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Background: Preliminary investigation revealed that Low-density lipoprotein receptor-related protein 1b (LRP1B) 
and FAT atypical cadherin (FAT) family mutation might serve as immune regulators under certain tumor 
microenvironment. 
Experimental design: We curated a total of 70 non-small cell lung cancer (NSCLC) patients who harbored alter-
ations in LRP1B and/or FAT family (FAT1/2/3/4) based on next-generation sequencing (NGS) to analyze 
multiple-dimensional data types, including comutant status, tumor mutation burden (TMB), programmed death 
receptor ligand 1 (PD-L1) expression, T cell-inflamed gene expression profiling (GEP) and therapy response. 
Results: 20 patients with co-occurring mutations in LRP1B and FAT1/2/3/4 revealed a relatively higher TMB 
level of 17.05 mut/Mb compared with 7.60 mut/Mb and 8.80 mut/Mb in single LRP1B and FAT mutation 
groups, respectively. LRP1B and FAT members showed specifically enriched T cell-inflamed genes and the co- 
occurring mutant TP53 status in NSCLC patients who harbor LRP1B/FAT comutations. 
Conclusions: This work provides evidence that co-occurring mutations of LRP1B and FAT in NSCLC may serve as a 
group of potential predictive factors in guiding immunotherapy on the basis of their association with TMB status.   

Introduction 

Lung cancer is one of the leading causes of cancer-related mortality 
worldwide, with a poor 5-year survival rate of only 19% [1]. Despite 
major advances in early detection and treatment, survival rate remains 
unsatisfactory owing to wide dissemination in majority of patients at the 
time of diagnosis. There are two main forms of lung cancer: small cell 
lung cancer (SCLC, ~15% of patients) and non-small cell lung cancer 
(NSCLC, ~85% of patients), with the latter further subdivided into 2 
main types: lung adenocarcinoma (LUAD) and lung squamous cell car-
cinoma (LUSC) [2]. In the past decade, treatment landscape of NSCLC 
had dramatically changed due to advances in the identification of key 
mutational alterations and introduction of immune checkpoint blockade 
[3]. Tumor mutational burden (TMB), T cell infiltrates, and the level of 
programmed death receptor ligand 1 (PD-L1) protein on the surface of 
tumor tissue have been proposed as biomarkers of response to immu-
notherapy [4,5]. However, a substantial of tumor either exhibits low 

level of PD-L1 protein or do not sustain durable clinical benefit from 
immune checkpoint inhibitors [6]. Therefore, novel modulators are 
urgently needed to distinguish responders from non-responders and will 
most likely arise from a more elaborate understanding of tumor-immune 
microenvironment and the identification of genetic abnormalities in 
NSCLC. 

Low-density lipoprotein receptor-related protein 1b (LRP1B) belongs 
to LDLR family and is identified as a likely putative tumor suppressor 
[7]. A battery of evidence suggests mutant LRP1B may exhibit elevated 
PD-L1 expression and improved outcomes with immune checkpoint in-
hibitors (ICIs) [8,9]. According to Catalog of Somatic Mutations in 
Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic), a large-scale 
database curated by the Wellcome Trust Sanger Institute, LRP1B is 
one of the top abundantly mutated genes in NSCLC and the patterns of 
its somatic mutations are 28% and 37% in LUAD and LUSC, respectively. 
Another potential predictive biomarker candidate is FAT atypical cad-
herin (FAT) family, consisting of FAT1, FAT2, FAT3 and FAT4, exhibits 
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tumor suppressive or promoting effect under certain context on the basis 
of its interaction with Hippo-YAP pathway and planar cell polarity (PCP) 
[10], inhibition of epithelial-to-mesenchymal transition (EMT) and 
involvement in lymphovascular permeation [11]. Different from FAT4 
with an EGF-like domain followed by two Laminin-G-like domains, 
human FAT1, FAT2, and FAT3 have a Laminin-G-like domain followed 
by multiple EGF-like domains. Particularly, FAT1 is involved in pro-
motion of actin-mediated cell migration as well as inhibition of 
YAP1-mediated cell proliferation [12]. In line with COSMIC, FAT1 is 
also one of the top 20 abundantly mutated genes in NSCLC and the 
patterns of its somatic mutations are 8% and 12% in LUAD and LUSC, 
respectively. 

