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Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has spread worldwide as a severe pandemic and caused enormous global health and eco-
nomical damage. Since December 2019, more than 197 million cases have been reported, causing 4.2 mil-
lion deaths. In the settings of pandemic it is an urgent necessity for the development of an effective
COVID-19 treatment. While in-vitro screening of hundreds of antibodies isolated from convalescent
patients is challenging due to its high cost, use of computational methods may provide an attractive solu-
tion in selecting the top candidates. Here, we developed a computational approach (SARS-AB) for binding
prediction of spike protein SARS-CoV-2 with monoclonal antibodies. We validated our approach using
existing structures in the protein data bank (PDB), and demonstrated its prediction power in antibody-
spike protein binding prediction. We further tested its performance using antibody sequences from the
literature where crystal structure is not available, and observed a high prediction accuracy
(AUC = 99.6%). Finally, we demonstrated that SARS-AB can be used to design effective antibodies against
novel SARS-CoV-2 mutants that might escape the current antibody protections. We believe that SARS-AB
can significantly accelerate the discovery of neutralizing antibodies against SARS-CoV-2 and its mutants.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Three highly pathogenic human coronaviruses have emerged
during the past 20 years, including the Middle East respiratory syn-
drome coronavirus (MERS-CoV), the severe acute respiratory syn-
drome coronavirus (SARS-CoV), and a 2019 novel coronavirus
(SARS-CoV-2) [1–3]. Among them, SARS-CoV-2 has exceeded both
SARS-CoV and MERS-CoV in its rate of transmission among
humans [4–5], and caused the global pandemic of COVID-19.

Recently, three COVID-19 vaccines have been authorized in the
United States for emergency use by the US Food and Drug Admin-
istration (FDA). Pfizer and Moderna vaccines work by delivering
mRNA into host cells to allow expression of the SARS-CoV-2 S anti-
gen [6–7], while Johnson&Johnson vaccine represents a viral vec-
tor. The vaccine elicits an immune response to the S antigen,
which protects against COVID-19. In addition to the prophylactic
approach, COVID-19 therapies based on monoclonal antibodies
have also been developed to treat mild to moderate COVID-19 in
adults and pediatric patients with positive results of direct SARS-
CoV-2 viral testing and who are at high risk for progressing to sev-
ere COVID-19 [8]. Nonetheless, the development of antibody ther-
apies against COVID-19 is still at the beginning phase, with the
purpose to overcome multiple virus variants that might escape
the current reagents [9].

Although antibody therapy can be extremely effective in treat-
ing COVID-19 and preventing severe disease symptoms, finding
high-affinity antibodies usually requires the labor intensive
screening assays, which cannot scale up to more than a few thou-
sand of target sequences. Therefore, a computational method that
reliably predicts RBD-binding antibodies accelerate antibody dis-
covery and reduce the cost. In this work, we developed a novel
computational approach (SARS-AB) based on molecular dynamics
(MD) simulations and an energy estimation method of
antibodies-RBD-SARS-CoV-2 contacts. MD simulations have been
successfully used in drug discovery [10–13], lead optimization,
exploring structural changes in proteins, providing energetic infor-
mation about protein and ligand interactions, and validation of
protein–ligand models deposited to PDB [14]. The proposed
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SARS-AB performs de novo prediction of the binding energy of a
given antibody to the RBD region directly from the full-length anti-
body DNA or protein sequences, which can be applied to most anti-
body screening studies to identify promising therapeutic
candidates against SARS-CoV-2. We benchmarked SARS-AB using
putative RBD neutralizing antibodies from the recent literature to
evaluate its ability to distinguish SARS-CoV-2 binders from non-
binders, where SARS-AB achieved 100% accuracy. Finally, SARS-
AB was validated using independent datasets of experimentally
acquired antibodies without available crystal structures, and con-
sistently reached high prediction accuracies (AUC = 99.6%).

New variants of SARS-CoV-2 may cause rapid spread and anti-
body neutralization escape of the virus [15]. The greatest concern
is caused by a new lineages of SARS-CoV-2 in South Africa, 501Y.
V2, which contains multiple mutations in RBD (N501Y, K417N
and E484K) and NTD domains (L18F, D80A, D215G, D242–244,
and R246I) [16], Brazil, P.1, which harbors 21 lineage-defining
mutations including three in RBD (N501Y, K417T, E484K) [17]
India, B.1.617.2 [18], containing two mutations in RBD (L452R,
T478K) and the latest severe acute SARS-CoV-2 Omicron variant
B.1.1.529 containing 15 mutations in the RBD domain. The 501Y.
V2, P.1, B.1.617.2 and B.1.1.529 variants have been associated with
virus increased transmissibility and neutralization escape from
some classes of SARS-CoV-2 monoclonal antibodies [18–21]. In this
work we made an attempt to predict the impact of 501Y.V2, P.1
and B.1.1.529 spike amino acid changes on a binding affinity of
potent antibody, Regdanvimab, and proposed the possible modifi-
cations of this antibody to maintain a high neutralization activity
against new variant of SARS-CoV-2 found in South Africa and
Brazil.

