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Abstract: The use of beneficial rhizobacteria (bioeffectors) and their derived metabolic elicitors are
efficient biotechnological alternatives in plant immune system elicitation. This work aimed to check
the ability of 25 bacterial strains isolated from the rhizosphere of Nicotiana glauca, and selected for their
biochemical traits from a group of 175, to trigger the innate immune system of Arabidopsis thaliana
seedlings against the pathogen Pseudomonas syringae pv. tomato DC3000. The five strains more effective
in preventing pathogen infection were used to elucidate signal transduction pathways involved in
the plant immune response by studying the differential expression of Salicylic acid and Jasmonic
acid/Ethylene pathway marker genes. Some strains stimulated both pathways, while others stimulated
either one or the other. The metabolic elicitors of two strains, chosen for the differential expression
results of the genes studied, were extracted using n-hexane, ethyl acetate, and n-butanol, and their
capacity to mimic bacterial effect to trigger the plant immune system was studied. N-hexane and
ethyl acetate were the most effective fractions against the pathogen in both strains, achieving similar
protection rates although gene expression responses were different from that obtained by the
bacteria. These results open an amount of biotechnological possibilities to develop biological products
for agriculture.

Keywords: bioeffector; beneficial rhizobacteria; metabolic elicitors; induced systemic resistance (ISR);
Pseudomonas syringae pv. tomato DC3000; SA and JA/ET signal transduction pathways

1. Introduction

The diseases caused by different pathogen organisms in plants represent a significant and persistent
threat and a challenge to supply food worldwide [1,2]. Because of that, the study of plants’ immune
system as a mechanism to counteract the attack of pathogens is fundamental, especially in this year that
has been declared International Year of Plant Health by the FAO (Food and Agriculture Organization
of the United Nations).

Plants can activate patter-triggered-immunity (PTI) by the recognition of PAMPs/MAMPs
(pathogen-/microbe-associated molecular patterns), or effector-triggered immunity [3] (ETI) by the
recognition of pathogen effectors. PTI response activates when some specific receptors located on cells
surface, called pattern recognition receptors (PRRs), detect these PAMPs/MAMPs. However, plants can
also respond to endogenous molecules that have been released by pathogens, which implies recognition
of virulent pathogen molecules, called effectors, by intracellular receptors. This last recognition leads
to a second line of defense, the effector-triggered immunity (ETI) and also to the transcription of
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resistance genes (PR genes). These endogenous effectors recognized by plants are much more variable
in structure and composition than PAMPs/MAMPs [4].

Pieterse et al. [5] classified induced resistance triggered by pathogens with respect to the type of
triggering agent in: Systemic acquired resistance (SAR), herbivore induced resistance (HIR) and induced
systemic resistance (ISR). SAR is a form of induced resistance that happens in plants after localized
exposure to a pathogen and that depends on the accumulation of salicylic acid (SA) and the activation of
the Nonexpressor of Pathogenesis-Related Protein 1 (NPR1). SA accumulates after pathogen infection,
binding NPR1 and triggering induction of pathogenesis-related genes (PR). Although SA-mediated
resistance acts against a wide plethora of pathogens, it has been reported that SAR is generally more
effective facing to biotrophic and hemibiotrophic pathogens [6,7].

In contrast, Pieterse et al. [8] described ISR as an answer triggered by non-pathogen rhizobacteria
(bioeffectors). However, different elicitors such as antibiotics, surfactants or chemical inducers [9] are
also able to induce ISR. In this case, ISR response was described as dependent on jasmonic acid (JA)
and ethylene (ET) signaling pathways and also needs the involvement of NPR1 [10,11]. Plant defensin1
(PDF1) [12,13], and MYC2 also play an essential role in this signaling pathway [14].

These bioeffectors and some of their elicitors (structural molecules or metabolic molecules released
to the medium) induce in plants a physiological alert state prior to stress challenge known as priming [15].
Plants in this state are able to develop a faster and/or stronger activation of defensive responses after
the attack of pathogens, insects or in response to abiotic stress [16]. After bioeffectors or their elicitors
are sensed, the SA or JA/ET signaling pathways are activated to trigger plant resistance [17]. Therefore,
the study of these transduction signal pathways is meaningful for understanding the plant immune
system and their defenses against pathogens. This can contribute to promote the use of bioeffectors
and their elicitors as a useful biotechnological strategy to develop a sustainable agriculture without
using agrochemicals and pesticides [17].

It is known that the rhizosphere of wild plant species is a worthy source for finding putative
effective beneficial bacteria (bioeffectors) because plants are able to select those bacteria that boost
their fitness by releasing nutrients into the surrounding soil through root exudates [18,19]. Thanks to
this well-known ability of the plants to strongly select beneficial bacterial strains in the rhizosphere
to improve their health and to survive to adverse conditions [18–20], bacteria isolated from the
rhizosphere of Nicotiana glauca Graham, a Solanaceae native of Southern Spain with a strong secondary
metabolism [21], were studied. This plant was chosen for our work because it is a wild species capable of
thriving in very poor soils and in extreme drought and temperature conditions, therefore it was deduced
that it should have a powerful associated rhizospheric microbiome that would allow it to survive to
these harsh conditions. Moreover, N. glauca synthesizes anabasin, a toxic alkaloid, which suggests
the existence of an inducible secondary metabolism associated to defence mechanisms [21]. All these
characteristics of this plant species led us to presume that the rhizosphere of wild populations of N. glauca
would be a rich source for finding effective bioeffectors with very interesting metabolic capacities.

The effects induced in the plants by the beneficial rhizobacteria depend on molecules (elicitors),
so we considered that after the extraction of these elicitors, it would be possible to find out which ones
were able to reproduce the effects of the rhizobacteria and therefore were responsible of this effect.

The general objective of this work was therefore to find beneficial rhizobacteria (bioeffectors) from
N. glauca rhizosphere efficient in triggering the innate defense response of A. thaliana plants, as well as
effective derived metabolic elicitors, trying to elucidate the mechanisms involved in the protection.
To achieve this objective the following partial objectives were defined: (i) To perform a screening of
N. glauca rhizobacteria to select those strains efficient in triggering the innate response of Arabidopsis
plants against the pathogen P. syringae DC3000, (ii) to study the mechanisms involved in plant
defense triggered by the most effective bioeffectors against the pathogen P. syringae DC3000, (iii) to
obtain the metabolic elicitors from the most effective bioeffectors and assay their ability to mimic
bacterial response.
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To reach our goals, ISR experiments were carried out in A. thaliana plants using the bioeffectors
and the metabolic elicitors of the chosen strains to protect the plants against P. syringae DC3000;
the differential expression of marker genes for the SA and JA/ET transduction pathways were studied
on plants inoculated with selected strains and selected metabolic elicitors.

The ISR experiments were carried out in A. thaliana plants because its short life cycle facilitates the
performance of experiments at laboratory level. Furthermore, it is easy to infect this plant with specific
pathogens (e.g., P. syringae DC 3000) and to study the consequent plant immune responses. This plant
is able to trigger a wide sort of general PTI and ETI responses against pathogens [22]. In addition,
it exists extensive literature on the defensive responses of this plant to compare with our results. As it
is a model plant, the data obtained would be very relevant for the scientific community and could be
then extrapolated to crops of commercial or economic interest.

2. Results

2.1. Beneficial Rhizobacteria Screening: Phylogenetic Tree and Biochemical Tests

A phylogenetic tree was performed with the 16S rRNA sequences of the 175 bacterial strains
(Figure 1). Two main groups appeared, one made up of Gram-positive (74 strains) and the other of
Gram-negative bacteria (101 strains).
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Figure 1. Phylogenetic tree performed with the 16S rRNA sequences. The evolutionary distances were
inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates
was taken to represent the evolutionary history of the taxa analyzed. Annotation of bacteria included
in the tree, were obtained from the NCBI (http://www.ncbi.nlm.nih.gov/). The number in brackets
indicates number of species within each phylogenetic group.

In the Gram-negative group, eight genera were found (Serratia, Enterobacter, Pantoea, Erwinia,
Cronobacter, Acinetobacter, Pseudomonas, and Stenotrophomonas), being Pseudomonas especially diverse
in species (five species identified: P. putida, P. reinekei, P. brassicacearum, P. fragi, and P. fluorescens).
In the Gram-positive group, only two genera were found, (Bacillus and Brevibacterium). Within Bacillus,
two species were especially abundant, Bacillus cereus and Bacillus megaterium (Figure 1).

Biochemical tests (auxin-like compounds production [23], siderophores production [24],
phosphate solubilization [25], and chitinases production [26,27]) for identifying putative beneficial
rhizobacteria were carried out to the 175 strains. The results of these tests are shown in Table 1.

http://www.ncbi.nlm.nih.gov/
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Table 1. Percentage of bacteria within each genera or species (in Gram-positive group), positive for biochemical traits.

Gram-Negative Group

Biochemical Traits Serratia Enterobacter Pantoea Erwinia Cronobacter Acinetobacter Pseudomonas Stenotrophomonas

Indole acetic acid (IAA) production 0.00 37.5 0.00 0.00 0.00 0.00 0.00 0.00
Siderophores production 100.00 87.5 100.00 100.00 100.00 83.33 100.00 100.00
Phosphate solubilization 0.00 75.00 45.45 50.00 0.00 100.00 91.67 0.00

Chitinases production 0.00 0.00 0.00 0.00 0,00 0.00 2.08 100.00
Siderophores production and phosphate

solubilization 0.00 62.50 45.45 50.00 0.00 83.33 85.42 0.00

Siderophores and chitinases production 0.00 0.00 0.00 0.00 0.00 0.00 2.08 100.00
Siderophores and IAA production and

phosphate solubilization 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00

Gram-Positive Group

Biochemical Traits Bacillus
cereus

Bacillus
pumillus

Bacillus
subtilis

Brevibacterium
sp.

