDATA 

registry, 554 recipients had MN as their primary kidney dis-
ease of whom 199 donor-recipient pairs (36%) had complete 
HLA serotyping for donor and recipient HLA-A/B/DR/DQ 
and were included in the study (Figure 1). Nine variables (4%) 
had missing values (range, 2%–25%) (Figure S1, SDC, http://
links.lww.com/TXD/A438). The median age of kidney trans-
plant recipients was 48 y (interquartile range [IQR], 21 y),  

and the majority were male (73%) of Caucasian ethnicity 
(82%) (Table 1). The median donor age was 42 y (IQR, 24 y).  
The median follow-up time was 8.04 y (IQR, 14.90 y). The 
majority of kidney transplants occurred during the periods 
of 1990  to  1999 (42%) and 2010  to  2019 (41%). Living 
donation occurred in 27% and blood group incompatible 
transplants occurred in 3% of recipients. The proportion of 
recipients with a total HLA mismatch of 0 was 6%, 1 or 2 was 
32%, 3 or 4 was 39%, and 5 or 6 was 23%. Biopsy-proven 
acute cellular rejection occurred in 19%, biopsy-proven acute 
antibody-mediated rejection occurred in 3%, and the median 
maximum pretransplant panel reactive antibody was 0% 
(IQR, 20). The most common induction immunosuppression 
was interleukin-2 (IL2) receptor blocker (37%), and the most 
common maintenance immunosuppressive agents were tac-
rolimus (50%) or cyclosporin (56%), mycophenolate (67%), 
and corticosteroids (99%).

A total of 25 kidney transplant recipients experienced 
recurrent MN (13%), predominantly during the period of 
1990  to  1999 (68%). The time to biopsy-proven disease 
recurrence was reported in 17 of 25 kidney transplant recipi-
ents experiencing recurrent MN (median, 4.72 y [IQR, 4.13 
y]). Two recipients had recurrent MN in >1 kidney transplant, 
and only the first episode of recurrence was included in the 
study. HLA serotypes in donor-recipient pairs are shown in 
Table S1 (SDC, http://links.lww.com/TXD/A438).

Group LASSO
Model performance using Group LASSO for predicting 

recurrent MN in the derivation cohort was good (AUC-ROC, 
0.85; 95% CI, 0.76-0.94 and model accuracy 88%, 84%-
93%) (Figure  2). Tenfold cross-validation in the derivation 
cohort yielded an average error rate of 12.6%. Of the 222 
variables (Table 2), Group LASSO selected 10 variables in at 
least 50 of the 100 imputed datasets as driving model pre-
dictions (Figure  3). Of these 10 selected variables, 6 were 
selected in at least 90 of the 100 imputed datasets. Variables 
driving model prediction were prior history of hepatitis C, 
IL2 receptor blocker induction, mycophenolate maintenance, 
azathioprine maintenance, other maintenance immunosup-
pression (medications included in this variable are detailed 
in Table  1), recipient HLA-A2, recipient HLA-B65, donor 
HLA-DR12, donor-recipient HLA-B65 match, and donor-
recipient HLA-DR12 match. Six variables were chosen in all 
cross-validated folds and of equal importance: mycopheno-
late maintenance, other maintenance immunosuppression, 
recipient HLA-A2, recipient HLA-B65, donor-recipient HLA-
B65 match, and donor-recipient HLA-DR12 match (Table 3).

Sensitivity Analysis
In the subgroup of kidney transplant recipients experiencing 

recurrent MN with recorded time-to-recurrence (17/25 recipi-
ents), penalized Cox regression performed well in predict-
ing recurrent MN in the derivation cohort (AUC-ROC 0.91, 
0.85-0.96 and model accuracy 69%, 63%-76%) (Figure 2). 
Nine variables, all chosen in at least 90 of the 100 imputed 
datasets, were selected as driving model predictions, including 
recipient HLA-A2, recipient HLA-B65, recipient HLA-DR17, 
donor HLA-DR12, donor HLA-DQ4, donor-recipient HLA-
B51 match, donor-recipient HLA-B65 match, donor-recipient 
HLA-DR12 match, and donor-recipient HLA-DR17 match 
(Figure  3). Of these 9 variables, 5 (55%) were also chosen 
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by Group LASSO. Eight variables were chosen in all cross-
validated folds and of equal importance: recipient HLA-A2, 
recipient HLA-B65, recipient HLA-DR17, donor HLA-DR12, 
donor HLA-DQ4, donor-recipient HLA-B65 match, donor-
recipient HLA-DR12 match, and donor-recipient HLA-DR17 
match (Table 3).

