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Abstract

Consequences of expression of the protein tyrosine phosphatase nonreceptor 22 (PTPN22) gain-of-function variant were
evaluated in leukocytes from patients with anti-neutrophil cytoplasmic autoantibody (ANCA) disease. The frequency of the
gain-of-function allele within the Caucasian patient cohort was 22% (OR 1.45), compared to general American Caucasian
population (16.5%, p = 0.03). Examination of the basal phosphatase activity of PTPN22 gain-of-function protein indicated
persistently elevated activity in un-stimulated peripheral leukocytes, while basal activity was undetectable in leukocytes
from patients without the gain-of-function variant. To examine consequences of persistently high PTPN22 activity, the
activation status of ERK and p38 MAPK were analyzed. While moderate levels of activated ERK were observed in controls, it
was undetectable in leukocytes expressing PTPN22 gain-of-function protein and instead p38MAPK was up-regulated. IL-10
transcription, reliant on the ERK pathway, was negatively affected. Over the course of disease, patients expressing variant
PTPN22 did not show a spike in IL-10 transcription as they entered remission in contrast to controls, implying that
environmentally triggered signals were blunted. Sustained activity of PTPN22, due to the gain-of-function mutation, acts as
a dominant negative regulator of ERK activity leading to blunted cellular responsiveness to environmental stimuli and
expression of protective cytokines.
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Introduction

Anti-neutrophil Cytoplasmic Autoantibody (ANCA) disease is

multifactorial in origin, as with many autoimmune diseases, involving

complex interactions of genetic polymorphisms, epigenetic changes

and environmental influences [1–5]. The list of genes associated with

ANCA disease includes one generalized to autoimmune propensity,

the protein tyrosine phosphatase non-receptor 22 (PTPN22) [6–24].

In 2004, a single nucleotide polymorphism (SNP) in the PTPN22 gene

was identified that resulted in a protein modification, which disrupted

the regulatory domain of the phosphatase conferring a gain-of-

function phenotype [25,26]. The following year this genetic variant

was linked with proteinase 3(PR3)-ANCA disease in a cohort of

patients from Germany [24] and then in 2009 a similar association

was made in a study of a cohort from Great Britain [27]. Now

considered an autoimmunity-predisposing allele, this polymorphism

strongly correlates with numerous other autoimmune diseases

including type 1 diabetes (T1D) [28–32], rheumatoid arthritis (RA)

[25,33–38], systemic lupus erythematosus (SLE) [26,39–41], Graves’

disease [42,43], and generalized vitiligo [44].

The aim of the studies presented here is to investigate effects of

the gain-of-function variant on signaling responses in leukocytes

from patients with ANCA disease and how these influence

immunological events. ANCA have two primary targets, PR3 and

myeloperoxidase (MPO), which are expressed solely on the surface

of neutrophils and monocytes. Because PTPN22 is uniquely

expressed in hematopoietic cell types, studies of the gain-of-function

polymorphism are fundamentally important in this disease [25].

Binding of ANCA to its antigens stimulates cellular signal

transduction pathways causing changes in gene transcription, cell

activation status, and ultimately, neutrophil degranulation [45–49].

It is the aberrant release of neutrophils’ noxious constituents that

causes inflammation of vessel walls and injury of highly vascularized

organs such as the kidney and lung [50–53].

What makes a gain-of-function variant of PTPN22 particularly

interesting, especially in the framework of multifactorial systemic

autoimmune diseases like ANCA disease, is that protein tyrosine

phosphatases (PTPs) serve as ‘‘sensors’’ and ‘‘transmitters’’ for

environmental signals [54]. Alterations in genes encoding protein

tyrosine phosphatases broadly affect kinase-phosphatase systems
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with deleterious effects on cellular equilibrium. PTPN22 is known

to modulate the activity of the RAS and SRC-family signaling

pathways, both of which are major pathways involved in immune

modulation [55,56]. Due to the proximal position of the RAS and

SRC-family in numerous signal transduction cascades, including

extracellular signal-regulated kinase (ERK), JNK, and p38 MAPK

[57], inappropriate regulation would impact immune cell func-

tions, including those emanating from integrins, Fc receptors,

growth factor receptors, and cytokine receptors [58–61].

Intuitively, a function-altering, genetic polymorphism in

PTPN22 coupled with environmental exposures would place an

individual at a higher risk for developing autoimmune disease.