Bacillus
endophyticus

Bacillus
megaterium

IAA production 0.00 0.00 0.00 0.00 0.00 0.00

Siderophores production 100.00 100.00 100.00 100.00 100.00 100.00

Phosphate solubilization 23.08 0.00 0.00 11.76 0.00 36.84

Chitinases production 46.15 0.00 20.00 0.00 0.00 0.00

Siderophores production and phosphate
solubilization 23.08 0.00 0.00 11.76 0.00 36.84

Siderophores and chitinases production 15.38 0.00 20.00 0.00 0.00 0.00

Siderophores and chitinases production
and phosphate solubilization 7.69 0.00 0.00 0.00 0.00 0.00

Biochemical traits are indole acetic acid (IAA) production, siderophores production, phosphate solubilization, chitinases production and the combination of these traits.
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Within Gram-negative bacteria, Enterobacter was the only genus across all isolates tested that were
capable of producing indole acetic acid (IAA). Siderophore producing isolates were present in all genera.
Acinetobacter and Pseudomonas showed the highest percentage of phosphate solubilizes, but also isolates
of Enterobacter, Pantoea and Erwinia were able to solubilize phosphate. Finally, all Stenotrophomonas
isolates were able to produce chitinases (100%). Isolates able to produce siderophores and also
solubilize phosphates belonged to Enterobacter, Pantoea, Erwinia, Acinetobacter, and Pseudomonas.
Those able to produce siderophores and also chitinases were present among Stenotrophomonas and
Pseudomonas, although less abundant among the latter (2.08%). The unique genus that had isolates
with three biochemical traits was Enterobacter. It was able to produce siderophores and IAA and also,
to solubilize phosphate.

Within Gram-positive bacteria, none of the isolates produced IAA, however all were able to
produce siderophores. Only B. cereus, Brevibacterium sp., and B. megaterium were able to solubilize
phosphate. B. cereus and B. subtilis were able to produce chitinases. The isolates that were able to produce
siderophores and also solubilize phosphates were B. cereus, Brevibacterium sp., and B. megaterium.
The isolates that were able to produce siderophores and also chitinases were B. cereus and B. subtilis.
The unique isolate that had three biochemical traits was B. cereus. It was able to produce siderophores
and chitinases and also to solubilize phosphate.

2.2. ISR by Beneficial Rhizobacteria

According to the results obtained from the phylogenetic tree (Figure 1) and the biochemical tests
(Table 1), 25 strains were chosen (15 Gram-negative and 10 Gram-positive) to develop a first protection
experiment against the pathogen P. syringae DC3000. All selected strains had at least two or three
biochemical traits, except N 10.7 Serratia odorifera, N 12.34 S. rubidaea, and N 11.14 Bacillus endophyticus
that only had one activity, but they were able to reduce growth of other strains in plate (data not
shown), probably due to the production of antibiotics. The selected strains and their biochemical traits
are shown in Table 2.

Table 3 shows the percentage (%) of protection induced in seedlings of A. thaliana inoculated
with the 25 selected strains and the percentage of protection of negative and positive control plants.
All Gram-negative bacteria significantly protected against the pathogen, except N 8.22, N 10.6, N 10.21,
N 15.23, and N 18.10. Protection achieved by N 16.24 was not statistically significant. N 5.12 (P. putida),
N 8.17 (S. maltophilia), N 12.34 (S. rubidaea), and N 21.24 (P. fluorescens) were the Gram-negative bacteria
that induced the highest protection, even above of that of the positive control. Therefore, these four
strains were chosen for assessing differential gene expression of eight genes, markers of different signal
transduction pathways related to plant immune system.
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Table 2. Twenty-five selected strains and its biochemical traits.

Biochemical Traits

Bacterial Strain IAA Production Siderophores Production Chitinases Production Phosphate Solubilization

GRAM−

N 5.12 Pseudomonas putida + +
N 8.17 Stenotrophomonas maltophilia + +
N 8.22 Stenotrophomonas sp. + +
N 9.11 Pseudomonas reinekei + +
N 10.6 Pseudomonas putida + +
N 10.7 Serratia odorifera +
N 10.21 Pseudomonas putida + +
N 12.34 Serratia rubidaea +
N 15.23 Pseudomonas brassicacearum + +
N 16.3 Pantoea sp. + +
N 16.15 Enterobacter sp. + +
N 16.23 Pantoea agglomerans + +
N 16.24 Enterobacter sp. + + +
N 18.10 Pseudomonas fragi + +
N 21.24 Pseudomonas fluorescens + +

GRAM+

N 4.1 Bacillus cereus + +
N 5.20 Bacillus cereus + + +
N 8.10 Bacillus sp. + +
N 11.5 Brevibacterium sp. + +
N 11.14 Bacillus endophyticus +
N 11.20 Bacillus atrophaeus + +
N 11.22 Bacillus megaterium + +
N 11.36 Bacillus megaterium + +
N 11.40 Bacillus megaterium + +
N 20.15 Bacillus simplex + +

Biochemical traits are indole acetic acid (IAA) production, siderophores production, phosphate solubilization and chitinases production. A positive biochemical trait of each bacteria is
indicated by a + symbol.
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Table 3. Percentage of protection (%) induced in A. thaliana seedlings inoculated with chosen strains
against DC3000.

Treatment % of Protection

Controls
Negative Control Nutrient Broth 0
Positive Control Benzothiadiazole (BTH) 54.21 ± 4.03 *

GRAM− Strains

N 5.12 Pseudomonas putida 57.69 ± 1.76 *
N 8.17 Stenotrophomonas maltophilia 64.87 ± 1.79 *
N 8.22 Stenotrophomonas sp. 0
N 9.11
N 10.6

Pseudomonas reinekei
Pseudomonas putida

51.44 ± 6.88 *
0

N 10.7
N 10.21

Serratia odorífera
Pseudomonas putida

33.76 ± 3.22 *
0

N 12.34 Serratia rubidaea 56.64 ± 2.15 *
N 15.23 Pseudomonas brassicacearum 0
N 16.3 Pantoea sp. 14.91 ± 2.45 *

N 16.15 Enterobacter sp. 24.18 ± 1.96 *
N 16.23 Pantoea agglomerans 21.21 ± 7.32 *
N 16.24 Enterobacter sp. 6.93 ± 2.31
N 18.10 Pseudomonas fragi 0
N 21.24 Pseudomonas fluorescens 82.08 ± 2.46 *

GRAM+ Strains

N 4.1 Bacillus cereus 69.45 ± 0.38 *
N 5.20 Bacillus cereus 49.75 ± 0.82 *
N 8.10 Bacillus sp. 22.93 ± 2.93 *
N 11.5 Brevibacterium sp. 29.82 ± 1.82 *

N 11.14 Bacillus endophyticus 0
N 11.20 Bacillus atrophaeus 42.72 ± 3.51 *
N 11.22 Bacillus megaterium 0
N 11.36 Bacillus megaterium 0
N 11.40 Bacillus megaterium 23.98 ± 0.18 *
N 20.15 Bacillus simplex 30.83 ± 4.92 *

The percentage of protection was calculated based on the number of leaves with disease symptoms to the total of
leaves (n = 12 seedlings per replicate). Data were relativized to negative control (seedlings inoculated only with
nutrient broth and pathogen challenged), which was considered as 0% protection. A positive control (BTH) was
also used [28]. Strains in bold are those whose percentage of protection against the pathogen P. syringae DC3000
exceeded that of the positive control and therefore, those that were selected for further analyses. Asterisks represent
statistically significant differences (p < 0.05) with regard to negative control.

Within Gram-positive bacteria, all of them significantly protected against the pathogen, except N
11.14, N 11.22, and N 11.36. Strain N 4.1 (B. cereus) was the Gram-positive bacterium that performed
best; hence, it was selected to assess the differential gene expression of eight genes, markers of different
signal transduction pathways related to plant immune system.

Differential gene expression at 6, 12, and 24 h after pathogen challenge (hapc) of A. thaliana plants
inoculated with selected strains (N 5.12 (P. putida), N 8.17 (S. maltophilia), N 12.34 (S. rubidaea), N 21.24
(P. fluorescens), and N 4.1 (B. cereus) is shown in Figures 2–6. Three different behaviors appeared
among the five strains. The first behavior was a strong and significant increase at 6 hapc, followed by
strains N 5.12 (Figure 2) and N 21.24 (Figure 5); N 5.12 increased the expression of NPR1 (12.55 times),
PDF1 (376.54 times) and PR3 (4.53 times), while N 21.24 strongly induced ICS (42.11 times) and
LOX2 (10.66 times) at 6 hapc. A second behavior pattern was a significant increase in expression at
12 hapc, only followed by N 12.34 (Figure 4) with a very high increment of the differential expression of
NPR1(149.74 times), PR2 (57.09 times), PDF1 (675.98 times), PR3 (41.37 times), and LOX2 (32.79 times).
The third pattern was a significant increase at 24 hapc, followed by strains N 8.17 (Figure 3) and N 4.1
(Figure 6). ICS (1.79 times), PR1(1.95 times), PR2 (2.22 times), and MYC2 (2.02 times) were the genes
induced by N 8.17, while all genes studied were induced by N 4.1 (from 1.24 times for MYC2 until
5.01 times for NPR1).
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Figure 2. Differential gene expression (seedlings inoculated with N 5.12 (Pseudomonas putida) vs negative
control) at 6 (n = 16), 12 (n = 16) and 24 (n = 16) hapc; (A) NPR1, ICS, PR1, and PR2 genes (as SA
signaling pathway markers) and (B) PDF1, LOX2, MYC2, and PR3 (as JA/ET signaling pathway
markers). Asterisks represent statistically significant differences (p < 0.05) with respect to negative
control (differential expression of 1).
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Figure 3. Differential gene expression (seedlings inoculated with N 8.17 (Stenotrophomonas maltophilia)
vs negative control) at 6 (n = 16), 12 (n = 16), and 24 (n = 16) hapc; (A) NPR1, ICS, PR1, and PR2 genes
(as SA signaling pathway markers) and (B) PDF1, LOX2, MYC2, and PR3 (as JA/ET signaling pathway
markers). Asterisks represent statistically significant differences (p < 0.05) with respect to negative
control (differential expression of 1).
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Figure 4. Differential gene expression (seedlings inoculated with N 12.34 (Serratia rubidaea) vs negative
control) at 6 (n = 16), 12 (n = 16), and 24 (n = 16) hapc; (A) NPR1, ICS, PR1, and PR2 genes (as SA
signaling pathway markers) and (B) PDF1, LOX2, MYC2, and PR3 (as JA/ET signaling pathway
markers). Asterisks represent statistically significant differences (p < 0.05) with respect to negative
control (differential expression of 1).
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Figure 5. Differential gene expression (seedlings inoculated with N 21.24 (Pseudomonas fluorescens)
vs negative control) at 6 (n = 16), 12 (n = 16) and 24 (n = 16) hapc; (A) NPR1, ICS, PR1, and PR2 genes
(as SA signaling pathway markers) and (B) PDF1, LOX2, MYC2, and PR3 (as JA/ET signaling pathway
markers). Asterisks represent statistically significant differences (p < 0.05) with respect to negative
control (differential expression of 1).