Interestingly, research revealed that dissemination of LRP1B- 
silenced renal cancer cells was possibly due to actin cytoskeleton 
remodeling regulated by Rho/Cdc42 pathway and the alteration of focal 
adhesion complex components [13]. FAT1 and FAT4 suppress tumor 
growth through Hippo signaling activation, while FAT1 promotes tumor 
invasion through actin polymerization at lamellipodia and filopodia 
under certain condition [14]. Previous investigation revealed a strong 
co-expression of FAT1 with molecular components of low-density lipo-
protein (LRP) 5 and molecular targeting of FAT1 re-sensitizes cispla-
tin-resistant OSCC cells to cisplatin treatment by deregulating the 
LRP/WNT pathway [15]. Both LRP1B and FAT members are involved in 
YAP regulation via Hippo-dependent and independent pathway and 
activated YAP act as a transcriptional driver of cytokines in bolstering 
T-regulatory cells (Tregs) recruitment and escaping from innate and 
adaptive arms of immune system [16]. Thus, it is urgently needed to 
explore their regulation on tumor immunology. Here, we delineated 70 
NSLCL patients with LRP1B and/or FAT family (FAT1/2/3/4) alter-
ations to determine their potential immune signature in NSCLC. 

Materials and methods 

Patients and eligibility 

We curated patients with LRP1B and/or FAT family (FAT1/2/3/4) 
alterations reported on tissue-based next-generation sequencing (NGS) 
panels at our Center between October 2019 and November 2021. 
Limited or advanced NSCLC patients with LRP1B and/or FAT1/2/3/4 
alterations were eligible. 

Tissue-based NGS 

Genomic alterations, such as deletion, truncation or loss of function 
(e.g., nonsense mutation, homozygous loss, frame shift mutation, 
intragenic rearrangement, splice acceptor/donor mutation) were iden-
tified with Tissue-based NGS (Supplementary Materials). 

Patient variables 

The variables collected included patient demographics (such as age 
and gender), metastatic stages, PD-L1, TMB, and microsatellite status. 
Patient outcomes included best radiographic response, which was 
characterized by RECIST V.1.1 criteria in combination with clinical 
notes. 

Gene expression profiling (GEP) 

The GEP consists of 18 genes associated with chemokine expression, 
cytolytic activity, antigen presentation, and adaptive immune resis-
tance, including CD274 (PD-L1), CD276 (B7-H3), CCL5, CD27, CD8A, 
CMKLR1, CXCL9, CXCR6, IDO1, LAG3, NKG7, PDCD1LG2 (PDL2), 
PSMB10, HLA-DQA1, HLA-DRB1, HLAE, STAT1, and TIGIT. 

TCGA Data and cBioPortal 

The Cancer Genome Atlas (TCGA), a landmark cancer genomics 
program, molecularly characterized over 20,000 primary cancers and 
matched normal samples spanning 33 cancer types. LRP1B and FAT 
mutant LUAD (TCGA, Firehose Legacy; 586 cases) and LUSC (TCGA, 
Firehose Legacy; 511 cases) datasets were selected for further analyses 
using cBioPortal for Cancer Genomics, which is a comprehensive portal 
for exploring, visualizing, and analyzing multidimensional cancer ge-
nomics database (http://www.cbioportal.org/). 

Statistical analysis 

Statistical analyses were conducted using GraphPad Prism (version 
9.0). Scatter dot plots indicate median and 95% confidence interval (CI). 
All tests were two-sided, and p-values of <0.05 indicated statistical 
significance. 

Data availability 

The data generated in this study are available within the article. 

Results 

Patient outcomes 

A total of 70 patients of NSCLC were identified who harbored al-
terations in LRP1B and/or FAT family (FAT1/2/3/4) by NGS in our 
center. Demographics were shown in Table 1 according to genomics 
alterations, metastatic stages, PD-L1, TMB and microsatellite status. 
LRP1B gene was evident in 49 mutations, including 38 missense muta-
tions, 7 nonsense mutations and 4 splice site mutations. Notably, FAT1/ 
2/3/4 genes were identified in 60 mutations, including missense, 
nonsense, frame shift, splice site mutation, deletion, deletion-insert and 

Table 1 
Demographics.   