Environmental factors known to impact ANCA disease, at both

disease onset and relapse, include bacterial and viral infections

[62–64], aging [2,65], seasonal changes [66] and silica exposure

[3]. We have evidence that one manifestation of these factors is

perturbation of epigenetic regulation of gene transcription. We

found that gene silencing marks were altered in leukocytes of

patients with ANCA disease resulting in aberrant transcription at

the gene locus for PR3 and MPO [4,67]. The gain-of-function

variant could also be deviant in transmission of environmentally-

induced epigenetic signals. For example, the JmjC-domain

containing histone demethylase, JMJD3, is ‘‘induced’’ when the

cell ‘‘senses’’ bacterial products and inflammatory cytokines within

the microenvironment [68,69]. We draw particular attention to

JMJD3 because mRNA levels were abnormally high in ANCA

disease patients concurrent with loss of epigenetic methylation

marks at PRTN3 and MPO loci [4].

Here we describe a study demonstrating how a genetic

polymorphism can disrupt ‘‘sensors’’ of the signaling milieu. The

data indicate that the PTPN22 gain-of-function variant confers

abnormally high basal phosphatase activity perturbing proper

responses to external stimuli in circulating neutrophils and

lymphocytes of patients with ANCA disease.

Materials and Methods

Patients and clinical analysis
Patients with biopsy-proven ANCA disease enrolled in this

study were diagnosed between 1985 and 2009, and followed in a

life-long registry by physicians in the Glomerular Disease

Collaborative Network (GDCN). Methods of identifying and

enrolling patients in the GDCN have been described [65,70,71].

All study materials were given Institutional Review Board

approval for human subjects’ research (IRB study #97-0523) by

the UNC-CH Office of Human Research Ethics. Study subjects

gave informed, written consent and participated according to

UNC Institutional Review Board guidelines. A total of 230

Caucasian patients with ANCA disease participated in the

PTPN22 genotyping study. Patients were categorized by diagnosis:

granulomatosis with polyangiitis (GPA) [72–74], microscopic

polyangiitis (MPA), Churg-Strauss syndrome (CSS), and renal-

limited disease (Lim) [75,76]. ANCA serotypes were determined

by indirect immunofluorescence and/or antigen-specific PR3 and

MPO enzyme-linked immune-absorbent assays (ELISA) (Invitro-

gen, Carlsbad, CA, USA) [77,78]. Of 230 Caucasian ANCA-

Table 1. Frequency of PTPN22 risk-allele (T1858) genotype in
Caucasian ANCA patients.

C/C C/T+T/T OR (95%CI) p-value

All Patients 179(77.8%) 51(22.2%) 1.45 (1.02–2.04) 0.03

*PR3-ANCA 81(75.7%) 26(24.3%) 1.63 (1.02–2.60) 0.03

*MPO-ANCA 87(79.8%) 22(20.2%) 1.28 (0.78–2.10) 0.32

# Zheng W, 2005 (35).
*Excluded from analysis: 6 ANCA-neg; 5 PR3+MPO dual serology: 3 p-
ANCA+ANA positives.
doi:10.1371/journal.pone.0042783.t001

Table 2. Frequency of PTPN22 of protective allele (A788) in
Caucasian ANCA patients.

G/G G/A+A/A OR (95%CI) p-value

Reference Controls 550(97.0%) 17(3.0%)

Patients 219(95.2%) 11(4.8%) 0.62 (0.28–1.33) 0.21

doi:10.1371/journal.pone.0042783.t002

Table 3. Meta-analysis of the frequency of the PTPN22 C1858T SNP in ANCA Disease.

CT+TT (%) CC (%) OR (95% Cl) p-value

British
cohort [27]

1.45(1.20–1.76) 0.0001

ANCA 155 (24.76%) 471(75.24%)

Controls 1368 (18.46%) 6044(81.54%)

German
cohort [24]

1.71(1.15–2.54) 0.0078

ANCA 57 (28.64%) 142(71.36%)

Controls 76(19.05%) 323(80.95%)

USA cohort 1.45(1.02–2.04) 0.0368

ANCA 51 (22.17%) 179(77.83%)

Controls 194 (16.47%) 984(83.53%)

Total 1.49(1.28–1.73) ,0.0001

ANCA 263(24.93%) 792(75.07%)

Controls 1638(18.22%) 7351(81.78%)

doi:10.1371/journal.pone.0042783.t003

PTPN22 Gain-of-Function Variant
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patients, 107 were PR3-ANCA and 109 were MPO-ANCA

patients; 74 patients were diagnosed with GPA, 110 with MPA, 40

with renal limited, three with CSS, two with pulmonary capillaritis

and one with neuro-limited disease. The Birmingham Vasculitis

Activity Score (BVAS) 2003 version was used to rank disease

severity activity: remission (BVAS = 0), active+ (BVAS 1–4),

active++ (BVAS 5–9) and active+++ (BVAS$10).