2.3. ISR by Metabolic Elicitors

Based on all the previous results, two strains were selected to extract their metabolic elicitors and
to check the capacity of these metabolic elicitors to mimic protective effects of bacteria. They were
selected N 12.34 (S. rubidaea), the Gram-negative strain that showed the highest differential expression
(Figure 4) and N 4.1 (B. cereus) as it was the Gram-positive strain with better protection among the
Gram-positive and which ranked second among all (Table 3).
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The three fractions extracted from each strain (n-hexane, ethyl acetate and n-butanol),
achieved significant protection (Table 4), having an outstanding performance the metabolic elicitors in
the n-hexane and ethyl acetate fractions. Protection of the n-hexane (61.26%) and the ethyl acetate
(54.64%) fractions of N 12.34 and protection of the n-hexane (68.11%) and the ethyl acetate (67.30%)
fractions of N 4.1 was similar to that obtained with the bacterial strains (56.64% for N 12.34 and 69.45%
for N 4.1, respectively).
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Figure 6. Differential gene expression (seedlings inoculated with N 4.1 (Bacillus cereus) vs negative
control) at 6 (n = 16), 12 (n = 16) and 24 (n = 16) hapc; (A) NPR1, ICS, PR1, and PR2 genes (as SA
signaling pathway markers) and (B) PDF1, LOX2, MYC2, and PR3 (as JA/ET signaling pathway
markers). Asterisks represent statistically significant differences (p < 0.05) with respect to negative
control (differential expression of 1).

Differential gene expression induced by the metabolic elicitors in the n-hexane and ethyl acetate
fractions (the fractions with greatest protective capacity) from N 12.34 and N 4.1 is shown in Figure 7.
In the case of N 12.34, analysis was performed at 6 and 12 hapc, and in that of N 4.1, at 12 and
24 hapc. Genes and sampling moments were selected according to the results obtained in the previous
experiment of differential gene expression (with the bioeffectors).
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Table 4. Percentage of protection (%) induced in A. thaliana seedlings inoculated with the elicitor
fractions against the pathogen P. syringae DC3000.

Treatment % of Protection

Controls
Negative control 0

Positive control (BTH) 52.09 ± 1.75 *

N 12.34
n-Hexane 61.26 ± 2.23 *

Ethyl acetate 54.64 ± 1.48 *
n-Butanol 35.42 ± 2.77 *

N 4.1
n-Hexane 68.11 ± 0.76 *

Ethyl acetate 67.30 ± 3.76 *
n-Butanol 52.31 ± 1.91 *

A. thaliana seedlings were elicited with the n-hexane, ethyl acetate and n-butanol fractions extracted from strains N
12.34 and N 4.1. Percentages were estimated according to the number of leaves with pathogen infection symptoms
with respect to the total of leaves (n = 16 seedlings per replicate). Negative control was considered as 0% of protection
and then data were relativized with respect to it. A positive control (BTH) was also used [28]. Fractions in bold
are those whose percentage of protection against the pathogen exceeded that of the positive control and therefore,
those that were selected for further analyses. Asterisks indicate statistically significant differences (p < 0.05) with
respect to negative control.Plants 2020, 9, x FOR PEER REVIEW 14 of 26 
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Figure 7. Differential gene expression in plants under the following treatments: (A) N 12.34 elicitors
from the n-hexane fraction; (B) N 12.34 elicitors from the ethyl-acetate fraction; (C) N 4.1 elicitors
from the n-hexane fraction; and (D) N 4.1 elicitors from the ethyl-acetate fraction vs negative control,
at 6 (n = 16) and 12 (n = 16) hapc in N 12.34 (A,B), and at 12 (n = 16) and 24 (n = 16) hapc in N 4.1
(C,D). NPR1 and PR2 genes as markers of the SA signaling pathway and PDF1 as marker of the JA/ET
signaling pathway in N 12.34; NPR1 as marker of the SA signaling pathway, and PDF1 and PR3 as
markers of the JA/ET signaling pathway in N 4.1. Asterisks represent statistically significant differences
(p < 0.05) within each sampling time. Genes and sampling times were chosen based on results obtained
by bacterial strains (Figures 4 and 6).

The two metabolic elicitor fractions from N 12.34 induced the same behavior in the genes studied:
Expression of NPR1 and PR2 increased from 6 to 12 hapc, while PDF1 decreased. Both metabolic
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elicitor fractions from N 4.1 also had the same behavior: Expression of NPR1 and PDF1 decreased from
12 to 24 hapc, while PR3 increased.

3. Discussion

In the present study, the efficiency of bioeffectors and derived metabolic elicitors to trigger
the immune system of A. thaliana conferring protection against P. syringae pv. tomato DC3000 has
been shown.

The 175 strains were isolated in 2010 [21] from the rhizosphere of wild populations of N. glauca.
This plant species was chosen as it was hypothesized that its very active secondary metabolism would
select a good group of bacteria to ensure plant fitness.

The rationale of plant’s selection capacity has been widely demonstrated, and also the use of
the rhizosphere as a source of highly specialized strains [29–31], since it is one of the most complex
and diverse ecosystems on earth. This suggests a definite role of plant-derived metabolites in the
microbiome assemblage in the rhizosphere [32,33]. According to previous results, the common
culturable bacterial genera in the rhizosphere of N. glauca includes Bacillus sp., Pseudomonas sp.,
Enterobacter sp., Acinetobacter sp., Burkholderia sp., Arthrobacter sp., and Paenibacillus sp. [21].

In the present study, almost 100% of the strains produced siderophores. Siderophore production
is related to iron limiting nutrient [29,34,35], but also has been related to biocontrol and/or systemic
induction of secondary metabolism. Therefore, siderophore-producing strains may have the ability to
protect plants against pathogens through a complex and inducible secondary metabolism, which is
probably related to defense [36,37].

Regarding the production of auxins and the ability to solubilize insoluble phosphorus, only one
genus of those of our study was capable of producing auxins (Enterobacter sp). However,
the solubilization of phosphates was a very abundant activity among the strains studied. Our results
support that N. glauca selects rhizobacteria related to nutrition or biocontrol activities (phosphate
solubilization and siderophore production) rather than those able to affect plant growth regulator
balance (auxins production).

The production of chitinases was well represented within the Gram-positive group, but among
the Gram-negatives, only the Stenotrophomonas genus was able to produce them, consistent with Ramos
Solano et al. [21]. Many species of rhizospheric microorganisms produce chitinolytic enzymes to
protect themselves against fungi, since chitin is a major structural component of most fungal cell walls.
Hence, these microorganisms have an excellent potential as biocontrol agents [38,39].

The strains that were selected for ISR experiment were able to produce siderophores, and they had
also some other complementary capacities, mainly the production of chitinases. This selection criterion
has already been used by other authors with the aim of finding bacteria capable of inducing systemic
resistance in plants [21,40–42]. The strain N 16.15 (Enterobacter sp.) was the only non-siderophore
producing isolate, but it was one of the two strains that produced auxins, and was chosen for this
reason. Some authors have shown that auxins are related to the induction of systemic resistance [43,44].
Three strains, N 10.7 (S. odorifera), N 12.34 (S. rubidaea) and N 11.14 (B. enterophyticus) were chosen with
only one biochemical trait, because of their capacity to reduce growth of other strains in plate (data
not shown), probably due to the production of antibiotics. This working scheme has proved to be
very effective, since 16 out of the 25 strains chosen induced systemic resistance against the pathogen
P. syringae DC3000 (Table 3).

To determine signal transduction pathways triggered by the five outstanding strains, from the
25 previously selected, the differential expression of marker genes of the SA and JA/ET signaling
pathways was studied. For this experiment, the criterion followed for the bioeffector selection was the
highest protection against P. syringae DC 3000 infection within both bacterial groups (Gram-positive
and Gram-negative). To date, most bioeffectors studied for their ability to trigger ISR mechanisms
belong to the group of Gram-negative bacteria, especially bacteria of the genus Pseudomonas [45].
However, Gram-positive bacteria, and among them, those of the genus Bacillus, have gained much
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importance in the last decade because of the great potential to trigger resistance mechanisms against a
wide range of pathogens [46,47].