2. Methods

2.1. Study design

The goal of this study was to develop a computational approach,
which would allow to implement a virtual screening of antibodies
against SARS-CoV-2 protein. This goal was achieved through the
development of SARS-AB method that is based on MD simulations
and ranking of antibodies based on the energy of antibody-S pro-
tein contacts. Two datasets were generated and analyzed in this
study: (a) a dataset of 20 antibodies obtained from the protein data
bank, (b) additional dataset of 30 experimentally acquired antibod-
ies. The details of SARS-AB and dataset categories are described
below.

2.2. Antibody selection

In order to test the ability of SARS-AB to distinguish SARS-CoV-2
binders from non-binders a total of 20 structural entries were
obtained from the PDB. The accession numbers of all 20 structures
are shown in the Table 1. The dataset contains 10 antibodies neu-
tralizing SARS-CoV-2 protein and 10 anti-Flu antibodies, which
were considered as a negative control.

For independent validation of SARS-AB we obtained 3 addi-
tional datasets:

(A) First dataset contained 15 anti-SARS-CoV-2 antibodies, 11 of
them were experimentally acquired antibodies without
available crystal structures and 4 were recently deposited
to the PDB (Table 2). To represent non-binders we randomly
selected antibodies with different neutralization activities
from the PDB. They included 2 antibodies effective against
cytomegalovirus (pdb id 5C6T, 5VOB), 3 anti-meningitides
antibodies (pdb id 5T5F, 2YPV, 2MPA), 4 anti-hepatitis C
2213
virus antibodies (pdb id 6meh, 4WHT, 5KZP, 5VXR) and 4
anti-HIV-1 antibodies (pdb id 1E6J, 5F9W, 1RZ8, 1RZG)
(Table 2). Due to the highly specific interactions of these
antibodies with their targets, selected antibodies are not
expected to be cross-reactive with SARS-CoV-2.

(B) A second dataset was extracted from a work of Li et al. [80].
The authors did single cell RNA and immune repertoire pro-
filing of 16 COVID-19 patients at the time of hospital dis-
charge. As a result of bioinformatics analysis authors
identified 347 potential antigen-specific B cell receptors,
from which 100 antibodies were chosen for the screening
assay. Here, we selected top 70 of these 100 antibodies for
our computational analysis.

(C) A third dataset contained 37 humanized mouse antibodies
from our in-house analysis.

2.3. Obtaining 3D model of antibody.

When available, the 3D model of antibody was downloaded
from the PDB. In other cases antibody was built using SWISS-
MODEL software by providing the full-length antibody sequence.
SWISS-MODEL is a bioinformatics web-server dedicated to homol-
ogy modeling of 3D protein structures [72]. In order to provide
objective assessments of modelling performance, SWISS-MODEL
participates in the CAMEO project (Continuous Automated Model
Evaluation, https://cameo3d.org) [81]. Based on the CAMEO results
in the ‘3D Structure Prediction’ category, SWISS-MODEL is consis-
tently ranked among the top-modelling servers [72].

2.4. SARS-AB pipeline

2.4.1. Molecular dynamics simulations
The crystal structure of SARS-CoV-2 protein was obtained from

Protein Data Bank (PDB code 7C01). In order to speed up MD only
RBD domain of SARS-CoV-2 protein was used during simulations.
The initial binding mode of SARS-CoV-2 with antibody was mod-
eled similar to the interaction mode of SARS-CoV-2 with neutraliz-
ing antibody CB6 (PDB code 7C01). For that each built antibody
was aligned with CB6-SARS-CoV-2 model from 7C01 in Chimera
software [73]. The aligned structure was saved and minimized
for 3000 steps using NAMD [82]. Next, structure was solvated in
a rectangular box such that the minimum distance to the edge of
the box was 10 Å under periodic boundary conditions in VMD
[83]. Na and Cl ions were added to neutralize the protein charge,
then further ions were added to mimic a salt solution concentra-
tion of 0.15 M. The system was minimized for 200 steps and grad-
ually heated to 310 K. Each complex was equilibrated with NVT
ensemble at 310 K for 1 ns. Further production run was performed
for 10 ns with NPT ensemble using NAMD software [82]. A cutoff
distance of 12 Å for Coulomb and van der Waals interactions was
used. Long-range electrostatics were evaluated through the Parti-
cle Mesh Ewald method. The integration time step was 2 fs with
all bonds involving hydrogen atoms constrained using the SHAKE
algorithm [84]. Trajectory snapshots were saved every 50 000
steps for further analysis. UCSF Chimera [73] were employed to
analyze and visualize the MD trajectories and to render the molec-
ular graphics.

