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Abstract: In 2014 and 2021, two nucleic-acid vaccine candidates named MAV E2 and VGX-3100
completed phase III clinical trials in Mexico and U.S., respectively, for patients with human papillo-
mavirus (HPV)-related, high-grade squamous intraepithelial lesions (HSIL). These well-tolerated
but still unlicensed vaccines encode distinct HPV antigens (E2 versus E6+E7) to elicit cell-mediated
immune responses; their clinical efficacy, as measured by HSIL regression or cure, was modest when
compared with placebo or surgery (conization), but both proved highly effective in clearing HPV
infection, which should help further optimize strategies for enhancing vaccine immunogenicity,
toward an ultimate goal of preventing malignancies in millions of patients who are living with persis-
tent, oncogenic HPV infection but are not expected to benefit from current, prophylactic vaccines.
The major roadblocks to a highly efficacious and practical product remain challenging and can be
classified into five categories: (i) getting the vaccines into the right cells for efficient expression
and presentation of HPV antigens (fusion proteins or epitopes); (ii) having adequate coverage of
oncogenic HPV types, beyond the current focus on HPV-16 and -18; (iii) directing immune protection
to various epithelial niches, especially anogenital mucosa and upper aerodigestive tract where HPV-
transformed cells wreak havoc; (iv) establishing the time window and vaccination regimen, including
dosage, interval and even combination therapy, for achieving maximum efficacy; and (v) validating
therapeutic efficacy in patients with poor prognosis because of advanced, recurrent or non-resectable
malignancies. Overall, the room for improvements is still large enough that continuing efforts for
research and development will very likely extend into the next decade.
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1. Introduction: The Need for Developing Therapeutic, Anti-HPV Vaccines

Persistent infection with oncogenic types of human papillomavirus (HPV), including
HPV-16, -18, -31, -33, -45, -52, -58 and close to 20 others, predisposes patients to cervical,
penile, vulvar, vaginal, anal, and oropharyngeal malignancies [1–9]. Globally, these HPV-
associated malignancies account for 4.5% of all human cancers, with an estimated annual
case burden between 500,000 and 600,000 since 2012 [2,10]. Cervical cancer is also the
second most common malignancy in women and disproportionally affects developing
countries [2,11–13]. Although two prophylactic vaccines, Gardasil (introduced in 2006) [14]
and Cervarix (in use since 2009) [15], are highly effective in preventing new infections with
oncogenic HPV-16 and -18, as well as low-risk HPV-6 and -11, the anti-HPV immunity
induced by these commercially available vaccines is driven by antigens (i.e., recombinant
capsid proteins) [14–16] that are rarely present in HPV-transformed cells. Accordingly,
millions of patients who are living with persistent, oncogenic HPV infection or HPV-
associated malignancies are not expected to benefit from these existing products [17,18].

Viruses 2022, 14, 239. https://doi.org/10.3390/v14020239 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14020239
https://doi.org/10.3390/v14020239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-0137-7486
https://orcid.org/0000-0003-1388-6691
https://doi.org/10.3390/v14020239
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14020239?type=check_update&version=2


Viruses 2022, 14, 239 2 of 17

Instead, new, therapeutic anti-HPV vaccines must target other HPV proteins, especially E6
and E7 that are the primary oncogenic factors [19–22].

The roads to therapeutic, anti-HPV vaccines have seen a steady flow of traffic in the
past two decades, as reflected by the large number of research articles directly related to
this topic: a survey conducted in November 2021 revealed 73 PubMed papers in 1999–2004,
165 in 2005–2009, 120 in 2010–2014, and 228 in 2015–2021 (Figure 1). An initial screening
of clinical trials registered at ClinicalTrials.gov yielded more than 130 entries related to
therapeutic DNA vaccines (the apparent front runners).
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Figure 1. Strategies for screening and filtering current literature for a focused review. Given the large
numbers of clinical trials and related literature, as already captured by two major public databases,
our goal here is to summarize the current status of research and development toward therapeutic,
anti-HPV DNA vaccines, with a focus on insights and expectations, as well as questions about
potential consensus, remaining gaps and future directions for refinements or improvements. CTL,
cytotoxic T-lymphocyte; MOA, mechanism of action.