Three types of defensive responses were detected, according to the time needed to increase
gene expression: Rapid, intermediate and slow. The rapid response (at 6 hapc) was generated by
strains N 5.12 (P. putida) (Figure 2) and N 21.24 (P. fluorescens) (Figure 5). N 5.12 induced a strong
differential expression of NPR1, a marker of SA pathway, PDF1 and PR3, markers of the JA/ET pathway.
Interestingly, N 21.24 induced a strong differential expression of ICS and LOX2 involved in SA and JA
synthesis, respectively. The intermediate response (at 12 hapc) was produced by N 12.34 (S. rubidaea)
(Figure 4), which induced a strong differential expression of markers of SA pathway (NPR1 and PR2),
and markers of the JA/ET pathway (PDF1 and PR3). The different behavior generated by these three
strains is also reflected in their defensive capacity. Although the three induced resistance above the
positive control (BTH), N 5.12 and N 12.34 induced a lower protection than N 21.24, which was the most
effective of all the tested. Contrary to Caarls et al. [48], we observed a simultaneous high expression of
NPR1 and PDF1 at 6 hapc for N 5.12 and at 12 hapc for N 12.34, suggesting that SA is not suppressing
the expression of PDF1 as these authors indicated. This may be related to the monomerization process
of NPR1 protein, (which has not been determined in this work), as well as with the location of this
protein (nucleus or cytoplasm), which plays an important role in the suppression or not of the genes
involved in the synthesis of JA by SA [49,50]. The higher protection achieved by N 21.24 (Table 3),
is probably related to the high expression of the genes related to the synthesis of SA and JA (ICS and
LOX2) at 6 hapc (Figure 5), something that was specific to this strain. Nowadays, the importance
of high concentrations of SA and JA to trigger defensive responses mediated by both hormones is
widely accepted [5,48,50]. Slow-response strains showed a progressive increase on expression from 0 to
24 hapc. These strains, N 8.17 (S. maltophilia) (Figure 3) and N 4.1 (B. cereus) (Figure 6) ranked right after
N 21.24 in Arabidopsis protection (Table 3). N 8.17 follows the classic SA response pathway elicitation
by a beneficial strain: High expression levels of ICS and NPR1 and consequently, high expression
levels of PR1, while genes related with the JA/ET pathway were not expressed. Strain N 4.1 was able
to stimulate both pathways (SA and JA/ET) simultaneously, according to the high expression levels
of SA markers genes (NPR1, ICS, and PR1) and JA/ET markers (PDF1, LOX 2 and PR3) (Figure 6),
demonstrating again that these two pathways are not necessarily antagonistic, as previously indicated
by several authors [51,52].

Based on gene expression and protection results, the Gram-negative Serratia rubidaea N 12.34
and the Gram-positive Bacillus cereus N 4.1 were selected to extract their metabolic elicitors. Bacterial
elicitors capable of starting defensive immune responses in plants, have been found to be structural
molecules, (e.g., flagellin [53]), or metabolic elicitors that are released into the medium [17,45,54–57].
Our research delves into the study of mixtures of metabolic elicitors extracted from rhizobacteria and
according to their solubility in three different organic solvents. The objective was to compare the effect
of these fractions with that of the bacteria (bioeffectors), looking for similarities or differences in the
response. For this reason, the genes studied and the hapc sampling moments in each case were set
according to the results obtained with the bacterial strains.

For both bacteria, metabolic elicitors in the n-hexane and the ethyl acetate fractions were as
efficient in triggering the defensive response in the plant as the bioeffectors (Tables 3 and 4). Although a
lack of effect of structural elicitors cannot be ruled out, it is evidenced herein that both bacteria are
capable of releasing metabolic elicitors with the ability to elicit defensive metabolism in the plant very
efficiently. On the other hand, since both fractions have elicitation capacity, it seems that the diversity
of elicitors is high. This has also been proven by other authors using the same fractions [28,55,58].

Although metabolic elicitors of the two fractions studied protected to the same extent as the
bacteria, the expression of the analyzed genes had different behaviors. The strain N 12.34 induced
gene expression levels more intensely (up to 140 times. Figure 4) than metabolic elicitors (Figure 7A,B).
The different intensity could be due to either the abundance of elicitors when the bacteria is delivered
alive, holding all determinants, as compared to a subset of the same elicitors delivered on fractions,
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or because the plant is more sensitive to elicitors not present in the n-hexane and ethyl acetate fractions.
The large difference in the levels of genetic expression indicates a level of priming also different. It is
known that the priming can modify the distribution of energetic resources compromising plant growth
in favor of a more production of metabolites involved in defensive response [59,60]. Therefore, in this
case the use of metabolic elicitors may have advantages over bioeffectors.

Interestingly, metabolic elicitors in both fractions from S. rubidaea N 12.34 were able to activate
the SA pathway, increasing the expression of NPR1 and PR2 (Figure 7A,B). In both fractions,
PDF1 expression (marker of the JA/ET pathway) decreased, which indicate that the metabolic elicitors
present in this fraction were only activating the SA mediated transduction pathway, while the bacterial
strain activated both. These results show that the elicitors detected by the plant in both cases have to
be different, and so would be the PRRs involved in that response [61].

Regarding the B. cereus strain N 4.1, the two metabolic elicitor fractions (Figure 7C,D) did not match
the bacterium except for PR3, a marker of the JA/ET pathway. These results suggest a lower diversity
of effective metabolic elicitors, pointing out a more relevant role of structural elicitors triggering the SA
mediated pathway observed with the live strain.

All these results show the great number of possibilities offered by elicitors to trigger the immune
system of plants, which opens a plethora of biotechnological solutions to different stress situations.
Application of elicitors has many advantages from the agronomic point of view because it is more
economical and profitable to conserve a molecule than a live bacterium, which has nutritional and
environmental requirements. In addition, the use of elicitors also implies less environmental aware for
possible cases of ecological niches competition between edaphic species and also avoids problems of
infectious pathogenesis and alterations of the rhizosphere [62,63].

4. Material and Methods

A screening of 175 isolates was carried out. Firstly, biochemical tests for putative beneficial
rhizobacteria traits were carried out to all isolates. The 16S rRNA partial sequencing of all isolates
was analyzed and a phylogenetic tree was performed with these sequences. Twenty-five strains
selected based on their biochemical traits and avoiding phylogenetic redundancy were assayed to
determine their ability to trigger plant protection (ISR). The most effective strains (five) were studied to
understand the mechanisms involved in protection. Finally, metabolic elicitors (molecules released to
the medium) were obtained from the two most effective bacteria to demonstrate their ability to mimic
the protective response triggered by the live strains.

4.1. Origin of Bacteria

Bacteria used in this work were isolated from the rhizosphere of wild populations of N. glauca
Graham in three different soils and physiological stages of the plant. A total of 960 isolates were
obtained and 50% were tested for their putative beneficial rhizobacteria traits, as explained in the work
of Ramos-Solano et al. [21]. In the present study, a subset of 175 strains from the non-assayed group of
bacteria were used. These isolates and the pathogen P. syringae pv. tomato DC3000 were maintained in
20% glycerol, frozen at −80 ◦C and plated to check viability.

4.2. 16S rRNA Partial Sequencing Phylogenetic Analysis

Bacteria were identified by 16S rRNA partial sequencing phylogenetic analysis. They were grown
in PCA (Plate Count Agar (CONDA)) Petri dishes for 48 h and then in nutrient broth (CONDA) under
shaking for 24 h at 28 ◦C in both cases. DNA was extracted from 1.8 mL of each bacterial culture by
using the UltranClean Microbial DNA isolation Kit (Mo Bio, Carlsbad, CA, USA, EE.UU). DNA amount
and quality were checked with a Nano Drop 2000 Thermo Scientific.

Each DNA sample was amplified with 16S rRNA universal primers: 1492R
(5′TACGGYTACCTTGTTACGACTT3′) and 27F (5′AGAGTTTGATCMTGGCTCAG 3′).
Amplification reactions were carried out with 5µL DNA (20 ng µL−1), 1 unit of DNA polymerase
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(Biotools Hotsplit), 0.5 µL of Primer F (30 µM) and 0.5 µL of Primer R (30 µM), 2.5 µL of 10X standard
reaction buffer with MgCl2 (Biotools), 0.625 µL of dNTPs (10 mM each, Biotools), 0.375 µL of 100%
DMSO (Dimehyl sulfoxide) and ultrapure water up to a volume of 25 µL.

The reaction mixtures were incubated in a thermocycler (Gene Amp PCR system 2700,
Applied Biosystems, South San Francisco, CA, USA) at 94 ◦C for 2 min and then subjected to
10 cycles, consisting of 94 ◦C for 0.3 min, 50 ◦C for 0.30 min and 72 ◦C for 1 min and 20 cycles consisting
of 94 ◦C for 0.3 min, 50 ◦C for 0.3 min and 72 ◦C for 1 min. Finally, the mixtures were incubated at 72 ◦C
for 7 min. PCR products were purified with UltraClean PCR Clean-up DNA purification kit (MO BIO).
Purified PCR products were sequenced in an ABI PRIMS” 377 DNA Sequencer (Applied Biosystems).
Sequences were visualized with Sequence Scanner software v1.0. (Applied Bio-systems, Foster City,
CA, USA), and editing was performed using the software Clone Manager Professional Suite v6.0.
(Sci-Ed Software, Cary, NC, USA). Sequence alignment was carried out on the server MAFFT v6.0
(http://mafft.cbrc.jp/alignment/software/) and annotated by BLASTN 2.2.6. in the National Centre for
Biotechnology Information (NCBI: http://www.ncbi.nlm.nih.gov/) and Ribosomal Database Project
Release 10 (RDP: http://rdp.cme.msu.edu/) databases. Finally, a phylogenetic tree was performed with
the 16S rRNA sequences. The sequences reported in this work are available in the GenBank database
under the accession numbers, MH571489 to MH571661.

4.3. Phylogenetic Tree

An unrooted tree was performed with MEGA v4.0.2. with aligned sequences in MAFFT v6.
The evolutionary distances were inferred using the neighbor-joining method. The bootstrap consensus
tree inferred from 1000 replicates was taken to represent the evolutionary history of the taxa analyzed.
The percentage of replicate trees in which the associated taxa clustered together in more than 50% of
the 1000 replicates of the bootstrap test are shown next to the branches. All positions containing gaps
and missing data were eliminated from the data set (complete deletion option).

4.4. Biochemical Tests for Putative Beneficial Rhizobacteria Traits

The following biochemical tests for putative beneficial rhizobacteria traits were performed
on all bacterial isolates: Auxin-like compounds production [23], siderophores production [24],
phosphate solubilization [25], and chitinases production [26,27].

For the detection of auxin-like substances, a colorimetric technique was used. Bacterial isolates
were inoculated onto half-strength Tryptic Soy Agar (TSA; Difco Laboratories, Sparks, MD, USA) in a
grid pattern. Each inoculated plate was overlaid with an 82-mm-diameter nitrocellulose membrane
(Amersham Biosciences, Little Chalfont, UK) and subsequently, Salkowski’s reagent (2% (v/v) 0.5 M
FeCl3 in 35% (v/v) perchloric acid) was applied to the membrane and incubated for 2 h to allow for
color reaction development. Sensitivity of the assay was determined using known concentrations of
pure IAA (Sigma Chemical Co., St. Louis, MO, USA).