Random forest performed poorer for predicting recurrent 
MN in the derivation cohort than Group LASSO (AUC-
ROC 0.62, 0.57-0.69 and model accuracy 51%, 44%-58%) 
(Figure  2). Random forest selected 7 variables in at least 
50 of the 100 imputed datasets as driving model predic-
tions (Figure  3), all of which were also selected by Group 
LASSO. The top 3 variables driving model predictions were 
donor-recipient HLA-DR12 match, recipient HLA-A2, and 
mycophenolate maintenance (Table 3).

Model Validation
The validation cohort for the Group LASSO model was 

created from kidney transplant recipients with MN and com-
plete HLA serotyping for recipient HLA-A/B/DR and donor 
HLA-B/DR (required for model predictors) but missing data 
for donor HLA-A/DQ and recipient HLA-DQ (therefore 
excluded from the derivation cohort). This comprised 275 
kidney transplant recipients, 34 (12%) of whom had recur-
rent MN (Table S2, SDC, http://links.lww.com/TXD/A438). 
Group LASSO model performance in the validation cohort 
was poor (AUC-ROC 0.60, 0.49-0.70 and model accuracy 
61%, 55%-67%) (Figure  4). In comparison, the penalized 

Cox regression model performance in its validation cohort 
was reasonable (AUC-ROC 0.73, 0.59-0.86 and model accu-
racy 59%, 49%-68%) (Figure 4). Kidney transplant recipients 
in this validation cohort had complete HLA serotyping for 
recipient HLA-A/B/DR and donor HLA-B/DR/DQ but miss-
ing data for donor HLA-A and recipient HLA-DQ (99 kidney 
transplant recipients, 7 [7%] with recurrent MN [Table S3, 
SDC, http://links.lww.com/TXD/A438]). In the random forest 
model, variables from all recipient and donor HLA serotype 
groups contributed to model predictions, and a validation 
cohort could not be generated.

DISCUSSION

In this study of almost 200 kidney transplant recipients 
with MN, we developed cross-validated prediction mod-
els for recurrent MN using Group LASSO, penalized Cox 
regression, and random forest, which incorporated routinely 
collected clinical data from a nationwide transplant cohort 
(ANZDATA) including donor-recipient HLA serotypes and 
HLA mismatch characteristics. We found Group LASSO 
and penalized Cox regression performed well at predict-
ing recurrent MN in the derivation cohort and had superior 
performance to random forest. However, Group LASSO and 
penalized Cox regression model performance in their respec-
tive validation cohorts were poor and reasonable, respectively, 
although differences in the validation cohorts for each model 
preclude direct comparison of model performance. There 

FIGURE 1.  TRIPOD flow diagram: patient identification and selection. ANZDATA, Australian and New Zealand Dialysis and Transplant; MN, 
membranous nephropathy; TRIPOD, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis.
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was reasonable agreement in variables driving predictions 
across the Group LASSO and random forest models, which 
were recipient HLA-A2, donor HLA-DR12, donor-recipient 
HLA-B65 match and donor-recipient HLA-DR12 match, 
mycophenolate maintenance, azathioprine maintenance, and 
IL2 receptor blocker induction. Caution is needed in inter-
preting the importance of immunosuppression variables cho-
sen, as it may reflect differences in the transplant era between 
kidney transplant recipients with recurrent MN and those 
without recurrent MN in the ANZDATA registry. We inves-
tigated whether the association between zero HLA mismatch 
and recurrent glomerulonephritis was driven by specific HLA 
and found donor-recipient HLA-B65 match and donor-recip-
ient HLA-DR12 match contributed to prediction models for 
recurrent MN.21 Although this suggests that mechanisms inde-
pendent of allograft rejection contribute to recurrent MN, the 
potential mechanism by which HLA matching contributes 
to recurrent glomerulonephritis remains poorly understood, 