PTPN22 genotyping
Genomic DNA was extracted from leukocytes in EDTA-treated

blood using the Puregene DNA Purification System (Puregene,

Minneapolis, MN, USA). DNA quality was spectrophotometrically

determined by OD 260/280 nm ratios and by agarose gel

visualization. Genotyping for SNP C1858T (rs2476601) and

G788A (rs33996649) was performed using TaqMan-SNP-Geno-

typing Assay (Applied Biosystems, Foster City, CA). The primer

sequences for G788A were: forward 59 TTTGAACTAAT-

GAAGGCCTCTGTGT 39 and reverse 59 ATTCCTGA-

GAACTTCAGTGTTTTCAGT 39. The specific minor groove

binder probe sequences were 59 TTGATCCGGGAAATG 39

(FAM) and 59 TTGATCCAGGAAATG 39 (VIC). The primer

and the specific minor groove binder probe sequences for C1858T

were commercially available and pre-designed by Applied

Biosystems. TaqMan was performed by ABI PRISM 7900HT

sequence detection system (Applied Biosystems).

PTPN22 (lymphoid tyrosine phosphatase) activity assay
For phosphatase activity, total leukocytes were obtained after

lysis of erythrocytes using RBC Lysis Buffer (NH4Cl) [79]. Patients

analyzed included those with the gain-of-function variant (n = 12),

non-variant (n = 12) and loss-of-function (n = 3). For analysis of

specific cell types, neutrophils and lymphocytes&monocytes were

separated from blood by Plasmagel (ZeptoMetrix, Buffalo, NY,

USA) and Histopaque 1077 (Sigma, St. Louis, MO, USA).

Microtiter plate wells were coated in duplicate with mouse anti-

human PTPN22 antibody (Abnova, Taipei, Taiwan) at a 1:100

dilution and incubated overnight at 4uC. Normal mouse IgG

served as a mock control. Leukocytes were lysed in lysis buffer

(20 mM Tris-HCl, 150 mM NaCl, and 1 mM EDTA, pH 7.4,

with 1 mM of phenylmethanesulphonylfluoride, 10 mg/ml of

aprotinin, 10 mg/ml of leupeptin, 10 mg/ml of soybean trypsin

inhibitor) at a concentration of 56106 cells/ml. Lysate was added

into each pre-coated well (100 ml) and incubated for 3 hrs at room

temperature (RT). After washing with lysis buffer without protein

inhibitor, 100 ml of phosphatase substrate (p-NPP, Bio-Rad,

Hercules, CA, USA) (in 100 mM Bis-Tris, pH 6.0, 5 mM DTT

buffer) was added to each well [80]. Phosphatase activity was

detected by a VersaMax Microplate Reader (Molecular Devices,

Sunnyvale, CA, USA) at 405 nm.

PTPN22 protein was quantitated by capture enzyme-linked

immunosorbant assay. Wells were coated with mouse anti-human

PTPN22 antibody, or normal mouse IgG as a mock control. An

aliquot of fresh cell lysate was added and PTPN22 protein

detected with rabbit anti-PTPN22 (1:200, Lifespan, Providence,

RI, USA) and secondary antibody AKP-conjugated goat anti

rabbit IgG (H+L) (1:5000, Pierce, Rockford, IL, USA). For

PTPN22-responsiveness studies, total leukocytes were pre-treated

with PMA (100 ng/ml) as described (Sigma) for 10 mins at 37uC.