To detect the production of siderophores, the culture medium described by Alexander and
Zuberer [24] was used. This medium contains CAS (Chrome azurol S), to which iron is bound as
part of the Fe-CAS complex, blue in color; those bacteria capable of producing siderophores separate
the iron from the complex producing a yellow halo around the bacterial growth zone, a halo that is
measured in mm after 24 h of incubation at 28 ◦C.

To demonstrate the ability of the strains to solubilize phosphate, the bacteria were cultured in
the medium described by De Freitas et al. [25], which contains potato dextrose agar and yeast extract
(PDYA) with freshly precipitated calcium phosphate. The hydrolysis halo made in this culture medium
around the colonies was measured in mm after 24 h of incubation at 28 ◦C. The presence of a hydrolysis
halo confirms the ability of the strain to solubilize phosphate.

To assess the ability of the strains to produce chitinases, the culture medium described by
Frändberg and Shunürer et al. [27] was used. This medium contains colloidal chitin, K2HPO4, KH2PO4,
MgSO4, NaCl, KCl, yeast extract and agar. Those bacteria able to produce chitinases produce a

http://mafft.cbrc.jp/alignment/software/
http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/
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transparent halo (the medium is opaque) around the bacterial growth zone, a halo that is measured in
mm after 5 days of incubation at 30 ◦C.

4.5. First ISR Experiment. Screening for Isolates Able to Induce Systemic Resistance

Based on phylogenetic analysis and putative beneficial rhizobacteria traits, 25 strains were selected
for a first induced systemic resistance (ISR) assay. These bacteria (bioeffectors) were inoculated in
A. thaliana plants at root level and challenged with the pathogen to evaluate their ability to protect plants.

A. thaliana wild type Columbia ecotype 0 seeds (provided by the Nottingham Arabidopsis Stock
Centre (NASC)) were germinated in quartz sand and two-week-old seedlings were then individually
transplanted to 100 mL pots filled with 12:5 (v/v) peat/sand mixture (60 g/pot). Forty-eight plants
per treatment (strains and controls) were used; plants were arranged in three replicates, with sixteen
repetitions each. Plants were watered with 5 mL of tap water once a week and with 5 mL of half-strength
Hoagland solution per plant once a week. Strains were inoculated twice by soil drench with 3 mL of
a suspension of bacterial cells, grown for 24 h in nutrient broth (CONDA) at 28 ◦C, and adjusted to
a density of 108 cfu mL−1, in the first and the second week after transplant. Negative control plants
were mock-inoculated by soil drench with 3 mL of sterile nutrient broth and positive control plants
were inoculated by soil drench with 10 µL of BTH (Benzothiadiazole) 0.5 mM [28]. Four days after the
second bacterial inoculation, plants were pathogen challenged with P. syringae DC3000. One day before
pathogen challenge, plants were maintained with 99% relative humidity to ensure stomata opening in
order to allow disease progress. P. syringae DC3000 was centrifuged (10 min at 2890× g) and cells were
suspended in 10 mM MgSO4 to achieve 108 cfu mL−1. It was inoculated by spraying the total of the
plants with 250 mL. Plants were incubated in a culture chamber (Sanyo MLR-350H) with an 8 h light
(350 µE s−1 m−2 at 24 ◦C) and 16 h dark period (20 ◦C) at 70% relative humidity for 72 h, and disease
severity was recorded as the number of leaves with disease symptoms relative to the total number of
leaves. Results were relativized using the disease severity of negative control plants as 0% protection.
All the ISR experimental design is represented as a timeline in Figure 8.
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4.6. Second ISR Experiment. Study of the Signal Transduction Pathway Involved in Plant Protection

Based on results obtained from the first ISR experiment, the most protective strains (five) were
selected to perform a second experiment to analyze the signal transduction pathways involved in plant
protection triggered by the bioeffectors. The expression of some marker genes after pathogen challenge
were assessed by qPCR. Genes analyzed were NPR1 (Nonexpressor of Pathogenesis Related Genes1),
PR1 (Pathogenesis-Related Gene 1) and ICS (Isochorismate Synthase 1) as markers of the SA signaling
pathway [5,48,64–70]; PDF1 (Plant Defensin 1), LOX2 (Lipoxygenase 2) and the transcriptional factor
MYC2 as markers of the JA-ET signaling pathway [39,48,66,68,71–73]; and two pathogenesis-related
proteins genes, PR2 (encoding β-1,3-glucanase) and PR3 (encoding chitinase), as SA and JA/ET markers,
respectively [17,50,74–78].

A. thaliana was handled as described in the first ISR assay (Figure 8). Instead of recording disease
severity 72 hapc, all the leaves of sixteen plants (treated with each bacteria (five)) were harvested at 6,
12 and 24 hapc, powdered in liquid nitrogen and stored at −80 ◦C. These plant samples were used for
gene expression analysis by qPCR.

4.7. RNA Extraction and RT-qPCR Analysis (Second ISR Experiment)

Prior to RNA extraction, samples were grounded to a fine powder with liquid nitrogen. Total RNA
was isolated from each replicate with PureLink RNA Micro Kit (Invitrogen), DNAase treatment
included. RNA purity was confirmed using NanodropTM. A retrotranscription followed by RT-qPCR
was performed.

The retrotranscription was performed using iScript tm cDNA Synthesis Kit (Bio-Rad).
All retrotranscriptions were carried out using a GeneAmp PCR System 2700 (Applied Biosystems):
5 min 25 ◦C, 30 min 42 ◦C, 5 min 85 ◦C, and hold at 4 ◦C. Amplification was carried out with a
MiniOpticon Real Time PCR System (Bio-Rad): 3 min at 95 ◦C and then 39 cycles consisting of 15 s
at 95 ◦C, 30 s at 55 ◦C and 30 s at 72 ◦C, followed by melting curve to check results. To describe the
expression obtained in the analysis, cycle threshold (Ct) was used. Standard curves were calculated
for each gene, and the efficiency values ranged between 90 and 110%. Results for gene expression
were expressed as differential expression by the 2−∆∆Ct method. Sand gene (AT2G28390) was used as
reference gen [79]. Gene primers used are shown in Table 5.

Table 5. Forward and reverse primers used in qPCR analysis.

Forward Primer Reverse Primer

AtNPR1 5′-TATTGTCAARTCTRATGTAGAT 5′-TATTGTCAARTCTRATGTAGAT
AtPR1 5′-AGTTGTTTGGAGAAAGTCAG 5′-GTTCACATAATTCCCACGA
AtICS 5′-GCAAGAATCATGTTCCTACC 5′AATTATCCTGCTGTTACGAG
AtPdf1 5′-TTGTTCTCTTTGCTGCTTTCGA 5′-TTGGCTTCTCGCACAACTTCT

AtLOX2 5′-ACTTGCTCGTCCGGTAATTGG 5′-GTACGGCCTTGCCTGTGAATG
AtMYC2 5′GATGAGGAGGTGACGGATACGGAA 5′-CGCTTTACCAGCTAATCCCGCA
AtPR2 5′-TCGTCTCGATTATGCTCTCTTC 5′-GCAGAATACACAGCATCCAAAA
AtPR3 5′-AAATCAACCTAGCAGGCCACT 5′-GAGGGAGAGGAACACCTTGACT
Sand 5′ -CTGTCTTCTCATCTCTTGTC 5′-TCTTGCAATATGGTTCCTG

At = A. thaliana.

4.8. Metabolic Elicitors’ Extraction and Its Capacity to Induce Systemic Resistance. Third ISR Experiment

Based on data from qPCRs (second ISR experiment), and protection from the first ISR experiment,
two strains were chosen to isolate their metabolic elicitors and check their capacity to mimic bacterial
protection: S. rubidaea N 12.34 because it was the one with best differential expression results (Figure 4)
and B. cereus N 4.1 because it was the Gram-positive one with best protection against disease results
(Table 3).

Metabolic elicitors were extracted according to Sumayo et al. [28] protocol until obtaining n-hexane,
ethyl acetate and n-butanol fractions. Briefly, strains were grown in nutrient broth (CONDA) on a
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rotary shaker (180 rpm) at 28 ◦C for 24 h. Cells were eliminated by centrifugation at 8000× g for 15 min.
Five hundred mL of the obtained supernatant was filtrated by a 0.2 µm nitrocellulose filter. This filtrate
was used to extract metabolic elicitors. First, a double extraction 1:1 (v/v) with n-hexane was made.
The remaining aqueous phase was extracted twice with ethyl acetate (1:1 v/v), and finally, the aqueous
phase was extracted twice with n-butanol (1:1 v/v). The organic phases (n-hexane, ethyl acetate and
n-butanol) were pooled and evaporated to dryness in a rotary evaporator at 50 ◦C. The dry residues
obtained were dissolved in 25 mL of 10% Dimethyl sulfoxide (DMSO).

A third ISR assay on A. thaliana plants to evaluate the ability of the three metabolic elicitor
fractions extracted from N 12.34 and N 4.1 strains was carried out. Four treatments per strain were
defined: (a) Metabolic elicitors in the n-hexane fraction, (b) metabolic elicitors in the ethyl acetate
fraction, (c) metabolic elicitors in the n-butanol fraction, and (e) positive control (BTH [28]). Additional
controls (negative control) with the fractions extracted with n-hexane, ethyl acetate and n-butanol
from nutrient broth (without bacteria) and dissolved in 10% DMSO were also included to ensure that
elicitor effects were due to bacterial components and not to the nutrient broth or the DMSO. All were
pathogen challenged.

A. thaliana was handled as described in the first ISR assay (Figure 8). Treatments were delivered to
seedlings by soil drench (50 µL of the three metabolic elicitor fractions, 10 µL of BTH (positive control),
and 50 µL of each negative control fraction). The pathogen was also inoculated as described in the first
ISR assay. Seventy-two hours after pathogen inoculation, disease severity was recorded and relativized
as in the first ISR experiment (Figure 8).