Biopsy-proven rejection, n (%)   
  Acute cellular rejection 2 (8) 30 (17)
  Acute humoral rejection 0 (0) 6 (3)
Maximum panel reactive antibodies, 

median (IQR), %
3 (16) 0 (20)

Recipient comorbidities, n (%)   
  Type 1 diabetes 0 (0) 1 (0.6)
  Type 2 diabetes 0 (0) 15 (9)
  Coronary artery disease 1 (4) 18 (10)
  Cerebrovascular disease 1 (4) 2 (1)
  Peripheral vascular disease 0 (0) 6 (3)
  Chronic lung disease 0 (0) 7 (4)
  Hepatitis C virus 0 (0) 1 (0.6)
  Cancer 2 (8) 26 (15)
Smoking status, n (%)   
  Never 13 (52) 81 (47)
  Former 5 (20) 57 (33)
  Current 1 (4) 14 (8)
Induction immunosuppression, n (%)   
  IL2 receptor blocker 2 (8) 72 (41)
  T-cell depletion 3 (12) 17 (6)
  B-cell depletion 0 (0) 1 (0.5)
  IVIG induction 0 (0) 5 (2)
  Any induction 5 (20) 90 (52)
Maintenance immunosuppression, 

n (%)
  

  Tacrolimus 5 (20) 95 (55)
  Cyclosporin 20 (80) 91 (52)
  Mycophenolate 7 (28) 126 (72)
  Azathioprine 19 (76) 63 (36)
  mTOR inhibitor 1 (4) 23 (13)
  Corticosteroids 25 (100) 172 (99)
  Other maintenance therapya 2 (8) 2 (1)

aOther maintenance immunosuppression includes chlorambucil, cyclophosphamide, leflunomide, 
sotrastaurin, and janus kinase 3 inhibitor.
IL2, interleukin-2; IQR, interquartile range; mTOR, mammalian target of rapamycin.

TABLE 1. ( Continued)

Characteristics of kidney transplant recipients with recur-
rent membranous nephropathy and nonrecurrent membra-
nous nephropathy in the derivation cohort.

Variables

Recurrent  
membranous 

nephropathy (n = 25)

Nonrecurrent  
membranous 

nephropathy (n = 174)

TABLE 1.

Characteristics of kidney transplant recipients with recur-
rent membranous nephropathy and nonrecurrent membra-
nous nephropathy in the derivation cohort.

Variables

Recurrent  
membranous 

nephropathy (n = 25)

Nonrecurrent  
membranous 

nephropathy (n = 174)

Age, median (IQR), y   
  Recipient 42 (22) 49 (20)
  Donor 37 (25) 44 (23)
Recipient sex: male, n (%) 18 (72) 127 (73)
Recipient weight, median (IQR), kg 75 (15) 76 (24)
Recipient ethnicity, n (%)   
  Caucasian 20 (80) 143 (82)
  Asian 3 (12) 11 (8)
  Central or South American 0 (0) 2 (1)
  South Pacific Island 0 (0) 3 (2)
  Middle Eastern 0 (0) 4 (2)
  African 0 (0) 1 (0.6)
  Australian Aboriginal 1 (4) 3 (2)
Dialysis vintage, median (IQR), mo   
Transplant era, n (%) 22 (38) 23 (55)
  1980–1989 3 (12) 5 (3)
  1990–1999 17 (68) 67 (38)
  2000–2009 2 (8) 24 (14)
  2010–2019 3 (12) 78 (45)
Recipient blood group, n (%)   
  A 10 (40) 71 (41)
  AB 1 (4) 6 (3)
  B 5 (20) 23 (13)
  O 9 (36) 74 (43)
Donor blood group, n (%)   
  A 8 (32) 66 (38)
  AB 1 (4) 1 (0.6)
  B 3 (12) 20 (11)
  O 13 (52) 87 (50)
ABO blood group incompatible, n (%) 0 (0) 5 (3)
HLA-A loci mismatch, n (%)   
  0 3 (12) 40 (23)
  1 16 (64) 87 (50)
  2 6 (24) 47 (27)
HLA-B loci mismatch, n (%)   
  0 5 (20) 30 (17)
  1 18 (72) 86 (49)
  2 2 (8) 58 (33)
HLA-DR loci mismatch, n (%)   
  0 10 (40) 57 (33)
  1 11 (44) 75 (43)
  2 4 (16) 42 (24)
HLA-DQ loci mismatch, n (%)   
  0 14 (56) 78 (45)
  1 10 (40) 75 (43)
  2 1 (4) 21 (12)
Total HLA mismatch, n (%)   
  0 2 (8) 10 (6)
  1–2 7 (28) 56 (32)
  3–4 12 (48) 66 (38)
  5–6 4 (16) 42 (24)
Living donor, n (%) 9 (36) 44 (25)
Regraft, n (%) 3 (12) 32 (18)