Western blot method for ERK/pERK and p38/pp38
detection

Samples were analyzed from non-variant (n = 3), loss-of-

function (n = 2) and gain-of-function (n = 4) ANCA patients. Fresh

cell pellets were lysed in SDS sample buffer. Denatured protein

was run on 8% Tris-HCl gel and transferred to nitrocellulose

membrane (Schleicher and Schuell, Keene, NH, USA). After

blocking, the membranes were incubated overnight at 4uC with

appropriate dilutions of unconjugated primary antibodies, includ-

ing mouse anti-human PTPN22 (Abnova), polyclonal anti-ERK

(Abcam, Cambridge, MA, USA), polyclonal anti-phosphor-P44/

42 MAP kinase (Cell Signaling, Danvers, MA, USA), polyclonal

anti-P38 and polyclonal phosphor-P38 antibodies (Abcam). After

washing, the membranes were incubated with horseradish

peroxidase-conjugated goat anti-mouse or -rabbit IgG (H+L)

(Jackson ImmunoResearch, West Grove, PA) for 1 h. Proteins

were detected with Super-Signal West Pico Chemiluminescent

Substrate (Pierce).

Densitometric scanning analysis of the ratio of intensity pERK/

ERK and pp38/p38 was performed by ImageMaster VDS

software.

Table 4. Characteristics of patients with ANCA disease
enrolled in the functional studies.

Patient/ Age Gender Diagnosis ANCA Disease

Genotype subtype activity

Gain-of-function

P03* 70 F GPA PR3-ANCA remission

P06* 35 M GPA PR3-ANCA active+

P07* 63 F MPA PR3-ANCA remission

P08* 25 F MPA PR3-ANCA remission

P09 55 F GPA PR3-ANCA active++

P12 33 F MPA MPO-ANCA remission

P17 52 M Lim MPO-ANCA active+

P19 58 M GPA PR3-ANCA remission

P20 61 F MPA MPO-ANCA active+

P21 57 F Lim MPO-ANCA remission

P24 74 F GPA ANCA-Neg active++

P27 55 M GPA PR3-ANCA remission

Loss-of-function

P02* 76 M GPA PR3-ANCA remission

P05* 56 M GPA PR3-ANCA remission

P25 61 M GPA PR3-ANCA active++

Non-variant

P01* 56 F MPA MPO-ANCA remission

P04* 73 M GPA MPO-ANCA remission

P10* 86 M MPA MPO-ANCA remission

P11 21 M GPA PR3-ANCA active+

P13 54 M Lim MPO+PR3 active+

P14 42 F CSS MPO-ANCA active++

P15 45 F GPA PR3-ANCA active+

P16 60 M GPA PR3-ANCA active++

P18 34 M GPA PR3-ANCA remission

P22 51 F MPA PR3-ANCA active+

P23 59 F GPA PR3-ANCA active+

P26 78 F Lim MPO-ANCA active++

*Patient’s sample included in western blot analysis of signaling pathways.
doi:10.1371/journal.pone.0042783.t004
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Analysis of microarray data
RNA was isolated from circulating leukocytes of gain-of-

function (n = 4) and non-variant (n = 12) patients with ANCA

disease [67,79,81]. The Affymetrix microarray gene chip was used

for identification of gene expression levels, as previously described

[67,79,81]. The data were then imported into the Partek

Genomics Suite 6.4 program (Partek, St Louis, CA, USA) for an

ANOVA statistical analysis and differentially expressed genes

($2.0-fold, p-value ,0.05) within the gain-of-function group were

compared to non-variant group. The molecular network analysis

was performed using Ingenuity Pathways Analysis (IPA) (Ingenuity

Systerms, Redwood City, CA, USA) and the expression profile of

genes from gain-of-function and non-variant groups was visualized

using a principal components analysis (PCA) mapped scatter plot

in Partek program.

Taqman PCR analyses for IL-10 gene expression
IL-10 primers and probes were purchased from Applied

Biosystems. Fluorescence emission was monitored using the ABI

PRISM 7900 HT sequence detection system. Relative level of total

leukocyte RNA was determined by standard 2(2DDCt) calculations

and expressed as fold change of reference control samples.

Cytochrome c oxidase subunit 5B (COX5B) was used as a RNA

loading standard [67,81,82].