4.9. RT-qPCR Analysis of the Genes Triggered by Metabolic Elicitor Fractions (Fourth ISR Experiment)

Based on data from the third ISR experiment, another ISR assay was carried out using the protocol
explained above. The two most effective metabolic elicitor fractions against pathogen attack from each
bacteria (n-hexane and ethyl acetate) were used. Differential gene expression of NPR1, PR2 and PDF1
for strain N 12.34 and NPR1, PR3, and PDF1 for strain N 4.1 were analyzed. In the case of strain N 12.34,
analysis was performed at 6 and 12 hapc, and in that of strain N 4.1, at 12 and 24 hapc. Genes and
sampling moments were selected according to previous results of the first qPCR experiment.

A. thaliana was handled as described in the first ISR assay (Figure 8). Treatments were n-hexane
metabolic elicitor fraction from N 12.34, ethyl acetate metabolic elicitor fraction from N 12.34, n-hexane
metabolic elicitor fraction from N 4.1, ethyl acetate metabolic elicitor fraction from N 4.1 and controls
with n-hexane and ethyl acetate (sterile nutrient broth was used to obtain control n-hexane and control
ethyl-acetate fractions). Plants were inoculated by soil drench (50 µL), and challenge inoculation with
P. syringae DC3000 was performed as explained above.

4.10. Statistical Analysis

One-way ANOVA with replicates was used to check the statistical differences in all data
obtained. Prior to ANOVA analysis, homoscedasticity and normality of the variance was checked with
Statgraphics plus 5.1 for Windows, meeting requirements for analysis. When significant differences
appeared (p < 0.05) a Fisher test was used [80].

5. Conclusions

The enormous biotechnological potential of the rhizosphere as a source of bacterial strains capable
of establishing a beneficial relationship with plants and of modifying their defensive metabolism,
improving their ability to defend themselves from pathogen attacks, has been evidenced.

In addition, triggering SA and/or JA/ET defensive pathways by bacteria seem to be more complex
than current description in the literature and the concept of simultaneous elicitation of different
pathways of plant immune system has been reinforced.

Each bacterium had a different effect in the genes studied, even within the same bacterial genus.
In addition, the metabolic elicitors of the two studied strains had different effects to that produced
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by the bacteria, confirming the presence of many different bacterial molecules able to trigger plant
metabolism. This is very interesting since it opens a huge amount of biotechnological possibilities to
develop biological products for agriculture in different situations and plant species
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Abbreviations

BTH Benzothiadiazole
DMSO Dimethyl sulfoxide
ET Ethylene
ETI Effector-triggered immunity
hapc Hours after pathogen challenge
IAA Indole acetic acid
ICS Isochorismate synthase
ISR Induced systemic resistance
JA Jasmonic acid
LOX 2 Lipoxygenase 2
MAMP Microbe-associated molecular pattern
NPR1 Nonexpressor of pathogenesis-related protein 1
PAMP Pathogen-associated molecular pattern
PDF1 Plant defensin 1
PR1 Pathogenesis-related gene 1
PRR Pattern recognition receptor
PTI Pattern-triggered immunity
SA Salicylic acid
SAR Systemic acquired resistance

References

1. Pechanova, O.; Pechan, T. Maize-pathogen interactions: An ongoing combat from a proteomics perspective.
Int. J. Mol. Sci. 2015, 16, 28429–28448. [CrossRef] [PubMed]

2. Miller, R.N.G.; Alves, G.S.C.; Van Sluys, M.-A. Plant immunity: Unravelling the complexity of plant responses
to biotic stresses. Ann. Bot. 2017, 119, 681–687. [CrossRef] [PubMed]

3. Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef] [PubMed]
4. Pel, M.J.; Pieterse, C.M. Microbial recognition and evasion of host immunity. J. Exp. Bot. 2013, 64, 1237–1248.

[CrossRef]
5. Pieterse, C.M.J.; Pel, M.J.C. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol.

2014, 52, 347–375. [CrossRef]
6. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.

Annu. Rev. Phytopathol. 2005, 43, 205–227. [CrossRef]
7. Hammerschmidt, R. Systemic acquired resistance. Adv. Bot. Res. 2009, 51, 173–222. [CrossRef]
8. Pieterse, C.M.J.; Van Pelt, J.A.; Tona, J.; Parchmannb, S.; Mueller, M.J.; Buchala, A.J.; Métrauxc, J.-P.;

Van Loon, L.C. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity
to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant.
Pathol. 2000, 57, 123–134. [CrossRef]

http://dx.doi.org/10.3390/ijms161226106
http://www.ncbi.nlm.nih.gov/pubmed/26633370
http://dx.doi.org/10.1093/aob/mcw284
http://www.ncbi.nlm.nih.gov/pubmed/28375427
http://dx.doi.org/10.1038/nature05286
http://www.ncbi.nlm.nih.gov/pubmed/17108957
http://dx.doi.org/10.1093/jxb/ers262
http://dx.doi.org/10.1146/annurev-phyto-082712-102340
http://dx.doi.org/10.1146/annurev.phyto.43.040204.135923
http://dx.doi.org/10.1146/annurev.phyto.42.040803
http://dx.doi.org/10.1006/pmpp.2000.0291


Plants 2020, 9, 1731 22 of 25

9. Gozzo, F.; Faoro, F. Systemic Acquired Resistance (50 Years after Discovery): Moving from the Lab to the
Field. J. Agric. Food Chem. 2013, 61, 12473–12491. [CrossRef]

10. Pieterse, C.M.J.; Van Loon, L.C. NPR1: The spider in the web of induced resistance signalling pathways.
Curr. Opin. Plant. Biol. 2004, 7, 456–464. [CrossRef]

11. Pieterse, C.M.J.; Van Loon, L.C. Signalling Cascades Involved in Induced Resistance. In Induced Resistance for
Plant Defence; Walters, D., Newton, A.C., Lyon, G., Eds.; Blackwell: London, UK, 2007; pp. 65–88.

12. Berrocal-Lobo, M.; Molina, A.; Solano, R. Constitutive expression of Ethylene-Response-Factor1 in Arabidopsis
confers resistance to several necrotrophic fungi. Plant J. 2002, 29, 23–32. [CrossRef]

13. Lorenzo, O.; Piqueras, R.; Sánchez-Serrano, J.J.; Solano, R. Ethylene response factor integrates signals from
ethylene and jasmonate pathways in plant defense. Plant Cell 2003, 15, 165–178. [CrossRef] [PubMed]

14. Pozo, M.J.; Van Der Ent, S.; Van Loon, L.C.; Pieterse, C.M.J. Transcription factor MYC2 is involved in priming
for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol.
2008, 180, 511–523. [CrossRef] [PubMed]

15. Conrath, U.; Pieterse, C.M.J.; Mauch-Mani, B. Priming in plant-pathogen interactions. Trends Plant Sci. 2002,
7, 210–216. [CrossRef]

16. Conrath, U.; Beckers, G.J.; Flors, V.; García-Agustín, P.; Jakab, G.; Mauch, F.; Newman, M.-A.; Pieterse, C.M.J.;
Poinssot, B.; Pozo, M.J.; et al. Priming: Getting ready for battle. Mol. Plant Microbe Interact. 2006,
19, 1062–1071. [CrossRef] [PubMed]

17. Wu, G.; Liu, Y.; Xu, Y.; Zhang, G.; Shetn, Q.-R.; Zhalng, R. Exploring elicitors of the beneficial rhizobacterium
Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling
pathways. Mol. Plant Microbe Interact. 2018, 31, 560–567. [CrossRef]

18. Garcia, J.A.L.; Probanza, A.; Ramos, B.; Mañero, F.J.G. Genetic variability of rhizobacteria from wild
populations of four Lupinus species based on PCR-RAPDs. J. Plant Nutr. Soil Sci. 2001, 164, 1–7. [CrossRef]

19. Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health.
Trends Plant Sci. 2012, 17, 478–486. [CrossRef]

20. Stringlis, I.A.; Kirstin Feussner, K.Y.; Sietske Van Bentum, R.; Van Verk, M.C.; Berendsen, R.L.; Bakker, P.A.H.;
Feussner, I.; Pieterse, C.M.J. MYB72-dependent coumarin exudation shapes root microbiome assembly to
promote plant health. Proc. Natl. Acad. Sci. USA 2018, 115, E5213–E5222. [CrossRef]

21. Ramos-Solano, B.; Lucas, J.A.; Garcia-Villaraco, A.; Algar, E.; Garcia-Cristobal, J.; Gutiérrez-Mañero, F.J.
Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance
growth and induce systemic resistance in Solanum lycopersicum L. Plant Soil 2010, 334, 189–197. [CrossRef]

22. Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defence.
Ann. Rev. Plant Biol. 2014, 66, 487–511. [CrossRef]

23. Sergeeva, E.; Danielle Hirkala, L.M.; Louise, N.M. Production of indole-3-acetic acid, aromatic amino
acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates.
Plant Soil 2007, 297, 1–13. [CrossRef]

24. Alexander, D.B.; Zuberer, D.A. Use of chrome azurol S reagents to evaluate siderophore production by rhizo-
sphere bacteria. Biol. Fertil. Soils 1991, 12, 39–45. [CrossRef]

25. De Freitas, J.; Banerjee, M.; Germida, J. Phosphate-solubilizing rhizobacteria enhance the growth and yield
but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 1997, 24, 358–364. [CrossRef]

26. Rodríguez-Kábana, R.; Godoy, G.; Morgan-Jones, G.; Shelby, R.A. The determination of soil chitinase activity:
Conditions for assay and ecological studies. Plant Soil 1983, 75, 95–106. [CrossRef]

27. Frändberg, E.; Shnurer, J. Antifungal activity of chitino- lytic bacteria isolated from airtight stored cereal
grain. Can. J. Microbiol. 1998, 44, 121–127. [CrossRef]

28. Sumayo, M.; Hahm, M.-S.; Ghim, S.-Y. Determinants of Plant Growth-promoting Ochrobactrum lupini
KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp.
carotovorum in Tobacco Leaves. Plant Pathol. J. 2013, 29, 174–181. [CrossRef]

29. Lucas, J.A.; Garcia-Villaraco, A.; Ramos, B.; Garcia-Cristobal, J.; Algar, E.; Gutierrez-Mañero, J. Structural and
functional study in the rhizosphere of Oryza sativa L. plants growing under biotic and abiotic stress. J. Appl.
Microbiol. 2013, 115, 218–235. [CrossRef]