Continued next page
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and its role should be interpreted with caution because this 
association has been mostly reported in retrospective studies. 
Variables were chosen by supervised feature selection using 
penalized regression and ensemble tree machine learning tech-
niques, which addressed the issues of overfitting and multiple 
testing associated with stepwise feature selection in our high-
dimensional dataset.27,28

Although multiple studies have identified risk factors for 
recurrent MN after kidney transplantation such as detect-
able pretransplant anti-PLA2R autoantibody, steroid-free 
immunosuppression, and recipient HLA-A3 and donor risk 
HLA-D and PLA2R1 alleles,3,6,9,10,29 prediction models to 
identify patients at high risk of recurrent MN (or other forms 
of glomerulonephritis) using routine pretransplant clinical 
data have not been comprehensively evaluated. These pre-
dictive approaches may inform clinicians on patients requir-
ing closer monitoring of proteinuria, anti-PLA2R antibody 
titer, and/or protocol allograft biopsies to detect recurrent 
MN posttransplantation. Early diagnosis of recurrent MN 
may facilitate timely treatment with rituximab.30 However, 
external and prospective validations of our prediction mod-
els are required.

Agreement between the Group LASSO, penalized Cox 
regression, and random forest models in our study regarding 
the importance of donor-recipient HLA in predicting recur-
rent MN offers potential insights into the pathogenesis of 
recurrent MN, which remains incompletely understood. Class 
I HLA, such as HLA-A2, may play a role in directly activat-
ing cytotoxic CD8 T cells, which mediate glomerular injury 
downstream of antibody deposition in Heymann nephritis, a 
rat model of MN.31 However, the role of CD8 T cells in MN 
is less clear with conflicting reports on the proportion of CD8 
T cells in MN compared with healthy.32,33

The mechanism underpinning class II HLA-mediated auto-
immune effector mechanisms or immune tolerance is better 

understood.34 In recurrent MN, class II HLA-DR12 may acti-
vate autoreactive CD4 T cells. However, HLA-DR12 is differ-
ent from MN risk alleles in the general population, which is 
unlikely explained by differences in podocyte antigens driv-
ing recurrent MN because of positive glomerular staining for 
PLA2R in recipients with recurrent PLA2R-associated MN.6

Alternatively, HLA-A2 and HLA-DR12 may contribute 
indirectly to recurrent MN via molecular mimicry, whereby 
donor HLA-recipient HLA complexes are also recognized 
by PLA2R-specific recipient T cells.35 Finally, HLA-A2 and 
HLA-DR12 may not be mechanistically involved in recur-
rent MN but represent haplotypes associated with recurrent 
MN via linkage disequilibrium.36 HLA-DR12 is in linkage 
disequilibrium with HLA-DQA1*0501, which is not con-
sistent with a study by Berchtold et al10 that identified 2 
donor noncoding HLA-D SNPs associated with recurrent 
MN, none of which were in linkage disequilibrium with MN 
risk alleles such as HLA-DQA1*0501. Although Berchtold 
et al10 performed molecular HLA typing and validated their 
results in a replication cohort, their analysis did not include 
class I HLA loci. Our results also disagree with a multicenter 
case series by Batal et al,9 which analyzed HLA-A/B/DR/DQ 
serotypes and identified an association between recurrent 
MN and older recipient age, living related donors, steroid-
free immunosuppression, and recipient HLA-A3. These dis-
crepancies may be because of different diagnostic criteria for 
recurrent MN.