2.4.2. Ranking of antibodies using energy of antibody-SARS-CoV-2
contacts

A number of software tools have been proposed for predicting
binding affinities of complexes [85–87]. These methods are based
on the evaluation of energies calculated from protein structures
and utilize different scoring functions. While several scoring func-
tions exist, semi-empirical force field function provides a fast esti-
mation of the interaction energy in biological systems. The most

https://cameo3d.org
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common protein force-field approaches include AMBER, CHARMM,
GROMOS and OPLS [88]. All these approaches use similar form of
the potential energy function for estimation of the interaction
energy of non-bonded atoms.

Here, we estimated energy of antibody-SARS-CoV-2 contacts
using the semi-empirical force field as implemented in AutoDock-
Tools and LigEnergy [14,74], and described in Huey et al. [75]. This
scoring function is based on the AMBER force field and was calcu-
lated as following:
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The first term represents the 12-6 Lennard-Jones potential for
dispersion/repulsion interactions. The second term is a hydrogen-
bond energy estimated by 10-12 potential, where E(t) is direction-
ality of the hydrogen-bond interactions, which estimated accord-
ing to Boobbyer et al. and Huey et al. Energy of electrostatic
interactions is calculated based on the Coulomb potential. The last
term is desolvation potential, which includes the volume (V) sur-
rounding a given atom, weighted by the solvation parameter (S)
and an exponential term based on the distance [75].

The values of energies of antibody-SARS-CoV-2 contacts were
estimated for each studied antibody for the snapshots of the last
1 ns of MD simulations. It resulted in 10 values of energies for each
antibody; their average value provided a single energy score. The
ranking of studied antibodies was implemented based on the
energy scores.

2.4.3. Estimation of energy scores with test dataset
The 3D models of anti-SARS-CoV-2 antibodies in complex with

RBD S protein were obtained from the PDB. The energy scores for
all 10 anti-SARS-CoV-2 antibodies were estimated according to
Eq. (1). As antibody-protein structures were available we didn’t
run MD simulations for these complexes.

For 10 anti-Flu antibodies we downloaded antibody’s 3D mod-
els from PDB and followed SARS-AB pipeline as described above:
ran MD simulations and estimated energy scores.

2.4.4. Estimation of energy scores with validation datasets
For independent validation of SARS-AB we followed the full

SARS-AB pipeline: we built models of all studied antibodies using
SWISS-MODEL software, ran MD simulations and ranked antibod-
ies by their energy scores.

2.4.5. Antibody expression and purification
The Regdanvimab and its analogs DNA sequences variable

regions were synthesized in GenScript. The heavy and light chain
variable regions were inserted into pfuse2ss-chig-hg1 and
pfuse2ss-clig-hl2 (InvivoGen) vector accordingly. Antibodies were
produced using ExpiCHO cells (Thermo Fisher). 8 days after trans-
fection, antibodies were purified from medium using Protein A/G
resin (Thermo Fisher). After dialysis in PBS, antibodies were used
in neutralization assay. Antibodies’ concentrations were measured
by BCA (Bicinchoninic Acid) Protein Assay (Thermo Fisher).

2.5. Pseudovirus generation

SARS-CoV-2 pseudovirus were generated following published
paper [89]. HIV-1 pseudovirus coated with SARS-cov2 Spike pro-
tein were produced in 293T cells by co-transfecting pcDNA3.1-
Spike with HIV-1 NL4-3 DEnv DVpr Luciferase Reporter Vector.
Mutant pseudovirus were produced by mutagenesis on wild-type
2214
pcDNA3.1-Spike vectors. The mutation are as follows: UK Variant
B.1.1.7 (501Y.V1) 6970del + N501Y; South Africa Variant B.1.351
(501Y.V2) K417N + E484K + N501Y; Brazil Variant P.1 (501Y.V3)
K417T + E484K + N501Y.
2.6. Pseudovirus neutralization assay

The pseudovirus neutralization assays were performed using
ACE2-Expressing Huh-7. Huh-7 cells (100 lL, 5 � 103 in DMEM)
were added to 96 well-plate for overnight incubation. Various con-
centrations of mAbs (4-fold serial dilution with starting point at
30 lg/mL, 50 lL aliquots, triplicates) were mixed with the same
volume of SARS-CoV-2 pseudovirus in a 96 well-plate. The mixture
was incubated for 1 h at 37 �C, supplied with 5% CO2. No virus con-
trol wells were supplied with 100 lL DMEM (1% (v/v) antibiotics,
25 nM HEPES, 10% (v/v) FBS). Virus only control wells were sup-
plied with 50 lL DMEM and 50 lL pseudovirus. After 1 h, medium
was removed from Huh-7 cells, and then 100 lL pseudovirus and
antibody mixture were added into Huh-7 cells containing plates.
The 96-well plates were incubated for 48 h at 37 �C supplied with
5% CO2. After the incubation, supernatants were removed, and
100 lL Nano-Glo� Luciferase Assay Reagent (Promega) (1:1 diluted
in PBS) was added to each well and incubated for 5 mins. After the
incubation, the Luminescence was measured using CLARIOstar Plus
Microplate Reader (BMG labtech). The relative luciferase unit (RLU)
was calculated by normalizing Luminescence signal to virus only
control group. IC50 were determined by a four-parameter nonlinear
regression using GraphPad Prism 9.0 (GraphPad Software Inc.).
3. Results