Statistical analysis
Differences in genotyping tests between ANCA patients and

controls were analyzed by chi-square test. The direction and

strength of these differences were assessed by calculating odds

ratios. All of the alleles detected in our study were tested for the

Hardy-Weinberg equilibrium. Clinical comparisons between

patients with and without C1858T SNP for categorical measures

were performed using chi-square tests. Continuous measures were

compared using Wilcoxon rank sum test. A corrected p-value of

,0.05 was considered significant. Wilcoxon Two-Sample test

were used for comparisons of continuous measures and paired

data were analyzed by the Signed Rank Test. A corrected p-value

of ,0.05 was considered significant. All statistical analyses were

performed using SAS statistical program (SAS Institute, Inc.,

Cary, NC, USA).

Results

Identification of patients with the risk-associated allele of
PTPN22

The gain-of-function allelic variant has a SNP changing a

cytosine to a thymine (C1858T) which converts the codon from

one coding for arginine (R) to one for tryptophan (W) (R620W),

and this amino acid change confers a gain-of-function phenotype.

A total of 230 Caucasian patients were genotyped for the risk-

associated allele of PTPN22 (C1858T) using a TaqMan-SNP-

Figure 1. PTPN22 phosphatase activity in leukocytes. Basal level of PTPN22 phosphatase activity was high in leukocytes expressing the gain-
of-function variant, (A) PTPN22 protein was active in all samples with the gain-of-function PTPN22 (R620W), while activity was undetectable in non-
variant and loss-of-function control groups (p,0.0001). Activity values were plotted against total protein captured on ELISA plate using mouse-anti-
PTPN22 antibody. For mock-controls, ELISA wells were coated with normal mouse IgG in parallel (B) High basal PTPN22 phosphatase activity was
present in neutrophils (p = 0.0004) and lymphocytes&monocytes (p = 0.0003) (activity calculated as fold-increase above controls). (C) High basal
phosphatase activity was significantly down-regulated after PMA treatment (p,0.0001), while there were no changes in non-variant controls
(p = 0.75).
doi:10.1371/journal.pone.0042783.g001
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Genotyping Assay. Different from cohorts studied in previous

reports, the patient cohort studied here included both PR3- and

MPO-ANCA groups. There was a significant association of the

C1858T SNP allele in patients of Caucasian descent (22.2%)

compared to the general American Caucasian population

frequency (16.5%, p = 0.03) [32], with an odds ratio (OR) of

1.45 (95% confidence interval 1.02–2.04) (Table 1). The frequency

was significantly higher in patients with a PR3-ANCA serotype

(24.3%, p = 0.03, OR 1.63, 95% confidence interval 1.02–2.60)

compared to American Caucasian population, but not in those

with a MPO-ANCA serotype (20.2%, p = 0.32) (Table 1). Carriage

of the variant allele had no influence on a diagnosis of GPA,

(23.6%, p = 0.11) or with MPA (21.6%, p = 0.16) compared to the

general American Caucasian population.

For completeness, genotypic analysis was performed to determine

the frequency of the loss-of-function variant in PTPN22 (G788A,

rs33996649) in the patient cohort. This polymorphism results in an

amino acid change in residue 263 from arginine (R) to glutamine

(Q) (R263Q) conferring a loss-of-function phenotype, and has been

proposed to have a protective effect in SLE [80]. The frequency of

this allele in ANCA patients was similar to the general American

Caucasian population (4.8% vs 3.0%, p = 0.21) (Table 2) [80].

Combining the reported frequencies of the risk allele, C1858T,

in ANCA disease [24,27] with the frequency observed in this USA

cohort, a meta-analysis was performed. Even with the population

differences, the combined odds ratio was 1.49 (95% confidence

interval 1.28–1.73) (p,0.0001) (Table 3).

Assessment of functional changes attributed to the gain-
of-function variant of PTPN22

Based on the assertion that the PTPN22 variant (R620W)

confers a gain-of-function phenotype, we hypothesized that

unstimulated peripheral leukocytes from patients carrying this

allele would have higher basal activity. Evaluations included both

patients in remission and with active disease (Table 4). To

determine amount of activity/protein concentration, PTPN22

protein was captured from total leukocyte lysates using an anti-

PTPN22 antibody on two separate micro-titer plates. One was

analyzed for total protein captured and the other for activity status

of the captured protein. All patients with the gain-of-function

variant (R620W) (n = 12) expressed high basal PTPN22 phospha-

tase activity in un-stimulated leukocytes, in stark contrast to

controls with undetectable activity, including both leukocytes

expressing the loss-of-function alleles (n = 3) and non-variant

alleles (n = 12) (1.2260.14 versus 0.4160.12, p,0.0001)

(Figure 1A). High basal phosphatase activity was present in

R620W neutrophils (n = 6) (5.8761.50 versus 1.0460.38,

p = 0.0004) as well as lymphocytes&monocytes (n = 6), but not in

non-variant controls (n = 6) (p = 0.0003) (Figure 1B).