30. Aarab, S.; Ollero, F.J.; Megías, M.; Laglaoiu, A.; Bakkali, M.; Arakrak, A. Isolation and screening of bacteria
from rhizospheric soils of rice fields in Northwestern Morocco for different plant growth promotion (PGP)
activities: An in vitro study. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 260–269.

http://dx.doi.org/10.1021/jf404156x
http://dx.doi.org/10.1016/j.pbi.2004.05.006
http://dx.doi.org/10.1046/j.1365-313x.2002.01191.x
http://dx.doi.org/10.1105/tpc.007468
http://www.ncbi.nlm.nih.gov/pubmed/12509529
http://dx.doi.org/10.1111/j.1469-8137.2008.02578.x
http://www.ncbi.nlm.nih.gov/pubmed/18657213
http://dx.doi.org/10.1016/S1360-1385(02)02244-6
http://dx.doi.org/10.1094/MPMI-19-1062
http://www.ncbi.nlm.nih.gov/pubmed/17022170
http://dx.doi.org/10.1094/MPMI-11-17-0273-R
http://dx.doi.org/10.1002/1522-2624(200102)164:1&lt;1::AID-JPLN1&gt;3.0.CO;2-L
http://dx.doi.org/10.1016/j.tplants.2012.04.001
http://dx.doi.org/10.1073/pnas.1722335115
http://dx.doi.org/10.1007/s11104-010-0371-9
http://dx.doi.org/10.1146/annurev-arplant-050213-040012
http://dx.doi.org/10.1007/s11104-007-9314-5
http://dx.doi.org/10.1007/BF00369386
http://dx.doi.org/10.1007/s003740050258
http://dx.doi.org/10.1007/BF02178617
http://dx.doi.org/10.1139/w97-141
http://dx.doi.org/10.5423/PPJ.SI.09.2012.0143
http://dx.doi.org/10.1111/jam.12225


Plants 2020, 9, 1731 23 of 25

31. Anwar, S.; Ali, B.; Sajid, I. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant
Growth Promoting (PGP) Traits and for Agroactive Compounds. Front. Microbiol. 2016, 7, 82. [CrossRef]

32. Yang, Y.; Wang, N.; Guo, X.; Zhang, Y.; Ye, B. Comparative analysis of bacterial community structure in the
rhizosphere of maize by high throughput pyrosequencing. PLoS ONE 2017, 12, e178425. [CrossRef]

33. Zhang, X.; Zhang, R.; Gao, J.; Wang, X.; Fan, F.; Ma, X.; Yin, H.; Zhang, C.; Feng, K.; Deng, Y. Thirty-one
years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial
bacteria. Soil Biol. Biochem. 2017, 104, 208–217. [CrossRef]

34. Raymond, K.; Muller, G.; Matzanke, B. Complexation of iron by siderophores a review of their solution and
structural chemistry and biological function. Top. Curr Chem. 1984, 123, 49–102. [CrossRef]

35. Jin, C.W.; He, Y.F.; Tang, C.X.; Wu, P.; Zheng, S.J. Mechanisms of microbially enhanced Fe acquisition in red
clover (Trifolium pratense L.). Plant. Cell Environ. 2006, 29, 888–897. [CrossRef] [PubMed]

36. Sinclair, S.J.; Johnson, R.; Hamill, J.D. Analysis of would- induced gene expression in Nicotiana species with
contrasting alkaloid profiles. Functional Plant Biol. 2004, 31, 721–729. [CrossRef] [PubMed]

37. Barriuso, J.; Ramos Solano, B.; Fray, R.G.; Cámara, M.; Hartmann, A.; Gutiérrez Mañero, F.J. Transgenic
tomato plants alter quorum sensing in Plant Growth Promoting Rhizo- bacteria. Plant Biotechnol J. 2008,
6, 442–452. [CrossRef]

38. Sid, A.; Ezziyyani, M.; Egea-Gilabert, C.; Candela, M.E. Selecting bacterial strains for use in the biocontrol
of diseases caused by Phytophthora capsici and Alternaria alteranata in sweet pepper plants. Biol. Plant 2003,
47, 569–574. [CrossRef]

39. Adesina, M.F.; Lembke, A.; Costa, R.; Speksnijder, A.; Smalla, K. Screening of bacterial isolates from
various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum:
Site-dependent composition and diversity revealed. Soil Biol. Biochem. 2007, 39, 2818–2828. [CrossRef]

40. Van Loon, L.C.; Bakker, P.; Pieterse, C.M.J. Systemic resistance induced by rhizosphere bacteria.
Annu. Rev. Phytopathol. 1998, 36, 453–483. [CrossRef]

41. Ramamoorthy, V.; Viswanathan, R.; Raguchander, T.; Prakasam, V.; Samiyappan, R. Induction of systemic
resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop. Prot.
2001, 20, 1–11. [CrossRef]

42. Solano, B.R.; Barriuso, J.; Pereyra, M.T.; Domenech, J.; Mañero, F.J.G. Systemic disease protection elicited by
plant growth promoting rhizobacteria strains: Relationship between metabolic responses, systemic disease
protection and biotic elicitors. Phytopathoogy 2008, 98, 451–457. [CrossRef] [PubMed]

43. Petti, C.; Reiber, K.; Ali, S.S.; Berney, M.; Doohan, F.M. Auxin as a player in the biocontrol of Fusarium head
blight disease of barley and its potential as a disease control agent. BMC Plant Biol. 2012, 12, 224. [CrossRef]
[PubMed]

44. Akram, W.; Anjum, T.; Ali, B. Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162,
which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium Wilt. Front.
Plant Sci. 2016, 7, 498. [CrossRef]

45. Martin-Rivilla, H.; Gutierrez-Mañero, F.J.; Gradillas, A.P.; Navarro, M.O.; Andrade, G.; Lucas, J.A.
Identifying the compounds of the metabolic elicitors of Pseudomonas fluorescens N 21.4 responsible for
their ability to induce plant resistance. Plants 2020, 9, 1020. [CrossRef]

46. Kannojia, P.; Choudhary, K.K.; Srivastava, A.K.; Singh, A.K. Chapter Four. PGPR Bioelicitors:
Induced Systemic Resistance (ISR) and proteomic perspective on biocontrol. In PGPR Amelioration in
Sustainable Agriculture; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 67–84.

47. Gutierrez Albanchez, E.; Garcia-Villaraco, A.; Lucas, J.A.; Gutierrez, F.J.; Ramos-Solano, B. Priming fingerprint
induced by Bacillus amyloliquefaciensQV15, a common pattern in Arabidopsis thaliana and in field-grown
blackberry. J. Plant Interact. 2018, 13, 398–408. [CrossRef]

48. Caarls, L.; Pieterse, C.M.J.; Van Wees, S.C.M. How salicylic acid takes transcriptional control over jasmonic
acid signaling. Front. Plant Sci. 2015, 6, 170. [CrossRef] [PubMed]

49. Leon-Reyes, A.; Spoel, S.H.; De Lange, E.S.; Abe, H.; Kobayashi, M.; Tsuda, S.; Millenaar, F.F.; Welschen, R.A.M.;
Ritsema, T.; Pieterse, C.M.J. Ethylene modulates the role of nonexpressor of pathogenesis-related genes1 in
cross talk between salicylate and jasmonate signalling. Plant Physiol. 2009, 149, 1797–1809. [CrossRef]

50. Spoel, S.H.; Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev.
Immunol. 2012, 12, 89–100. [CrossRef]

http://dx.doi.org/10.3389/fmicb.2016.01334
http://dx.doi.org/10.1371/journal.pone.0178425
http://dx.doi.org/10.1016/j.soilbio.2016.10.023
http://dx.doi.org/10.1007/3-540-13099-3_2
http://dx.doi.org/10.1111/j.1365-3040.2005.01468.x
http://www.ncbi.nlm.nih.gov/pubmed/17087472
http://dx.doi.org/10.1071/FP03242
http://www.ncbi.nlm.nih.gov/pubmed/32688942
http://dx.doi.org/10.1111/j.1467-7652.2008.00331.x
http://dx.doi.org/10.1023/B:BIOP.0000041063.38176.4a
http://dx.doi.org/10.1016/j.soilbio.2007.06.004
http://dx.doi.org/10.1146/annurev.phyto.36.1.453
http://dx.doi.org/10.1016/S0261-2194(00)00056-9
http://dx.doi.org/10.1094/PHYTO-98-4-0451
http://www.ncbi.nlm.nih.gov/pubmed/18944194
http://dx.doi.org/10.1186/1471-2229-12-224
http://www.ncbi.nlm.nih.gov/pubmed/23173736
http://dx.doi.org/10.3389/fpls.2016.00498
http://dx.doi.org/10.3390/plants9081020
http://dx.doi.org/10.1080/17429145.2018.1484187
http://dx.doi.org/10.3389/fpls.2015.00170
http://www.ncbi.nlm.nih.gov/pubmed/25859250
http://dx.doi.org/10.1104/pp.108.133926
http://dx.doi.org/10.1038/nri3141


Plants 2020, 9, 1731 24 of 25

51. Liu, L.; Huang, N.; Wang, L.; Ling, H.; Sun, T.; Ahmad, W.; Muhammad, K.; Guo, J.; Xu, L.; Gao, S.; et al.
Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote
effector-triggered immunity. Nat. Commun. 2016, 7, 13099. [CrossRef]

52. Betsuyaku, S.; Katou, S.; Takebayashi, Y.; Sakakibara, H.; Nomura, N.; Fukuda, H. Salicylic acid and Jasmonic
acid pathways are activated in spatially different domains around the infection site during Effector-Triggered
Immunity in Arabidopsis thaliana. Plant Cell Physiol. 2017, 59, 8–16. [CrossRef]

53. Ramirez-Prado, J.S.; Abulfaraj, A.A.; Rayapuram, N.; Benhamed, M.; Hirt, H. Plant Immunity: From signalling
to epigenetic control of defense. Trends Plant Sci. 2018, 9, 833–844. [CrossRef] [PubMed]