3.1. Binding prediction of SARS-CoV-2 with monoclonal antibodies

We developed a computational approach based on MD simula-
tions to estimate the binding energy of protein-antibody complex
and predict interactions of S protein SARS-CoV-2 with monoclonal
antibodies. The spike (S) protein is the major surface antigen of
SARS-CoV-2 [22], which mediates viral entry into host cells by
binding to the host receptor ACE2 through the RBD [4]. As of July
30, 2021, more than 3,000 SARS-CoV-2 monoclonal antibodies
have been reported in 47 different studies [20,23–69]. 753 anti-
bodies were shown to bind RBD [20,23–69], 427 of which had a
measurable neutralization activity (Table S1, data taken from
CoV-AbDab [70]) [20,23–69]. We analyzed the V gene usage in
these antibodies (Fig. S1) and found that IGHV3-53, IGHV3-66
and IGHV1-2 are the most dominant heavy chain genes, which is
in line with previous studies [22,71]. Currently, the structures of
43 human antibodies in complex with SARS-CoV-2 are available
in PDB. Yuan et al. have shown that antibodies can be clustered
based on the interactions with 3 different RBD binding sites: recep-
tor binding site (RBS), CR3022 cryptic site and S309 proteoglycan
site [71]. The antibodies that bind the RBS can be further sub-
divided into sub-groups according to the angle of approach to
RBD and their relative disposition on the surface of RBS [71]. The
crystallographic studies of antibodies encoded by IGHV3-53 and
IGHV3-66 revealed that they bind the same epitopes of RBS, while
representatives of IGHV1-2 family bind in the close proximity.
These antibodies represent 36% of all discovered by now antibodies
with SARS-CoV-2 neutralization activity and will be used as tem-
plate structures for our computational analysis. A structural and
crystallographic analysis of CB6, a representative IGHV3-53 anti-
body (pdb id 7C01), revealed that CB6 recognizes an epitope that
overlaps with ACE2 binding site in the RBD-SARS-CoV-2, and
thereby interface with virus-receptor interactions by both steric
hindrance and direct competition for interface residues [23]. In this
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work, we used 7C01 as a template structure to model antibody–S
protein interactions.

The SARS-AB method is as follows (Fig. 1): First, we have built
antibody’s 3Dmodel using SWISS-MODEL software [72]. It is a fully
automated protein structure homology-modeling server, which
takes sequence of antibody as input and outputs its 3D model.
The 3D model represents a structure of a molecule with x,y,z coor-
dinates of the atom positions. Next, we performed a superposition
of 3D model of antibody with the selected template structure using
the Chimera software [73]. The purpose of superposition is to place
antibody on the same binding site of RBD S protein as in the tem-
plate structure. All files for the MD simulations were prepared as
described in Methods. Simulation studies of 10 nano-seconds
(ns) for all the selected antibody-RBD-SARS-CoV-2 complexes were
performed. The energy of antibody–RBD contacts was estimated as
implemented in AutoDock Tools [74–75] and in the LigEnergy
module [14]. The AutoDock free energy scoring function is based
on the AMBER force field and was parameterized using a large
number of protein-inhibitor complexes [74].
3.2. Performance evaluation of SARS-AB on a dataset with crystal
structures

To evaluate the ability of SARS-AB to distinguish true RBD bin-
ders from the non-binders, we generated a dataset containing 20
antibodies, with half known to neutralize SARS-CoV-2 and the
other half effective against human influenza virus. Due to the
highly specific interactions of these antibodies with their targets,
the anti-flu antibodies are not expected to be cross-reactive with
SARS-CoV-2, and they were considered as negative control. The
PDB accession numbers of all the 20 structures are available in
Table S2. We ran SARS-AB to estimate the binding energy of each
of the 20 antibody-RBD complexes. The purpose of this step is to
test if estimated energy, as a single predictor, is sufficient to distin-
guish true RBD binders from the non-binders. As expected, anti-
SARS-CoV-2 antibodies showed higher affinity to S protein than
Fig. 1. The SARS-AB pipeline. The pipeline starts with building 3D model of an antibody
template structure (pdb 7C01) using Chimera software. Then, we prepare files for MD
solvation and ionization, heating and equilibration of structure in VMD and NAMD. Nex
antibody-RBD contacts using AutoDock Tools.
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anti-Flu antibodies. The 10 anti-SARS-CoV-2 antibodies had a neg-
ative energy between �30.59 and �22.25 kcal/mol while energy of
anti-flu antibodies with S protein were unanimously higher than
�15.5 kcal/mol (Table S2, Fig. 2A).