Despite all the premises and advantages of research and development (R&D) toward
therapeutic, anti-HPV DNA vaccines (Figure 2), there are still no licensed products in the
market, which raises three questions: (i) Is it possible to draw some consensus from past
and ongoing efforts, especially clinical trials and high-impact studies? (ii) Are there gaps,
roadblocks or bottlenecks that future R&D must deal with? (iii) How is the current R&D
landscape likely to evolve, in terms of refinements and improvements? Our review will
attempt to answer these lingering questions based on existing data in both academic and
industrial arenas, with an emphasis on realistic deliverables and evidence from proof of
concept research. Ramifications of the latest technological success in developing mRNA-
based vaccines, which have a much shorter timeline than traditional pipelines, are also
discussed to a limited extent.
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lactic HPV vaccines that induce HPV-specific antibodies to neutralize invading viruses, therapeutic
DNA vaccines against HPV-induced malignancies must induce cytotoxic T-lymphocytes (CTLs) to
eliminate HPV-infected or -transformed cells in patients with chronic/persistent infections [23,24].
Several critical components are color-coded. APCs, antigen-presenting cells; HLA-I, human leukocyte
antigen class I (class I heavy chain); β2m, β2 microglobulin (class I light chain).

2. Key Advantages in Developing Therapeutic, Anti-HPV Vaccines

DNA vaccines encoding tumor-specific antigens are highly attractive because of their
ability to induce potent, cell-mediated immunity (as reviewed in refs. [25–29]). To develop
therapeutic, anti-HPV vaccines, at least three major advantages are apparent. First, the HPV
genome is relatively simple and small, with a circular, double-stranded DNA consisting
of just nine open reading frames encoding seven early (E) proteins that govern viral
replication and two late (L) proteins that form the viral capsid [6,8]. Since most (~90%)
HPV infection leads to spontaneous clearance (self-cure) within two years, correlates of
immune protection against these pathogens are readily defined. As such, there is a general
consensus about the viral antigens and specific epitopes that should be targeted as the main
immunogen in vaccine designs (Table 1). Second, a variety of clinically proven techniques,
including regular Pap smears (for cervical cancer), tissue biopsies and analysis of HPV
DNA, can routinely facilitate early diagnosis of HPV-associated malignancies [30–32]. Many
patients with histologically confirmed, high-grade squamous intraepithelial lesion (HSIL,
the equivalent of stage 2 and stage 3 cervical intraepithelial neoplasia, or CIN2/3), can be
recruited for clinical trials without being confounded by other host factors, especially old
age and compromised immune functions that a wide spectrum of aging-related cancers
must confront. Indeed, most therapeutic HPV vaccines that have reached phase I clinical
trials and beyond rely on HSIL regression and clearance of HPV DNA (instead of patient
survival) as two key indicators of vaccine efficacy. Third, patients with persistent HPV
infection and progress to malignancies are known to have immune memories against
various HPV epitopes [33], some of which (e.g., E1, E2 and E5 epitopes) fall beyond E6
and E7 [7,34] but can be harnessed for enhancing vaccine efficacy, either indirectly by
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serving as natural immune adjuvants (through cytokine induction) or directly by triggering
anamnestic immune responses when these epitopes are added to the vaccine constructs.

Table 1. Oncogenic HPV-derived epitopes that are known to induce or enhance cytotoxic T-
lymphocyte (CTL) responses in preclinical and clinical studies.