54. Munhoz, L.D.; Fonteque, J.P.; Santos, I.M.O.; Navarro, M.O.P.; Simionato, A.S.; Goya Rezende, M.I.;
Balbi-Peña, M.I.; de Oliveira, A.G.; Andrade, G. Control of bacterial stem rot on tomato by extracellular
bioactive compounds produced by Pseudomonas aeruginosa LV strain. Cogent Food Agric. 2017, 35, 1282592.
[CrossRef]

55. Martin-Rivilla, H.; Garcia-Villaraco, A.; Ramos-Solano, B.; Gutierrez-Manero, F.J.; Lucas, J.A. Extracts from
cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while
depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic
Pseudomonas syringae. AoB Plants 2019, 11, plz049. [CrossRef] [PubMed]

56. Martin-Rivilla, H.; Garcia-Villaraco, A.; Ramos-Solano, B.; Gutierrez-Manero, F.J.; Lucas, J.A.
Improving flavonoid metabolismin blackberry leaves and plant fitness by using the bioeffector Pseudomonas
fluorescens N 21.4 and its metabolic elicitors: A biotechnological approach for a more sustainable crop. J. Agric.
Food Chem. 2020, 68, 6170–6180. [CrossRef]

57. Martin-Rivilla, H.; Garcia-Villaraco, A.; Ramos-Solano, B.; Gutierrez-Manero, F.J.; Lucas, J.A. Metabolic
elicitors of Pseudomonas fluorescens N 21.4 elicit flavonoid metabolism in blackberry fruit. J. Sci. Food Agric.
2020, 101, 205–214. [CrossRef]

58. Fatima, S.; Anjum, T. Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against
Fusarium Wilt in Tomato. Front. Plant Sci. 2017, 8, 69. [CrossRef]

59. Van Hulten, M.; Pelser, M.; van Loon, L.C.; Pieterse, C.M.J.; Ton, J. Costs and benefits of priming for defense
in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 5602–5607. [CrossRef]

60. Lucas, J.A.; Garcia-Cristobal, J.; Bonilla, A.; Ramos, B.; Gutiérrez-Mañero, J. Beneficial rhizobacteria from
rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice
seedlings. Plant Physiol. Biochem. 2014, 82, 44–53. [CrossRef]

61. Tang, D.; Wang, G.; Zhou, J.-M. Receptor kinases in plant-pathogen interactions: More than pattern
recognition. Plant Cell 2017, 29, 618–637. [CrossRef]

62. Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and challenges of microbial
application for crop improvement. Front. Plant Sci. 2017, 8, 49. [CrossRef]

63. Rosier, A.; Medeiros, F.H.V.; Bais, H.P. Defining plant growth promoting rhizobacteria molecular and
biochemical networks in beneficial plant-microbe interactions. Plant Soil 2018, 428, 35–55. [CrossRef]

64. Wildermuth, M.C.; Dewdney, J.; Wu, G.; Ausubel, F.M. corrigendum: Isochorismate synthase is required to
synthesize salicylic acid for plant defence. Nature 2002, 417, 571. [CrossRef]

65. Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic Acid, a multifaceted hormone to combat disease.
Annu. Rev. Phytopathol. 2009, 47, 177–206. [CrossRef] [PubMed]

66. Niu, D.D.; Liu, H.X.; Jiang, C.H.; Wang, Y.P.; Wang, Q.Y.; Jin, H.L.; Guo, J.H. The plant growth-promoting
rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously
activating salicylate and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe Interact.
2011, 24, 533–542. [CrossRef]

67. Seyfferth, C.; Tsuda, K. Salicylic acid signal transduction: The initiation of biosynthesis, perception and
transcriptional reprogramming. Front. Plant Sci. 2014, 5, 697. [CrossRef]

68. Nie, P.; Li, X.; Wang, S.; Guo, J.; Zhao, H.; Niu, D. Induced Systemic Resistance against Botrytis cinerea by Bacillus
cereus AR156 through a JA/ET- and NPR1-Dependent Signalling Pathway and Activates PAMP-Triggered
Immunity in Arabidopsis. Front. Plant Sci. 2017, 8, 238. [CrossRef]

69. Ding, Y.; Sun, T.; Ao, K.; Peng, Y.; Zhang, Y.; Li, X.; Zhang, Y. Opposite Roles of Salicylic Acid Receptors NPR1
and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell 2018, 173, 1454–1467. [CrossRef]

70. Kazan, K. A new twist in SA signalling. Nature Plants 2018, 4, 327–328. [CrossRef]

http://dx.doi.org/10.1038/ncomms13099
http://dx.doi.org/10.1093/pcp/pcx181
http://dx.doi.org/10.1016/j.tplants.2018.06.004
http://www.ncbi.nlm.nih.gov/pubmed/29970339
http://dx.doi.org/10.1080/23311932.2017.1282592
http://dx.doi.org/10.1093/aobpla/plz049
http://www.ncbi.nlm.nih.gov/pubmed/31632627
http://dx.doi.org/10.1021/acs.jafc.0c01169
http://dx.doi.org/10.1002/jsfa.10632
http://dx.doi.org/10.3389/fpls.2017.00848
http://dx.doi.org/10.1073/pnas.0510213103
http://dx.doi.org/10.1016/j.plaphy.2014.05.007
http://dx.doi.org/10.1105/tpc.16.00891
http://dx.doi.org/10.3389/fpls.2017.00049
http://dx.doi.org/10.1007/s11104-018-3679-5
http://dx.doi.org/10.1038/417571a
http://dx.doi.org/10.1146/annurev.phyto.050908.135202
http://www.ncbi.nlm.nih.gov/pubmed/19400653
http://dx.doi.org/10.1094/MPMI-09-10-0213
http://dx.doi.org/10.3389/fpls.2014.00697
http://dx.doi.org/10.3389/fpls.2017.00238
http://dx.doi.org/10.1016/j.cell.2018.03.044
http://dx.doi.org/10.1038/s41477-018-0171-4


Plants 2020, 9, 1731 25 of 25

71. Lorenzo, O.; Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol.
2005, 8, 532–540. [CrossRef] [PubMed]

72. Pangesti, N.; Pineda, A.; Dicke, M.; Van Loon, J.J.A. Variation in plant-mediated interactions between
rhizobacteria and caterpillars: Potential role of soil composition. Plant Biol. 2014, 17, 474–483. [CrossRef]

73. Du, M.; Zhao, J.; Tzeng, D.T.W.; Liu, Y.; Deng, L.; Yang, T.; Zhai, Q.; Wu, F.; Huang, Z.; Zhou, M.; et al.
MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity
in tomato. Plant Cell 2017, 29, 1883–1906. [CrossRef]

74. Van Loon, L.C.; Van Strien, E.A. The families of pathogenesis-related proteins, their activities, and comparative
analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 1999, 55, 85–97. [CrossRef]

75. Jeandet, P.; Clément, C.; Courot, E.; Cordelier, S. Modulation of Phytoalexin Biosynthesis in Engineered
Plants for Disease Resistance. Int. J. Mol. Sci. 2013, 14, 14136–14170. [CrossRef] [PubMed]

76. Lemarié, S. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic
Clubroot Agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol. 2015, 56, 2158–2168. [PubMed]

77. Jiang, C.-H.; Fan, Z.-H.; Xie, P.; Guo, J.-H. Bacillus cereus AR156 extracellular polysaccharides served as
a novel micro-associated molecular pattern to induced systemic immunity to Pst DC3000 in Arabidopsis.
Front. Microbiol. 2016, 7, 977. [CrossRef] [PubMed]

78. Silva, M.S.; Arraes, F.B.M.; Campos, M.A.; Grossi-de-Sa, M.; Fernandez, D.; Candido, E.S.; Cardoso, M.H.;
Franco, O.L.; Grossi-de-Sa, M.F. Review: Potential biotechnological assets related to plant immunity
modulation applicable in engineering disease-resistant crops. Plant Sci. 2018, 270, 72–84. [CrossRef]
[PubMed]

79. Remans, T.; Smeets, K.; Opdenakker, K.; Mathijsen, D.; Vangronsveld, J.; Cuypers, A. Normalisation of
real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal
concentrations. Planta 2008, 227, 1343–1349. [CrossRef]

80. Sokal, R.R.; Rohlf, F.J. Introducción a la Bioestadística; Editorial Reverte, S.A., Ed.; Editorial Reverte: Barcelona,
Spain, 1980; p. 362.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.pbi.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16039901
http://dx.doi.org/10.1111/plb.12265
http://dx.doi.org/10.1105/tpc.16.00953
http://dx.doi.org/10.1006/pmpp.1999.0213
http://dx.doi.org/10.3390/ijms140714136
http://www.ncbi.nlm.nih.gov/pubmed/23880860
http://www.ncbi.nlm.nih.gov/pubmed/26363358
http://dx.doi.org/10.3389/fmicb.2016.00664
http://www.ncbi.nlm.nih.gov/pubmed/27242694
http://dx.doi.org/10.1016/j.plantsci.2018.02.013
http://www.ncbi.nlm.nih.gov/pubmed/29576088
http://dx.doi.org/10.1007/s00425-008-0706-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Beneficial Rhizobacteria Screening: Phylogenetic Tree and Biochemical Tests 
	ISR by Beneficial Rhizobacteria 
	ISR by Metabolic Elicitors 

	Discussion 
	Material and Methods 
	Origin of Bacteria 
	16S rRNA Partial Sequencing Phylogenetic Analysis 
	Phylogenetic Tree 
	Biochemical Tests for Putative Beneficial Rhizobacteria Traits 
	First ISR Experiment. Screening for Isolates Able to Induce Systemic Resistance 
	Second ISR Experiment. Study of the Signal Transduction Pathway Involved in Plant Protection 
	RNA Extraction and RT-qPCR Analysis (Second ISR Experiment) 
	Metabolic Elicitors’ Extraction and Its Capacity to Induce Systemic Resistance. Third ISR Experiment 
	RT-qPCR Analysis of the Genes Triggered by Metabolic Elicitor Fractions (Fourth ISR Experiment) 
	Statistical Analysis 

	Conclusions 
	References