We asked if we could modulate this high basal phosphatase activity

by treating the leukocytes with the powerful stimulant PMA (n = 10

with sufficient sample). PTPN22 phosphatase activity was signifi-

cantly down-regulated (1.2560.13 versus 0.6460.14, p,0.0001) with

the mean of decreases 0.6160.13, while no change was observed in

either the loss-of-function controls (n = 3) (0.2760.04 versus

0.2860.07, p = 0.07), with the mean of the decreases 20.0160.08

or the non-variant controls (n = 7) (0.4160.12 versus 0.4760.11,

p = 0.75) with the mean of the decreases 20.0760.05 (Figure 1C).

The data imply that constitutive phosphatase activity of the variant

remains susceptible to pharmacological agents.

Downstream effects of PTPN22 variant high basal activity
To examine whether the high basal activity of the gain-of-

function PTPN22 variant, observed in un-stimulated leukocytes,

was affecting primary signaling pathways, we mined our existing

Affymetrix array database. Four of the patients enrolled in that

study were carriers of the gain-of-function PTPN22 variant (Table 5).

Comparisons between groups indicated that the high basal activity

of the PTPN22 variant caused global changes in gene transcription.

Analysis identified that 151 genes (98 up and 53 down) were

differentially regulated ($2.0-fold and p,0.05). Bioinformatic

analysis using principal component analysis (PCA) showed remark-

ably different gene expression profiles comparing leukocytes with

the gain-of-function genotype compared with non-variants

(Figure 2). Genes with correlated expression profiles tend to cluster

tightly into a small-size elliposoid by the wire mesh, while genes with

less similar expression profiles form a looser cluster with a larger size

of ellipsoid (Figure 2). The analysis indicates that there are dramatic

intrinsic differences in signaling pathways associated with the gain-

of-function polymorphism. Analysis using the Ingenuity Pathway

Tools (IPA) software indicated that the primary networks affected

were those involving ERK, p38MAPK and NFkB (Figure 2).

These data are consistent with reports that PTPN22 function

regulates signaling molecules leading to activation of ERK1,2

[83,84]. We examined the phosphorylation status of ERK1,2 in

four patients with PTPN22 (R620W), two patients with PTPN22

loss-of-function allele (R263Q) and three patients with the normal

allele (Table 4). Phosphorylated/active ERK was undetectable

with PTPN22 gain-of-function activity, in contrast to controls.

Instead, the phosphorylated/active p38 mitogen-activated protein

kinase (p38 MAPK) form was elevated (Figure 3).

IL-10 gene expression is down regulated in leukocytes
with the PTPN22 gain-of-function (R620W) variant

Maximal IL-10 production requires signaling through activated

ERK and the downstream phosphorylation of the Sp1 transcrip-

Table 5. Characteristics of patients with ANCA disease
enrolled in the Affymetrix microarray study.

Patient/ Age Gender Diagnosis ANCA Disease

Genotype subtype activity

Gain-of-function

1 26 F MPA MPO-ANCA remission

2 45 F MPA MPO-ANCA active+

3 54 F MPA MPO-ANCA active++

4 54 F MPA MPO-ANCA active++

Loss-of-function

5 68 M GPA PR3-ANCA active++

Non-variant

6 71 M GPA PR3-ANCA remission

7 61 F MPA MPO-ANCA active+

8 56 M GPA PR3-ANCA active++

9 55 M GPA PR3-ANCA active++

10 38 M MPA PR3-ANCA active++

11 60 F MPA MPO-ANCA active++

12 55 M GPA PR3-ANCA active++

13 72 M Lim PR3-ANCA active+++

14 79 M MPA MPO-ANCA active+++

15 60 M MPA PR3-ANCA active+++

16 17 F MPA PR3-ANCA active+++

doi:10.1371/journal.pone.0042783.t005
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tion factor [85,86]. Based on decreased activity of ERK with the

gain-of-function (R620W) variant, we hypothesized the IL-10 gene

expression would be negatively affected. IL-10 mRNA levels were

significantly lower in patients with the gain-of-function variant

(n = 26), as compared to non-variant controls (n = 79)(1.861.4

versus 5.064.1, p,0.0001) (Figure 4A). Longitudinally, baseline

IL-10 transcripts did not increase in patients having the gain-of-

function genotype as their disease progressed from active disease

(BVAS$1) to remission (BVAS = 0) (n = 8) (1.1761.01 versus

1.5060.88, p = 0.25) with the mean of the increase 0.3360.61

(Figure 4B). In contrast, patients without the SNP showed a robust

increase in IL-10 transcripts as remission was achieved (n = 17)