Our study has several strengths and limitations. We devel-
oped prediction models for recurrent MN in a large national 
transplant registry, which minimizes the potential risk of 
selection bias associated with case-series studies. These mod-
els utilized routinely collected pretransplant clinical data 
including donor-recipient HLA serotypes and HLA mismatch 
characteristics, which improves the potential translation of 
these models. We addressed the issue of missing data using 

FIGURE 2.  Receiver operating characteristic curves of the Group LASSO, penalized Cox regression, and random forest models in the derivation 
cohort. LASSO, Least Absolute Shrinkage and Selection Operator.
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multiple imputation and the issue of high-dimensional data 
using Group LASSO penalized regression. We demonstrated 
the robustness of our results with another machine learning 
method (random forest) and used penalized Cox regression 
to analyze the subgroup of our cohort with time-to-recurrent 
MN data. Despite the relatively small derivation cohort used 
to build the prediction models, we utilized patients initially 
excluded for incomplete HLA data to form validation cohorts 
for our models, representing an efficient use of our limited 
dataset.

However, there were many limitations in this study. Firstly, 
our study sample size was small despite analyzing a national 
cohort of kidney transplant recipients, and the certainty of 
our results were low with wide CIs. Therefore, the findings 
of our study are solely exploratory. Furthermore, our study 

population was limited to Australia and New Zealand and 
was predominantly of Caucasian ethnicity, limiting the gener-
alizability of our results. Second, molecular HLA typing was 
not available for any kidney transplant recipients with MN in 
the ANZDATA registry. It is likely that recurrent MN is driven 
by specific HLA allelic variants, and the lack of granular HLA 
data for all recipients and donors in transplant registries may 
potentially bias our findings because even single amino-acid 
substitutions in the HLA-DR alpha-chain can modify the pep-
tide-binding groove and affect T-cell responses.37 Furthermore, 
HLA-DQ serotyping was unavailable in 267 (48%) of the 554 
kidney transplant recipients with MN, and HLA-DP serotyp-
ing was mostly unavailable. This may have limited our mod-
els’ predictive performance because class II HLA is frequently 
associated with autoimmunity.38,39 We also did not perform 
HLA imputation because of the inaccuracy of HLA serotype 
imputation compared with HLA allelic imputation. Third, 
detection and misclassification bias is likely present with 
a lower rate of recurrent MN in ANZDATA (13%) than in 
existing literature (35%–50%).2-4 This may represent incom-
plete reporting and/or differences in clinical practice between 
treatment sites and time periods such as protocol biopsies 
posttransplantation, which have been associated with higher 
rates and earlier detection of disease recurrence (median time 
to recurrence 4–15 mo in studies implementing protocol biop-
sies compared with 56 mo in ANZDATA).2,5,6 This suggests 
that the clinical practice of protocol biopsies was limited in 
our cohort and that biopsy-proven diagnosis of recurrent MN 
occurred late after detection of relatively high levels of pro-
teinuria, although proteinuria at time of diagnosis was not 
available in our cohort. As a result, it is likely that mild forms 
of recurrent MN were not diagnosed, representing misclas-
sification bias. Fourth, our findings were not confirmed in an 
external validation cohort. Despite evaluating a large trans-
plant registry, cases of recurrent MN were small and HLA 
serotyping incomplete, which prevented us from dividing into 
separate derivation and validation cohorts. We addressed this 
issue by using tenfold cross-validation to balance efficient 
data usage and avoid individual splits in our dataset that may 
have been poor choices. Furthermore, we developed separate 
validation cohorts for the Group LASSO and penalized Cox 
regression models using kidney transplant recipients initially 
excluded for incomplete HLA data but retained predictors 
driving each model. However, validation cohorts differed 
between models, preventing direct comparison of model per-
formance. Fifth, anti-PLA2R antibody titer at transplantation, 
pretransplant proteinuria, and pretransplant serum albumin, 
known predictors of recurrent MN posttransplantation, were 
not available in the ANZDATA registry.3 However, anti-
PLA2R antibody data would be unavailable for most recipi-
ents because PLA2R was discovered 46 y after the inception 
of the ANZDATA registry. Furthermore, discovery of other 
podocyte antigens targeted by autoantibodies in MN over the 
past decade suggest MN is composed of different disease enti-
ties with distinct drivers of disease recurrence.40,41 Lastly, our 
relatively small sample size with a high proportion of missing-
ness may affect the statistical validity of using multiple impu-
tation to handle missing data.