All Patients (n=70) LUAD(n=46) LUSC(n=24) 

Gender    
Male(%) 54(70%) 31(67%) 23(96%) 
Age,median(range)    
<65 29 23 6 
≥65 41 23 18 
PD-L1 expression    
≥1% 49 28 21 
0% or <1% 13 12 1 
Not availbable 8 6 2 
TMB status    
<5/MB 17 11 6 
5-10/MB 15 9 6 
>10MB 31 21 10 
Not availbable 7 5 2 
Gene Mut    
FAT FAMILY 52 35 17 
LRP1B 38 25 13 
Both 20 13 7 
Microsatellite    
MSI-H 0 0 0 
MSI-L 3 2 1 
MSS 51 33 18 
Not availbable 16 10 6 
M Stage    
M0 19 8 11 
M1a 10 7 3 
M1b 24 20 4 
M1c 9 7 2 
Mx 8 4 4 

PD-L1, programed death receptor ligand 1; TMB, Tumor mutation burden; MSI- 
H, microsatellite instability-high; MSI-L, microsatellite instability-high; MSS, 
microsatellite stable. 
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insert mutation (Fig. 1 A and B). Co-occurring mutations in LRP1B and 
FAT1/2/3/4 were identified in 13 LUAD and 7 LUSC patients, 
respectively. 

Association with TMB and PD-L1 expression 

Scatter plots for TMB and PD-L1 were shown in Fig. 2 A and B. 20 
patients with co-occurring mutations in LRP1B and FAT1/2/3/4 
revealed a relatively higher TMB level of 17.05 mut/Mb compared with 
7.60 mut/Mb and 8.80 mut/Mb in single LRP1B and FAT mutation 
groups, respectively. The comutant group showed more outliers with 
TMB >10 mut/Mb in 12 patients (60%) compared with 2 and 7 patients 
in single LRP1B (12.5%) and FAT (25%) mutant groups, respectively. 
Nevertheless, PD-L1 expression in our study did no show significant 
differences in all three groups. 

Comparison between LRP1B/FAT and EGFR mutation 

Therapeutic regimen of NSCLC has been transformed due to identi-
fication of the oncogenic drivers, especially tumors harbor activating 
mutations in Epidermal growth factor receptor (EGFR) [17]. We next 
determined the correlation between LRP1B/FAT and EGFR mutations. A 
total of 10 patients with single LRP1B/FAT mutations accompanied 
EGFR comutation were treated with osimertinib or almonertinib. 
Meanwhile, 15 out of 20 patients with co-occurring mutations in LRP1B 
and FAT1/2/3/4 received immunotherapy and revealed a relatively 
higher TMB level compared to EGFR-targeted group (Fig. 3A). Up to 
February 25, 2022, 9 patients experienced partial response (PR). 3 of 
them concomitantly harbored EGFR mutation and 6 patients with 
co-occurring mutations in LRP1B and FAT1/2/3/4. 9 patients were 
evaluated as stable disease (SD) after 2 or 3 cycles of immunotherapy or 
targeted therapy and 5 of them harbored comutation of LRP1B and 
FAT1/2/3/4. Besides, 3 patients were evaluated as progression disease 
(PD) and 1 of them harbored EGFR mutation (Fig. 3B). 

NSCLC harboring LRP1B/FAT mutations are co-occurring mutant TP53 

A series of studies demonstrate that P53 is a central tumor suppressor 
and the TP53 mutations display substantial immune cells composition 
and increased PD-L1 level. Notably, of 48 patients with FAT family 
mutations 45 (93.8%) showed evidence of TP53 mutation and 38 in 42 
(90.5%) patients with LRP1B mutations are comutant TP53. Here, we 
also revealed that NSCLC harboring LRP1B/FAT comutations are co- 
occurring mutant TP53 (Fig. 4). 

Inflammatory genes associated with LRP1B and FAT mutations 

We applied the T cell-inflamed Gene expression profiling (GEP) to 
identify correlation between LRP1B/FAT mutations and inflammatory 
genes [18]. In our study, T cell-inflamed gene expression profile were 
analyzed and found a higher correlation between FAT1/2/3/4 and GEP 
genes in LUSC compared to LUAD with TCGA database (Table 2). 