As expected, the antibody with the highest affinity to SARS-
CoV-2 is CB6, which is the template structure used in SARS-AB. It
was shown that this antibody specifically recognize RBD and block
the binding of the SARS-CoV-2 RBD to ACE2. The antibody’s heavy
chain dominates the interaction with RBD by all three
complementarity-determining region (CDR) loops forming
hydrophobic interactions and polar contacts, while light chain
forms limited contacts with RBD (Fig. S2). The structural and ener-
getic analysis implemented for anti-Flu antibodies showed that
these antibodies fail to form strong interactions between the their
CDR loops and S protein. These results indicated that the energy
estimation in SARS-AB faithfully reflect the structural interactions.
Therefore, we used the estimated energy to predict the binding sta-
tus, with strong SARS-CoV-2 binders having interaction energy
lower then �22 kcal/mol and non-binders having energy higher
than �15.5 kcal/mol. Using binding energy as a single predictor,
SARS-AB reached an AUC of 100% (Fig. 2B).
3.3. Validation of SARS-AB on an independent dataset without crystal
structures

To evaluate if SARS-AB can predict RBD binding antibodies
without knowing the structure, we created a validation dataset
containing equal amount of binders and non-binders of SARS-
CoV-2 from recent literature. Cao et al. reported S protein neutral-
izing antibodies identified by high-throughput single-cell RNA and
VDJ sequencing of antigen-enriched B cells from 60 convalescent
patients [28]. From this work we selected all the neutralizing anti-
bodies with full-length sequences available. We also randomly
selected antibodies with diverse reactivity from PDB database as
negative control, but left out the structural information. In total,
our dataset contained 15 binders and 15 non-binders of SARS-
using SWISS-MODEL software. Next, we do superposition of built antibody with a
simulation, which includes minimization of antibody-RBD SARS-CoV-2 structure,
t, we run 10 ns of MD simulation in NAMD. The last step is to estimate energy of



Fig. 2. SARS-AB ability to distinguish SARS-CoV-2 binders from non-binders. (A) Energy score distribution across 20 antibody-RBD-SARS-CoV-2 complexes displayed as violin
plots. Binders correspond to 10 anti-SARS-CoV-2 antibodies, non-binders are 10 anti-Flu antibodies. (B) ROC curve measuring the performance of SARS-AB in distinguishing
SARS-CoV-2 binders from non-binders for a dataset of 20 antibodies.
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CoV-2 (Table S3). We implemented SARS-AB to estimate the inter-
action energy for all 30 antibodies with RBD, blind to the binder
class labels. The distribution of estimated binding energy score
showed near perfect separation between binders and non-
binders (Fig. 3A). The cluster of SARS-CoV-2 binders has median
value of �23.23 kcal/mol, whereas the non-binders has signifi-
cantly higher median energy of �11.24 kcal/mol (p = 2.58�10�8).
To date, in this dataset, BD-501 failed the downstream neuraliza-
tion assay, as it had high KD and IC-50 values [28]. SARS-AB cor-
rectly assigned a higher binding energy and predicted it to be a
non-binder.

Further, SARS-AB predicted interaction energies are consistent
with those estimated from the experimental data. All predicted
strong binders have low values of interaction energy (<�22 kcal/-
mol) that correspond to their high binding affinity to the RBD
(KD < 2 nM). All 15 non-binders, except BD-495, have much higher
interaction energy (>�15.5 kcal/mol). Only BD-495 has lower value
Fig 3. Predictive performance of SARS-AB. (A) Energy score distribution of 30 antibodies d
independent dataset of 30 antibodies.
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of interaction energy, �18.44 kcal/mol, that may be a result from
its low RBD binding affinity, but still measurable neutralizing
activity, to RBD SARS-CoV-2 (KD > 50 nM, IC50 = 18.1 lg/mL). These
data strongly suggested that the energy estimation by SARS-AB
truthfully reflect the experimentally measured binding affinity.
Indeed, when using the binding energy as a single predictor,
SARS-AB can separate anti-SARS-CoV-2 antibodies from non-
binders with 99.6% AUC (Fig. 3B) for this independent test cohort.

Interestingly, several true-binders from this dataset differ by
only a few amino acids [28], which allowed us to contrast the
RBD binders and non-binders with high resolution. Specifically,
we selected two antibodies – a true binder, BD-505, and non-
binder, BD-495 (Fig. 4A,B, Table S3), and investigated their pre-
dicted docking structures. These two antibodies are encoded by
the same VH, JH and VL genes with a difference in JL combination.
The sequences of CDR3H loops are different by 4 amino acids and
CDR3L sequences are almost identical (Fig. 4C). Our modeling sug-
isplayed as violin plots. (B) ROC curve measuring the performance of SARS-AB on an