Host HPV Type CTL Epitope CTL Epitope Sequence MHC Restriction Reference(s)

Mouse HPV-16 E6 (aa 48–57) EVYDFAFRDL (EVL10) H-2K PMC479075 [35]

Mouse HPV-16 E7 (aa 49–57) RAHYNIVTF (RAF9) H-2D PMID: 7,690,326 [36]

Human HPV-16 E6 (aa 11–19) KLPQLCTEV (KL9V) b HLA-A*02 PMC5444324 [37]

Human HPV-16 E6 (aa 29–37) a TIHDIILEC (TIC9) HLA-B*48 PMC1182184 [38]

Human HPV-16 E6 (aa 29–38) a TIHDIILECV (TIV10) HLA-A*02 PMC1797519 [39]

Human HPV-16 E6 (aa 31–38) a HDIILECV (HDV8) HLA-B*40 PMC1797519 [39]

Human HPV-16 E6 (aa 52–61) FAFRDLCIVY (FAY9) HLA-B*35, -B*57 PMID: 15,358,648 [40],
PMC1182184 [38]

Human HPV-16 E6 (aa 72–80) KISEYRHYC (KIC9) HLA-A*02 PMC5444324 [37]

Human HPV-16 E6 (aa 90–99) QLYNKPLCDV (QLV10) b HLA-A*02 PMC5444324 [37]

Human HPV-16 E7 (aa 11–19) YMLDLQPET (YMT9) HLA-A*02 PMC5444324 [37]

Human HPV-16 E7 (aa 11–20) YMLDLQPETT (YMT10) HLA-A*02 PMID: 7,538,538 [41]

Human HPV-16 E7 (aa 7–15) TLHEYMLDL (YLL9) HLA-A*02, -B*48 PMID: 15,358,648 [40],
PMC5444324 [37]

Human HPV-16 E7 (aa 61–69) CDSTLRLCV (CDV9) HLA-A*24 PMID: 21,918,960 [42]

Human HPV-16 E7 (aa 67–76) LCVQSTHVDI (LCI10) HLA-A*24 PMID: 21,918,960 [42]

Human HPV-16 E7 (aa 77–86) RTLEDLLMGV (RTV10) b HLA-A*02 PMC5444324 [37]

Human HPV-16 E7 (aa 79–87) LEDLLMGTL (LEL9) HLA-B*60 PMID: 15,358,648 [40]

Human HPV-16 E7 (aa 82–90) LLMGTLGIV (LLV9) HLA-A*02 PMID: 7,538,538 [41]

Human HPV-16 E7 (aa 86–93) TLGIVCPI (TLI8) HLA-A*02 PMID: 7,538,538 [41]

Human HPV-18 E6 (aa 13–21) KLPDLCTEL (KLL9) HLA-A*02 PMID: 11,300,474 [43]

Human HPV-18 E6 (aa 36–44) KTVLELTEV (KTV9) HLA-A*02 PMID: 11,300,474 [43]

Human HPV-18 E6 (aa 50–58) ELTEVFEFA (ELA9) HLA-A*02 PMID: 11,300,474 [43]

Human HPV-18 E6 (aa 54–62) VVYRDSIPH (VVH9) HLA-A*11 PMID: 19,738,415 [44]

Human HPV-18/45 E6 (aa 67–75) KCIDFYSRI (KCI9) HLA-A*02 PMID: 16,353,149 [40]

Human HPV-18 E6 (aa 84–92) SVYGDTLEK (SVK9) HLA-A*11 PMID: 19,738,415 [44]

Human HPV-18 E7 (aa 7–15) TLQDIVLHL (TLL9) HLA-A*02 PMID: 11,300,474 [43]

Human HPV-18 E7 (aa 81–95) DDLRAFQQLFLNTLS
(DDS15) c HLA-A*02, *11, *24 & 33 PMC4145224 [45]

Human HPV-18 E7 (aa 86–94) FQQLFLNTL (FQI9) HLA-A*02 PMID: 12,569,558 [40]

Human HPV-18 E7 (aa 88–97) QLFLNTLSFV (QLV10) HLA-A*02 PMID: 11,426,965 [46]

Human HPV-18 E7 (aa 89–103) LFLNTLSFVCPWCAS
(LFS15)c HLA-A*02, *11, *24 & 33 PMC4145224 [45]

a Substantial overlapping in these epitope sequences. b Amino acid substitutions (bold and underlined) are
introduced to enhance epitope affinity. c Each of these 15mer peptides contains multiple optimal epitopes.
Abbreviations: aa, amino acid; HLA, human leukocyte antigen; MHC, major histocompatibility complex.