Figure 2. Bioinformatics analysis of Affymetrix microarray gene expression data, comparing leukocytes with the gain-of-function
genotype to those with a non-variant genotype. Principal Component Analysis (PCA) scatter plot using Partek analysis is shown in the upper
left corner. PCA is mathematically defined as an orthogonal linear transformation that transforms the data to a new coordinate system such that the
greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance
on the second coordinate, and so on. Each dot represents a patient’s expression profile; the blue color dots represent gain-of-function and red show
non-variant genotypes. Analysis using the Ingenuity Pathway Tools (IPA) software utilizes a repository of biological interactions and functional
annotations created from millions of individually modeled relationships. The genes in red indicate increased expression and blue represents
decreased expression, comparing gain-of-function with non-variant individuals. Primary networks identified were ERK1/2, p38MAPK, and NFkB
networks.
doi:10.1371/journal.pone.0042783.g002

PTPN22 Gain-of-Function Variant

PLoS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e42783



(2.3761.69 versus 10.19612.78, p,0.0001) with the mean of the

increase 7.82612.01 (Figure 4C). Epidemiological analyses

indicated that patients having gain-of-function (R620W) variant

progressed to end-stage kidney disease (ESKD) on average 20

months faster (18% vs. 9%, p = 0.04). No substantial differences

were found in regard to gender, ANCA serotype, disease

diagnosis, treatment resistance, or organ involvement.

Figure 3. Analysis of ERK1,2 and p38MAPK phosphorylation status. Bar graphs represent the ratio of intensity pERK/ERK and pp38/
p38MAPK as quantitated by densitometric scanning analysis using ImageMaster VDS software. Western blot analysis for ERK1,2 and p38MAPK
activation demonstrates PTPN22 gain-of-function (R620) exerts a negative effect on the ERK signaling pathway, compared to loss-of-function (R263Q)
and non-variant controls. In contrast p38 mitogen-activated protein kinase (p38 MAPK) was increased with the gain-of-function (R620) phenotype.
doi:10.1371/journal.pone.0042783.g003

Figure 4. IL-10 mRNA expression. (A) IL-10 transcript levels are reduced in leukocytes from PTPN22 (R620W) positive patients. (A) IL-10 mRNA
expression, which is mediated through the ERK pathway, was significantly lower in gain-of-function patients (p,0.0001) by quantitative TaqMan PCR.
(B) Longitudinally, the baseline level of IL-10 message in patients with the gain-of-function variant did not increase as they transitioned from active
disease to remission (p = 0.25). (C) In contrast, patients with normal PTPN22 showed a robust increase in IL-10 as they entered remission (p,0.0001).
(D) Decreased IL-10 levels were associated with the relapsing group (n = 39, 1.861.15), and higher level in the non-relapse patient group (n = 14,
6.664.4, p,0.0001).
doi:10.1371/journal.pone.0042783.g004
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It was reported that lower IL-10 levels in remission are

associated with a higher relapse rate in long-term follow-up [87].

Analysis of our cohort indicated that higher IL-10 transcript levels

were associated with non-relapsing disease (n = 14, 6.664.4,

p,0.0001), while lower levels were associated with a relapsing-

disease history (n = 39, 1.861.15) (Figure 4D). There were 14

patients in this study that had the gain-of-function SNP. Three

(21%) were in the non-relapsing group while 11(79%) were in the

relapsing-disease group.