Fig. 4. The structures of BD-505-RBD-SARS-CoV-2 and BD-495-RBD-SARS-CoV-2. (A) H-bonds and hydrophobic interactions between CDR3H BD-505 and RBD-SARS-CoV-2
are shown. RBD is coloured blue, light chain of BD-505 is coloured green and heavy chain is yellow. (B) H-bonds and hydrophobic interactions between CDR3H BD-495 and
RBD-SARS-CoV-2 are shown. (C) CDR3 sequence comparison and VDJ combination for BD-505 and BD-495 antibodies. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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gests that the heavy chain of antibody BD-505 forms overall stron-
ger H-bonds, VDW and hydrophobic interactions with RBD in con-
trast to BD-495. Close investigation over the contacts formed
between CDR3H of antibodies with RBD revealed different interac-
tions of the two antibodies. R99 of BD-505 formed H-bond with
Q493 RBD,V100 and V101 create hydrophobic interactions with
L455 (Fig. 4A). Unlike BD-505, BD-495 was unable to make H-
bonds between atoms of CDR3H and RBD, and forms only
hydrophobic interactions between I100 and L455, F456. The light
chain of BD-495 forms weaker VDW interactions with RBD com-
pared to BD-505 antibody. The BD-495 loose H-bond between
D28 of antibody and Y505 RBD (Fig. 4B). This analysis identified
critical residues on the RBD region for antibody recognition.

3.4. Binding prediction of wild type SARS-CoV-2, 501Y.V2 and P.1
variants with monoclonal antibody Regdanvimab (CT-P59) and its
analogs

Some of the recently emerged variants of SARS-CoV-2, including
501Y.V2, P.1 and B.1.1.529, are more contagious and potentially
more fatal [15]. Concerns have been raised that the new variants
could escape antibody protection in immunized individuals, or
the existing antibody drugs. Regdanvimab is a potent monoclonal
antibody, which received conditional marketing authorization
from the Korean Ministry of Food and Drug Safety [76], and is
under discussion with U.S. FDA for emergency use authorization.
It was recently announced [77] that antibody’s neutralizing activ-
ity was weak against 501Y.V2 and P.1 variants, and completely lost
against Omicron [21]. Therefore, we next applied SARS-AB to
investigate how it interacts with the mutant Spike protein of the
501Y.V2, P.1 and B.1.1.529 variants.

The crystal structure of Regdanvimab in complex with SARS-
CoV-2 has been obtained from literature (PDB: 7CM4) [78]. The
501Y.V2/P.1 variants contain 3 amino acid changes from the orig-
inal SARS-CoV-2 (N501Y, K417N/T and E484K). The latest severe
acute respiratory syndrome coronavirus 2 variant Omicron
2217
(B.1.1.529) has more than 30 mutations in its spike (S) protein,
15 of which occur in the receptor binding domain (RBD). In order
to evaluate how 501Y.V2, P.1 and B1.1.529 mutations affect the
Regdanvimab binding, we ran SARS-AB to predict the interaction
energy of Regdanvimab binding to either 501Y.V2, P.1, B1.1.529
or to the wild type (WT) SARS-CoV-2 complex from the PDB.
Expectedly, the complex with WT SARS-CoV-2 showed stronger
interaction energy with Regdanvimab, �22.4 kcal/mol, where for
the mutants, the binding energy changed to �17.6 kcal/mol,
decreased by 21.4% for 501Y.V2, �20.9 kcal/mol for P.1 and
�10.1 kcal/mol for B1.1.529 variant. To understand what structural
changes have caused this difference, we compared the contacts
formed by antibody with WT SARS-CoV-2, the 501Y.V2 variant,
P.1 strain and Omicron variant (Fig. 5A–D). The Regdanvimab
forms H-bonds between R109 VH and E484 SARS-CoV-2, and
between Y33 VL and E484 of WT SARS-CoV-2. The S32 of VH makes
VDW contacts with K417 of WT S RBD (Fig. 5A). The K417N and
E484K mutations in 501Y.V2 variant lead to the loss of H-bonds
between R109 VH and K484 RBD, which increased the distance
between chains to 10.3 Å. The mutations also weakened the inter-
actions between S32 VH and N417 (distance is 5.4 Å, Fig. 5B). The
E484K mutation in P.1 strain also abolish the formation of hydro-
gen bonds between residues K484 and R109, while K484 makes
VDW interactions with Y111 (distance is 4.6 Å, Fig. 5C), which
helps to stabilize the complex and results in a lower binding
energy compared to the 501Y.V2 variant. Based on the above
results, we concluded that the loss of two strong hydrogen bonds
and weakened VDW interactions induced by E484K and K417N/T
can significantly decrease the binding of Regdanvimab with
501Y.V2 and P.1 variants. The loss of two hydrogen bonds between
E484A, K417N and Regdanvimab as well as the loss of contacts
with Q493R and Q498R of S protein (Fig. 5D) allows Omicron strain
to completely escape from neutralization by antibody.