Additional advantages range from collaborative spirits to public interests. As HPV-
associated conditions are at the intersection of infectious disease (immunology) and on-
cology, investigators with diverse expertise often join force to find ways to carry the field
forward across regional and international boundaries [47–50]. Public interests in HPV-
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associated malignancies are also obvious because of their relevance to reproductive health.
Indeed, a campaign launched by the World Health Organization in 2020 aimed to reduce
global cervical cancer rate to less than 4 cases per 100,000 women-years through active
vaccination, screening and treatment (a 90-70-90 goal) [51]. The current R&D pipeline has
further benefited from the availability of various resources, including in vitro systems for
the propagation of infectious viruses (e.g., the HPV-18 organotypic cultures) [52] and pre-
clinical models for testing vaccine efficacy against two major oncogenic subtypes (HPV-16
and -18) [36,53]. The widely used TC-1, a murine tumor cell line that expresses HPV-16
E6 and E7 (a key measure of authentication), facilitates direct comparison of research data
from various laboratories.

3. Factors That Hinder Efforts for Vaccine Development

Oncogenic HPV is well-known for its ability to evade host immune responses [54–56],
with three HPV proteins (E5, E6 and E7) interfering with both innate (e.g., interferon)
immune pathways and the antigen-processing and -presenting machinery embedded
in the major histocompatibility complex (MHC). These viral attributes impair immune
surveillance by cytotoxic T-lymphocytes (CTLs) and may also vary by tissue compartments,
as the polycistronic HPV gene expression patterns are often site-specific [57,58] or depend
on the stage of disease progression [57,59].

Poor immunogenicity of two major oncoproteins, E6 and E7, has also proved to be
challenging [60]. To date, the number of known CTL epitopes defined in preclinical and
clinical studies has remained small [36–41,43–46], and they tend to favor HPV-16 versus
HPV-18 epitopes (Table 1). The list may change substantially if some of the predicted
CTL epitopes [7,61–63] are validated experimentally, while epitopes beyond the E6 and E7
oncoproteins, including those in E5 [64–70], may help expand the spectrum of CTL targets
as well [24].

The HLA class I (HLA-I) alleles known to recognize HPV CTL epitopes are also lim-
ited, with HLA-A*02 (mostly A*02:01) leading the way (Table 1), and data about other
HLA-I alleles are sparse. In silico studies using immunoinformatics tools have occasion-
ally attempted to provide pertinent information about population coverage by potential
epitopes [7,61–63], but regional and ethnic differences in the actual distribution of HLA-I
alleles and supertypes [71,72] often obscure such efforts.

4. Strategies for Enhancing Immunogenicity of Therapeutic DNA Vaccines

Two common tactics—codon optimization in vaccine design and electroporation in
vaccine delivery—seem to be effective in enhancing the immunogenicity of HPV E6- and
E7-based DNA vaccines (Table 2), and the use of nanoplasmids to evade host intracellular
defense has also gained some traction [73,74]. Other modifications have been shown to:
(i) prevent extracellular DNA degradation (e.g., using a nano-carrier), (ii) guide plasmid
DNA to professional antigen-presenting cells (APCs), including dendritic cells that can
cross-present epitopes to both CD4 and CD8 T-cells [75]; (iii) co-deliver T-helper epitopes
to tune up CTL functionality [76]; (iv) improve the efficiency of DNA transfection; (v) facil-
itate nuclear entry of plasmid DNA, (vi) minimize the interference of plasmid or vector
backbones, and (vii) combine different immunomodulatory agents to achieve synergis-
tic effects [77,78]. These alternative strategies, however, remain at the preclinical phase
of evaluation.
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Table 2. Attributes of four therapeutic DNA vaccine candidates that have shown promising results
against multiple HPV serotypes during or beyond phase I clinical trials.