In conclusion, we developed Group LASSO, penalized 
Cox regression, and random forest prediction models for 
recurrent MN in kidney transplant recipients, which remains 

TABLE 2.

Summary of variables included in Group LASSO, penalized 
Cox regression, and random forest models

Type of variable Number of variables (N = 222)

Recipient characteristics  
  Age 1

  Sex 1

  Ethnicity 1

  Weight 1

  Dialysis vintage 1

  Blood group 1

  Comorbidities 8

  Smoking status 1

Donor characteristics  

  Age 1

  Blood group 1

Transplant characteristics  

  HLA mismatch (A, B, DR, DQ, total) 5

  Donor status (living or deceased) 1

  Blood group incompatibility status 1

  Regraft status 1

  Maximum panel reactive antibodies 1

  Biopsy-proven rejection (acute cellular, acute 
antibody-mediated)

2

  Induction immunosuppression 5

  Maintenance immunosuppression 7

  Transplant era 1

HLA characteristics  

  Recipient HLA-A serotype 16

  Donor HLA-A serotype 16

  Recipient HLA-B serotype 25

  Donor HLA-B serotype 27

  Recipient HLA-DR serotype 18

  Donor HLA-DR serotype 19

  Recipient HLA-DQ serotype 9

  Donor HLA-DQ serotype 9

  Donor-recipient HLA-A match 10

  Donor-recipient HLA-B match 14

  Donor-recipient HLA-DR match 11
  Donor-recipient HLA-DQ match 7

LASSO, Least Absolute Shrinkage and Selection Operator.
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incompletely understood, challenging to predict, and an 
important cause of allograft loss in recipients with MN. 
Donor-recipient HLA characteristics were major drivers of 
model predictions. Our findings are exploratory and require 
further external and prospective validation in larger datasets. 

Future studies evaluating prediction models for recurrent 
MN utilizing molecular HLA typing, stratified by underly-
ing disease antigen and associated autoantibody status before 
transplantation, may be possible using data linkage between 
transplant registries and existing biorepositories, which may 

FIGURE 3.  Variables selected by Group LASSO, penalized Cox regression, and random forest models as predictive of recurrent membranous 
nephropathy in kidney transplant recipients. IL2, interleukin 2; LASSO, Least Absolute Shrinkage and Selection Operator.

TABLE 3.

Variable importance in Group LASSO, penalized Cox regression, and random forest models

Variable ranking (1 = highest importance,  
10 = lowest importance) Group LASSO Penalized Cox regression Random forest

1 Mycophenolate maintenance Recipient HLA-A2 Donor-recipient HLA-DR12 match
Other maintenance immunosuppressiona Recipient HLA-B65
Recipient HLA-A2 Recipient HLA-DR17
Recipient HLA-B65 Donor HLA-DR12
Donor-recipient HLA-B65 match Donor HLA-DQ4
Donor-recipient HLA-DR12 match Donor-recipient HLA-B65 match

Donor-recipient HLA-DR12 match
Donor-recipient HLA-DR17 match

2   Recipient HLA-A2
3   Mycophenolate maintenance
4   Donor HLA-DR12
5   Donor-recipient HLA-B65 match
6   Azathioprine maintenance
7 Donor HLA-DR12  IL2 receptor blocker induction
8 Azathioprine maintenance   
9 Hepatitis C   
10 IL2 receptor blocker induction   

aOther maintenance immunosuppression includes chlorambucil, cyclophosphamide, leflunomide, sotrastaurin, and janus kinase 3 inhibitor.
IL2, interleukin 2; LASSO, Least Absolute Shrinkage and Selection Operator.
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assist clinical decision  making and management of kidney 
transplant recipients with MN.
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