Next we sought to identify minimum modification(s) to the
original sequence of Regdanvimab that could restore its interaction
with 501Y.V2, P.1 and B.1.1.529. We created a number of Regdan-



Fig. 5. Comparison of contacts formed by Regdanvimab with SARS-CoV-2 and 501Y.V2 SARS-CoV-2. (A) Structure of Regdanvimab with WT SARS-CoV-2. (B) Structure of
Regdanvimab with 501Y.V2 SARS-CoV-2. (C) Structure of Regdanvimab with P.1 SARS-CoV-2. (D) Structure of Regdanvimab with Omicron variant. (E) Structure of
Regdanvimab analog (S32E, R109E) with P.1 SARS-CoV-2. (F) Structure of Regdanvimab analog (K55G, D56S, D57G, G102T, R109L, Y111F) with Omicron. RBD is coloured blue,
light chain of antibody is coloured green and heavy chain is yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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vimab analogs by mutating amino acids on the CDR loops of heavy
chain, and investigated their binding affinity using SARS-AB pipe-
line in order to find antibody with improved affinity to 501Y.V2,
P.1 and B.1.1.529 SARS-CoV-2. We found that S32E and R109E
mutations in VH of antibody (mut 1) can restore the interaction
energy (-21.6 kcal/mol and �21.7 kcal/mol) between antibody
and the new variants (501Y.V2 and P.1). This improved energy is
a result of additional stabilization of the antibody-S RBD P.1 com-
plex by a formation of H-bonds between E32 VH and T417 RBD
(distance is 2.6 Å), and between E109 VH and K484 RBD (distance
is 2.7 Å, Fig. 5E). The same binding pose was predicted for a com-
plex of antibody with 501Y.V2 variant. Thus, the proposed modifi-
cation of Regdanvimab could potentially make it effective against
the 501Y.V2 and P.1 variants of SARS-CoV-2 and re-establish anti-
body protection against the virus. For a number of tested antibod-
ies against Omicron, SARS-AB predicted the Regdanvimab analog
2218
(K55G, D56S, D57G, G102T, R109L, Y111F) to be a B1.1.529 binder
with interaction energy �16.1 kcal/mol. The antibody forms 2
hydrogen bonds between Y60, S56 of H chain and R493 of S pro-
tein, one hydrogen bond between T102 and G485, and additionally
stabilized by hydrophobic interactions between F111 and F490
(Fig. 5F). The proposed modifications should restore an antiviral
activity of Regdanvimab analog against B.1.1.529 variant.

Next, we aimed to confirm SARS-AB predictions in-vitro. We
purified the proteins of the original Regdanvimab and all 5 analogs,
and performed neutralization assays against WT SARS-CoV-2,
501Y.V2, P.1, B1.1.7 and D614G pseudo viruses (Fig. 6). The Reg-
danvimab showed slight decrease of neutralization of P.1 variant
(IC50 = 0.149 lg/mL) compared to WT SARS-CoV-2 (IC50 = 0.086 l
g/mL). As predicted by SARS-AB, the Regdanvimab showed
decreased neutralization against 501Y.V2 variant (IC50 = 0.243 lg/
mL) compared to WT and P.1 strains. The Regdanvimab analogs



Redg WT Redg mut1 Redg mut2 Redg mut3 Redg mut4 Redg mut5

WT 0.08589 0.02733 0.02872 Unstable 0.02049 0.01370

D614G 0.2517 0.1754 0.06914 Unstable 0.05700 0.03487

P.1 0.1485 0.06569 0.1237 Unstable 0.09379 0.05878

B.1.351 0.2425 0.1362 0.2055 Unstable 0.1853 0.1235

B.1.1.7 0.01600 0.2659 0.1975 Unstable 0.6057 0.3888

Fig. 6. The pseudovirus neutralization assay. (A) The inhibition curve for Regdanvimab and its analogs in different pseudovirus types. Pseudovirus carry luciferase reporter
gene and its titer can be determined with luminescence. The relative luciferase unit (RLU) were measured at 48 h after infection. The neutralization activity of antibodies can
be determined by RLU fold change. The x-axis shows the antibody concentrations, and the y-axis shows %RLU. (B) IC50 for Regdanvimab and its analogs are shown in the
tables. IC50 values are in ug/mL. Five different analogs have been studied, containing 2 to 4 mutations in heavy chain compared to the original Regdanvimab antibody.
Mutants/analogs have the following mutations: mut 1 (32E, 109E), mut 2 (32D, 109E), mut 3 (32E, 56E, 104D, 109E), mut 4 (32Q, 109L), mut 5 (32Q, 109T).
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(mut 1 and mut 5, Fig. 6) containing two mutations (32E, 109E and
32Q, 109T) in the VH, showed the strongest neutralization among
all studied analogs. These Regdanvimab analogs were predicted
to be the strongest binders for 501Y.V2 and P.1 strains by SARS-
AB. Their neutralization was increased 3–6-folds, 2.2–2.5 folds
and 1.8–2-folds for mut 1and mut 5 against WT, P.1 and 501Y.V2
SARS-CoV-2 variants compared to the original antibody (Fig. 6).
3.5. Computational efficiency of SARS-AB