Attributes Four Promising DNA Vaccine Candidates a as of October 2021

Vaccine name MVA E2 VGX-3100 GX-188E pBI-11

Backbone Vaccinia virus Ankara Two synthetic
plasmids/pVAX Plasmid/pGX27 pNGVL4a-Sig/E7(detox)

Encoded antigen Cross-reactive E2
(bovine papilloma virus) E6 & E7 (HPV-16 & -18) E6 & E7 (HPV-16 & -18) E6 & E7 (HPV-16 & -18)

Codon optimization NA Yes Yes Yes

Other modification NA Domain deletions NA Various mutations
(e.g., C24G & E26G)

Vaccine adjuvant NA NA NA Mtb HSP70 d

Companion vaccine b NA NA NA TA-HPV e (IM)

Delivery Injection, site-specific IM, with electroporation IM, with electroporation IM

Dosage 6, weekly 3 3 2 pBI-11 + 1 TA-HPV

N in phase I trial 36 women [79] 18 women [80] 9 women [81] 30 women f [82]

Phase I registration ID Not applicable NCT00685412 NCT01634503 NCT00788164 g

Trial site(s) Mexico U.S. South Korea U.S.

Target condition CIN1-3 CIN2/3 CIN3 CIN3

Trial end points CIN resolution
& HPV clearance

CIN regression
& HPV clearance

CIN regression
& HPV clearance

CIN regression
& HPV clearance

Phase III trial Yes, in 1176 women &
180 men c

Yes, in 193 subjects
(mITT) NA NA

Latest report PMC4270165 [83] Website [84] PMID: 31,727,676 [85] PMC7845631 [75]
and NCT00788164 g

License NA NA NA NA
a Three additional therapeutic DNA vaccines against HPV-16 alone (mono-specificity) [86–88] have reached phase
I trial as well, as discussed in the text. b As used in various combinations. c No randomization and no placebo
control. d Heat shock protein 70 helps direct vaccine immunogen to dendritic cells [75]. e TA-HPV is a recombinant
vaccinia virus expressing E6 and E7 for HPV-16 and -18 [89], being tested in various treatment groups. f Split
into four treatment groups. g Ongoing until July 2022. Abbreviations: CIN, cervical intraepithelial neoplasia; IM,
intramuscular; mITT, protocol-defined modified intention to treat group; Mtb, Mycobacterium tuberculosis; NA,
not applicable.

To overcome limited choice of T-cell epitopes in the short E6 protein (158 amino acids)
and E7 (105 amino acids), there is some success in the selective introduction of point
mutations that enhance CTL responses [37]. In the case of HLA-A*02-restricted epitopes,
KLV9 and RTV10 (Table 1) each has a single amino acid substitution beyond the anchoring
positions. The induced CTL clones are expected to readily recognize the wild-type epitopes.
The use of fusion proteins should also help expand the antigenic repertoire and boost
vaccine immunogenicity [24,60,86,90].

5. Bottlenecks in Preclinical Systems

As in other drug development, preclinical evaluations are essential to the elucidation
of pharmacodynamics and pharmacokinetics, as well as toxicity/safety profiles. For the
preclinical evaluation of anti-HPV vaccines, protective immunity is typically determined in
mice engrafted with a murine tumor cell line, TC-1, which expresses HPV-16-specific E6
and E8 [53] or HPV-18 E6 after further modification [91]. Because MHC-TCR interaction
is a prerequisite for T-cell activation, preclinical experiments must be done in C57BL/6
(B6) mice only [92]. Vaccines targeting other HPV antigens or E6 and E7 from non-HPV-
16/18 types must also come up with alternative preclinical systems, including different
mouse strains.
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6. Vaccine Candidates That Have Completed Phase III Clinical Trials