Discussion 

Tumors have long been recognized as wounds that do not heal [19]. 
A battery of investigation now paints a complex landscape in which 
unresolved inflammation is a potent driver of carcinogenesis. Immu-
notherapy, alone, or in combination with other therapeutics, is 
employed to improve NSCLC survival and reduce mortality rate. How-
ever, a subset of patients might not benefit from immunotherapy by 
virtue of an immunologically “cold” state and some responders would 
develop acquired resistance after initial responses. Considering intricate 
tumor microenvironment, it is difficult to discriminate between an 
immunologically “cold” and “hot” state just using PD-L1 expression and 
TMB status [20,21]. Recent studies also revealed that tumor infiltrating 
lymphocytes associated with effector T-cell signature are responsible for 
immune response [22,23]. Here, we first introduce a group of possible 
tumor suppressive mutations-LRP1B and FAT family-of NSCLC that 
distinctively correlated with T cell-inflamed gene expression and tumor 
mutation burden. To some extent, anti–PD-1/PD-L1 therapy may also 
been introduced in PD-L1 negative but LRP1B and FAT comutant group 
since an irrelevant relation between PD-L1 expression and co-occurring 
mutations in LRP1B and FAT family. Accordingly, patients with EGFR 
mutation were prone to produce a weaker TMB level and less 
co-occurring mutation in LRP1B and FAT1/2/3/4, which might be 
correlated with immunosuppressive tumor microenvironment [24]. 

According to cbioPortal, most LRP1B somatic mutations are recog-
nized as missense mutation, deletion, splice mutation and inframe mu-
tation. FAT1/2/3/4 genetic alterations are identified as missense 
mutation, truncating mutation, deletion and amplification. Here, ge-
netic mechanisms of majority NSCLC patients accompanied LRP1B and 
FAT1/2/3/4 were deletion and missense point mutations. As to their 
pathogenic, likely pathogenic, and variant of unknown significance 
(VUS) alterations are still need further study in our later investigation. 

Several studies have evaluated the TP53 status as a prognostic 
biomarker of therapy and its communication with other genetic alter-
ations, such as KRAS, LKB1, KEAP1 and EGFR, may affect tumor- 
immune microenvironment and influence TMB and PD-L1 status [25, 

Fig. 1. Distribution of LRP1B (A) and/or FAT family (B) alterations identified by Tissue-based NGS in our center.  
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26,27]. Notably, we revealed that the co-occurring mutant TP53 status 
in NSCLC patients who harbor LRP1B/FAT comutations and exhibit high 
level of TMB. Previous research combined with our study identified 
P53/FAT/LRP1B might serve as tumor suppressor and play key roles in 
YAP inhibition, which might be related with RHO GTPase and cell-cell 
adhesion. A wealth of evidence indicates that an overarching determi-
nant of YAP/TAZ activity in tumor initiation and progression, sustained 
activation of YAP/TAZ promotes aberrant cell proliferation, epithelial to 
mesenchymal transition, invasion, drug resistance, metastasis, and poor 
prognosis [28]. Even though its rarely gene alteration, increased protein 
level of YAP was detected in more than half of NSCLC tissues and pre-
dominantly correlated with tumour, node and metastasis (TNM) stage 
and inferior prognosis [29]. As an upstream signal, FAT negatively 
regulates YAP/TAZ oncogenic function and FAT1 re-sensitizes 

cisplatin-resistant OSCC cells to cisplatin treatment by deregulating the 
LRP/WNT signaling pathway [16]. How P53/FAT/LRP1B regulates YAP 
remained elusive and further studies are need to understand their 
regulation in T infiltrating cells. 

However, This study has several limitations. First, this is a small, 
retrospective study curated patients who were only diagnosed as LUAD 
and LUSC with tissue-based NGS testing. Additionally, loss of patient 
primary outcomes because of short-term follow up. Thus, long-term 
follow-up will be conducted to identify OS and PFS in comutant group 
and potential predictive value LRP1B and FAT comutation in immune 
response will be verified in our prospective pan-cancer studies. 

Conclusion 

In summary, in the study, we observed that concurrent mutations in 
LRP1B and FAT might serve as a group of potential predictive factors to 
guide immunotherapy and patients harboring LRP1B/FAT comutations 
are co-occurring mutant TP53. The P53/LRP1B/FAT axis may present a 
role in establishing vastly distinct T cell microenvironment. Further 
exploration is needed to determine the deep immune phenotyping of 
these co-mutations and long-term follow-up data related with LRP1B/ 
FAT comutations are just underway. 

Fig. 2. Scatter plots for TMB (E) and PD-L1(F) levels among molecular subtypes were evaluated.  

Fig. 3. 10 patients with single LRP1B/FAT mutations accompanied EGFR mutation were received targeted treatment. 15 out of 20 patients with co-occurring 
mutations in LRP1B and FAT1/2/3/4 underwent immunotherapy. TMB status (A) and radiographic response rates (B) were employed to compare these two 
groups. PR, partial response; NE, not evaluable; PD, progressive disease; SD, stable disease. 

Fig. 4. Status of TP53 mutation in 20 patients with comutant LRP1B/FAT.  
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