The average computational time to build a 3D model of one
antibody with SWISS-MODEL webserver was around 20 min. The
MD simulations were run on NVIDIA Tesla P100 GPU card with
56 CPUs on UT Southwestern BioHPC cluster. The 10 ns of MD sim-
ulation in NAMD for each antibody-RBD-SARS-CoV-2 complex with
100 ps step took �5 h. The analysis of MD trajectories and estima-
tion of energy of antibody-RBD contacts took another 2 h. The abil-
ities of BioHPC cluster allowed to run 4 MD simulations jobs in
parallel. As a result, SARS-AB could process 8 antibodies in 10 h,
which takes 5 days to analyze 100 antibodies. This performance
2219
can be further improved if large cloud-based computing, such as
AWS, is enabled.
4. Discussion

To improve the efficiency of discovering new neutralizing anti-
bodies, we designed SARS-AB, which allows to predict binding of
antibodies to RBD-SARS-CoV-2. We tested the method on its ability
to distinguish SARS-CoV-2 binders from non-binders using a data-
set of antibodies derived from the PDB, and validated SARS-AB on
independent set of antibodies with known specificity.

It is known that the S1 subunit of spike protein contains two
major structural elements, RBD and N-terminal domain (NTD).
While majority of discovered antibodies are directed against RBD,
some were shown to have a potent neutralization activity against
NTD [20,43]. The latter does not directly compete with the ACE2
binding site and it remains unclear how it blocks SARS-CoV-2
infection. Currently, SARS-AB approach was designed to predict
binding of antibodies only with RBD, thus it is possible that pre-
dicted RBD-non-binders may interact with NTD or other undiscov-
ered areas on SARS-CoV-2. That being said, the methodology of
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SARS-AB is readily transferrable to cover NTD binding prediction,
given a proper template structure and sufficient training data.

Another limitation of SARS-AB, as with most other binding pre-
diction software, is the need to use a template structure to indicate
the docking position, specifically, the location of the binding site.
Consequently, the binding energy estimation of SARS-AB is limited
to the same docking position as the template structure. Here we
applied the structure with a binding site (RBS-A) that is dominant
in all currently known neutralizing antibodies against RBD region
(CB6). This approach ensures high specificity, but may leave out
true binders taking other docking positions. In principle, we could
include other known binding sites to SARS-AB, but it will signifi-
cantly increase computational burden, which may result in similar
time cost as in vitro experiments. Future accelerations on SARS-AB
would be required to incorporate more binding sites and improve
prediction sensitivity.

As screening large antibody databases with the help of MD sim-
ulations requires huge computational power, the current design of
SARS-AB represent a good balance of prediction accuracy and com-
putational efficiency. The more accurate binding affinity predic-
tions will require longer MD simulations and the use of time
consuming molecular mechanics methods. Currently, many anti-
body screening studies experimentally profiled 102 to 103 antibod-
ies predicted from large-scale sequencing data. Based on the
published results, the fractions of the true neutralizing antibodies
is lower than 5%, even with flow sorting [28]. Given its high speci-
ficity, SARS-AB can be applied to test out most of the non-binders,
leaving a handful of remaining prioritized targets for downstream
validation. We believe the future application of SARS-AB to large
antibody sequence datasets will significantly accelerate the discov-
ery of ultra-high-affinity neutralizing antibodies against SARS-
CoV-2.

It was shown that South African and Brazilian strains may
escape from neutralization by first-wave monoclonal antibodies
and antibodies being developed for clinical use [19]. The virus
engages N501Y, K417N/T and E484K mutations, which helps to
escape neutralization by monoclonal antibodies directed at the
RBD. It is interesting that virus might sacrifice its hACE2 binding
affinity through K417N to survive the attack of neutralizing anti-
bodies [79]. In this work we showed that Regdanvimab undergoes
1.7–2.8-fold decrease in neutralization activity against virus new
variants found in South Africa and Brazil compared to WT SARS-
CoV-2. By applying SARS-AB, we identified minimum modifica-
tions to the original sequence of Regdanvimab that restored its
interaction with 501Y.V2 and P.1 strains. The SARS-AB can be
applied to most antibody screening studies to identify promising
therapeutic candidates against SARS-CoV-2.

Finally, as SARS-CoV-2 is a fast-evolving strain of coronavirus,
any developed antibody drugs are at risk of rapid immune evasion
caused by mutations at contact residues. Despite the above limita-
tions, we demonstrated that SARS-AB can be used to measure the
binding energy changes caused by a few mutations at affordable
time complexity, and designed novel antibody analogs with
improved neutralization activity against SARS-CoV-2 variants. We
believe that our approach will be used as a design platform to eval-
uate interactions of candidate antibodies with new variants of
SARS-CoV-2.
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