Two promising DNA vaccine candidates against HSIL have gone through phase
III clinical trials in Mexico and U.S., respectively (Figure 3). The first, MVA E2, was in-
tended to induce cross-protective immunity using bovine papillomavirus (BHV)-specific
E2 antigen inserted into a vaccinia virus (Table 2). Performances of MVA E2 at various
developmental stages (over a 14-year period) are readily available in peer-reviewed publi-
cations [79,83,93–95]. The largest trial so far, as reported in 2014 [83], recruited 1356 patients
(including 1176 women) who received six tissue-specific injections of 1 × 107 MVA E2 virus
particles at weekly intervals. Overall, 1051 (89%) women showed complete elimination
of intraepithelial lesions after treatment, and 81% women cleared oncogenic HPV [83].
Among 180 men who received MVA E2, all cleared intraepithelial lesions [83]. However, in
the absence of a control group for side-by-side comparison, the actual efficacy (and its con-
fidence interval) of this vaccination protocol could not be established. An earlier phase II
trial did reveal that 31 out of 34 HSIL women (91%) who received MVA E2 either had
total elimination of CIN2/3 or showed a 50% reduction in lesion sizes, with all vaccinated
women having elevated CTLs and reduced HPV viral load. In comparison, 80% of women
in the control (conization treatment, n = 20) group had total elimination of CIN2/3 without
clearing HPV [95]. The 11% difference between the two patient groups was marginal,
although the viral load and CTL data in the vaccination group may eventually translate to
improved long-term benefits (e.g., a potential reduction in CIN recurrence rate), as around
15% of patients with surgical procedures may have persistent/recurrent CIN in follow-up
visits [96].
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that have completed phase III clinical trials in patients with HPV-related pre-cancerous conditions
(mostly high-grade squamous intraepithelial lesions). The results from key developmental stages are
readily available in peer-reviewed publications [79,80,83,93–95,97,98,100] or online resources [84,99].
The lead authors of two highly cited studies (more than 250 citations each) are underlined.

The second therapeutic candidate, VGX-3100, uses a mixture of two plasmids contain-
ing codon-optimized sequences corresponding to the E6 and E7 genes of HPV-16 and -18
(Table 2). The four developmental stages (preclinical and clinical evaluations) (Figure 3)
lasted 13 years [80,84,97–100]. Data from the latest phase III trial (the REVEAL 1 Study), in
the form of a press release in March 2021 [84], indicated that this vaccine met its primary
endpoint in a modified intent-to-treat (mITT) analysis (i.e., excluding eight patients without
sufficient results)—within the mITT subset (N = 193), 23.7% of 131 patients in the vaccinated
group responded (with HSIL regression and HPV clearance), while 11.3% of 62 patients
in the placebo group did so at week 36. The rates of non-responders in both groups were
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quite high when compared with results for MVA E2 [83,95], but the modest vaccination
efficacy (12.4% difference, 95% confidence interval = 0.4% to 22.5%) did exceed a statistical
threshold (p = 0.02). A concurrent phase III trial involving 198 participants (REVEAL 2) is
expected to reach its primary endpoint in July 2022 [101]. Of note, the same vaccine has also
shown promising phase II results in treating HPV-16/18-associated anal dysplasia [102]
and vulvar dysplasia [103].

In terms of mechanism of action, the BPV E2 antigen encoded by MVA E2 is intended
to induce immune responses that are cross-protective against HPV—a practice similar to
the one used for the highly successful smallpox vaccine. A clear advantage with MVA
E2 is the potential activation of tissue-resident T-cells around the HSIL sites (through
repeated local injections). Although little is known about the repertoire of conserved CTL
epitopes shared between BPV and HPV E2 proteins [104], a recent analysis of HPV-specific,
tumor-inflitrating lymphocytes (TILs) from patients with head and neck cancer does reveal
that E2, along with E5, can be prominent targets for therapeutic vaccines as both antigens
are rich with experimentally verified CTL epitopes [34]. In contrast, VGX-3100 uses naked
plasmids to deliver HPV E6 and E7 antigens that differ among HPV types, coupled with a
proprietary delivery system for needle-free electroporation, a technique that is known to
substantially enhance T-cell immunity [105–109]. The resulting effector T-cells, however,
must travel a long way to reach their target cells before launching a strenuous battle in an
unfriendly environment.