Discussion

This is the first report of studies on the basal activity of the

PTPN22-gain-of-function protein in non-stimulated leukocytes,

immediately following blood draw. High basal PTPN22 phospha-

tase activity was detected in leukocytes of every patient tested who

had the PTPN22 SNP (C1858T) genotype, while their non-variant

counterparts had undetectable activity. We were intrigued that

high basal PTPN22 phosphatase activity was present in neutro-

phils expressing the gain-of-function variant. Interestingly, one

consequence was activation of the p38 MAPK pathway. P38

MAPK regulates macrophage and neutrophil functional respons-

es, including respiratory burst activity, and chemotaxis. High

activity was also present in the lymphocyte&monocyte pool which

would support the findings of altered T cell function in Type-1

diabetes and Jurkat T leukemia cells overexpressing the transfected

gain-of-function variant [80,88–90].

Constitutive activity of PTPN22 gain-of-function variant was

associated with global changes in the transcriptome, inasmuch as

the assessment of the small cohort studied here. Activity of normal

PTPN22 is under regulatory constraints, one of which is inhibition

by phosphorylation on Ser-35 by protein kinase C (PKC) [91].

The mechanistic pathway of PTPN22 is under study by many

groups and to date, functional partners of normal PTPN22 include

growth factor receptor-bound protein 2 (GRB-2), and C-SRC

kinase (CSK) [89]. The schematic in Figure 5A illustrates some of

the signaling pathways reportedly linked with PTPN22 function,

and in Figure 5B a prediction – based on the data presented here –

of how they may be perturbed by constitutively high PTPN22

activity.

It is reported that decreased IL-10 production during remission

is a predictor of relapse in ANCA disease [87]. Results in our study

are in agreement. Moreover, we found that IL-10 message was

lower in patients expressing the PTPN22 gain-of-function variant

and that a high proportion of these fell into the relapsing-disease

category. Reduced IL-10 responses in patients with the gain-of-

function variant can be considered as a deviation in transmission

of signals within the microenvironment of the body. We examined

gene expression of the anti-inflammatory cytokine IL-10, because

it is known to be responsive to environmental triggers [86,92]; for

example, neutrophils secrete high amounts of IL-10 in response to

Figure 5. Signaling pathways disrupted by the gain-of-function variant of PTPN22. (A) Signaling pathways affected by PTPN22 include
SRC-family kinases (Lyn/Fyn) and RAS pathways [83,84]. It can affect the activity of SRC-family kinases through regulation of CSK (cSRC Kinase) [96,97].
PTPN22 can affect RAS activity through binding to GRB-2 (Growth factor receptor-bound protein 2). ERK1,2 phosphorylates and activates many
transcription factors, including the transcription factor Sp1 depicted here, which regulates the transcription of IL-10 [86]. (B) Changes in PTPN22
function due to the gain-of-function phenotype. PTPN22 (R620W) amino acid change lies within a domain that binds CSK, resulting in a greatly
reduced binding [84]. Thus CSK is available for binding and inhibiting SRC. Also, a gain-of function alteration could act as a super-antagonist of
epigenetic nucleosome remodeling, based on reports that PTPs directly dephosphorylate histone tails [98]. The gain-of-function phosphatase activity
also affects the function of GRB2 restraint of RAS signaling and a loss of ERK1/2 phosphorylation/activation and loss of Sp1 transcriptional activity.
doi:10.1371/journal.pone.0042783.g005
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bacterial products [93]. Relevant to this discussion, expression of

IL-10 is regulated through epigenetic mechanisms at the IL-10

locus through signals transmitted by the ERK signaling pathway,

which is responsive to many cytokines, growth factors, and

importantly environmental stress [85,86,94].

Although the allelic variant of PTPN22 has been reported as a

predisposing factor in ANCA disease [95], this is the first report of

its frequency in a USA patient cohort. In this patient cohort,

association of the disease-associated allele was skewed toward

PR3-ANCA disease. In concordance, the geographic distribution

of this variant allele is highest in countries where PR3-ANCA

predominates with the highest in Finland (15.5%), Sweden (12%)

and then UK (8%), decreasing southward to Spain (6%) and Italy

(2%). Combined, these studies provide statistical power to support

an association between the PTPN22 variant and ANCA disease

(OR 1.49, p = 4.1561026). The allele is nearly absent in African

American and Asian populations [90].

PTPN22 integrates and transmits environmental changes

through dynamic signalling molecules. Studies of the gain-of-

function variant in multifactorial autoimmune diseases, such as

ANCA disease, provides the opportunity to understand how

disease outcome can be influenced by a complex interplay of

genetic regulation and environmental influences.
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