Adverse effects associated with site-specific injection of MVA E2 vaccine ranged from
headache and transient fever to abdominal and joint pains that were observed at various
frequencies (6% to 69%), all of which were considered mild (grade 1, no need for immediate
intervention) [83,95]. For VGX-3100 that required IM injection and electroporation, the
phase III trial did not identify serious adverse events related to treatment; mild to moderate
adverse events were mostly self-resolving, as seen in earlier clinical trials [84].

Overall, MVA E2 and VGX-3100 differ so starkly in their design, delivery system,
administration sites, dose schedules and efficacy (Table 2) that it is just impossible to
draw a consensus conclusion about the right approach. The odds of getting both MVA
E2 and VGX-3100 licensed for marketing are still low: the overall success rate from phase
III to regulatory approval is around 50%, with oncology products on the lower extreme
(<40%) [110,111].

7. Promising Leads from Other Vaccine Candidates That Have Gone through
Clinical Trials

Two other DNA vaccines against multiple HPV types (HPV-16 and -18) have completed
phase I trials in South Korea (NCT01634503) and U.S. (NCT00788164) (Table 2). The results
for the GX-188E vaccine were reported in 2014 [81], while those for pBI-11 were announced
seven years later [82]. Both showed positive results in terms of tolerance, CIN regression
and HPV clearance, when delivered intramuscularly either alone or in modified protocols
(e.g., in combination with a second vaccine). The multifaceted NCT00788164 trial is still
ongoing until summer 2022.

Four additional DNA vaccine candidates target HPV-16 only (i.e., mono-specificity)
in phase I or phase I/IIa trials, and their results were published between 2004 and
2021 [86–88,112,113]. Again, E6 and E7 antigens are the sole immunogens, and vaccines
were delivered through intradermal or intramuscular injections, with the exception of a
DNA tattoo vaccine [87]. Of note, two of these vaccines each has a built-in adjuvant: IL-2 in
TG4001 [112] and MIP-1α in VB10.16 [114]. A third candidate, AMV002 (formerly known as
NTC-HPV16-E6/E7), involves partial codon optimization that retains portions of wild-type
HPV sequences to ensure a simultaneous induction of innate immune responses [115]. The
refinements provided by partial codon optimization are not trivial, as immune responses to
cryptic epitopes introduced by codon optimization are known to divert T-cell responses
away from the intended (authentic) epitopes [116].
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Assuming that these candidates will successfully complete phase II and then advance
to phase III trials, the timeline for completing these phases, as set by MVA E2 and VGX-3100
(Figure 3), ranges from six to eight years. Adding the extra time (about two years) required
for collecting confirmatory data and securing regulatory approval, the best scenario is to
see one of these existing candidates approved in 8–10 years. In other words, it may take
another decade for these ongoing pipelines to deliver a final product.

8. Directions for Further Refinements

Therapeutic vaccine candidates that work well against HSIL (Table 2) may not live
up to expectations for more advanced malignancies that are immunosuppressive and
highly heterogeneous in nature [27,117]. In the worst scenario, several apparent bottlenecks
(Table 3) may force new R&D efforts back to square one: the selection of protective CTL
epitopes that are endogenous in HPV-infected and -transformed cells. For example, a recent
study provides convincing evidence that multiple CTL epitopes in HPV E5 may also serve
as prominent targets for therapeutic vaccines [34].

Table 3. Summary of key points drawn from past and ongoing R&D toward a DNA-based, anti-HPV
vaccine.

R&D Staging Bottleneck(s) Directions for Improvement

Vaccine design Limited choice of suitable
CTL epitopes a Testing fusion proteins that expand the coverage of CTL epitopes

Delivery Not always efficient, with
few adjuvants Using LNP and nanoplasmids; directing APC-specific gene expression d

Preclinical system Poor coverage
(mostly HPV-16-related) b

Rendering TC-1 to also express HPV-18-derived E6 and E7; developing
in vitro systems for rapid assessment of immunogenicity

Clinical trials Limited efficacy data for
cancer patients c

Comparing monotherapy versus combination therapy for late-stage patients
with poor prognosis

a Especially in the two main HPV oncoproteins, E6 and E7 (as shown in Table 1). b Can be expanded to cover
HPV-18 (Table 1). c To date, most trials have involved precancer patients only (Table 2). d As for cell-specific gene
editing (CRISPR-Cas9) [118]. Abbreviations: APC, antigen-presenting cell; LNP, lipid nanoparticle (~80–200 nm
in diameter) [119].

In the classic immunological toolbox, proper use of immune adjuvants improves the
magnitude, breadth and durability of immune responses to protein-based vaccines [120],
but the choice and formulation of adjuvants for enhancing CTL responses [121] or inducing
polyfunctional CD4-cells to aid efficient and durable anti-tumor immunity [122] are not
always clear. Activation of natural killer (NK) cells that prime dendritic cells toward a
cross-talk with both CD4 and CD8 T-cells [123] is another worthy avenue, but reiterative
assessment of these cellular mechanisms will undoubtedly further delay the R&D progress.

A new frontline in cancer immunotherapy focuses on the direct modulation of the
tumor microenvironment [124,125]. In particular, T-cell inhibitory receptors can be blocked
by commercially available antibodies against several T-cell checkpoint inhibitors (e.g., PD-1
and PD-L1) [126–129]. Cultivation of TILs for adoptive cell therapy is another area of active
research [130–132] that may eventually translate to combination therapy [133].

The success of new clinical trials may further depend on biomarkers of cancer invasive-
ness and prognosis, as patient enrollment and data analyses can be tweaked to maximize
therapeutic outcomes [134–138]. Indeed, clinical trials using biomarkers for patient selec-
tion seem to have a much higher success rate than trials without biomarkers [110,111].

9. Ramifications of Recent Success in the Development of mRNA Vaccines

The COVID-19 pandemic has brought a drastic change to the landscape of vaccine
R&D [139] after two preventive mRNA vaccines against SARS-CoV-2 infection beat all the
DNA vaccines in receiving a green light first for emergency use authorization and then get-
ting a formal approval by the US Food and Drug Administration for large scale use in adults
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and adolescents [140–142]. Early perceptions and concerns about acute and chronic adverse
effects have been mostly dismissed [143–145], even for young children who are 5–11 years
old [146]. The overwhelming and paradigm-shifting successes seen with mRNA vaccines
in the Western world force all R&D teams to at least reckon with the idea that existing
mRNA vaccine platforms can be geared toward the rapid and cost-effective development
of the next-generation therapeutic vaccines of medical and veterinary importance.

Much effort and many resources are being redirected to these new, spot-lighted av-
enues, but one must first and foremost recognize that access to mRNA vaccines is still lim-
ited to a handful of nations where logistics with mRNA vaccine manufacturing, transport
and storage are well within their reaches. Unless mRNA vaccines and the nanotechnol-
ogy (lipid nanoparticle) behind them [119,147,148] can be reformulated to ensure mRNA
integrity at ambient temperatures, preferably for weeks or even months, they are simply
unpractical in resource-limiting communities. Thus, stable and cost-effective DNA vac-
cines that require less stringent conditions for the manufacturing process and also have
a much longer shelf-life than mRNA vaccines still have important roles to play in the
foreseeable future.

10. Conclusions

Following decades of heroic efforts, a steady progress in various R&D pipelines for
developing therapeutic DNA vaccines against HPV-associated malignancies still falls short
of delivering a final (licensed) product to advance patient care. Two leading candidates
have shown modest efficacy in late-stage clinical trials, but they share no further similarity
to allow any other consensus, even about the very basics of target immunogens and delivery
systems. The lessons learned from these and other candidate vaccines with clinical data,
along with analyses of HPV-specific TILs, point to multiple gaps and bottlenecks that
remain challenging. As such, the field may require rounds of reiterative evaluation of
alternative strategies for optimal results.
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