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We introduce a Bayesian prior distribution, the logit-normal continuous ana-

logue of the spike-and-slab, which enables flexible parameter estimation and

variable/model selection in a variety of settings. We demonstrate its use and

efficacy in three case studies—a simulation study and two studies on real bio-

logical data from the fields of metabolomics and genomics. The prior allows

the use of classical statistical models, which are easily interpretable and well

known to applied scientists, but performs comparably to common machine

learning methods in terms of generalizability to previously unseen data.
1. Introduction
Often in real-world regression problems, we are faced with a situation in which

we have a large number of potentially irrelevant predictors, possibly even

greater than the number of observations. This so-called p� n problem is

especially prevalent in the biological and medical sciences with the advent of

high-throughput experimental methods and an increasing focus on synthesizing

knowledge of molecular details into models predicting much lower-dimensional

observable outcomes. Regularization and shrinkage methods aim to reduce

the influence of the inherent noise in such problems and provide sparse

estimated parameter vectors, essentially performing simultaneous variable

selection and parameter fitting. The motivation is twofold. Firstly, regulariz-

ation aims to more robustly distinguish strong from weak effects, i.e. more

reliably identify the genuine driving forces of the process of interest.

Secondly, we wish to reduce overfitting to improve the generalizability of

our models. The performance of our method in both of these respects is

demonstrated below.

The most common means of dealing with the p� n problem is the LASSO

[1,2], whose ability to induce genuine sparsity (i.e. estimates of exactly zero) and

whose computationally efficient implementation make it attractive for general-

purpose regularized regression. A number of Bayesian analogues of the LASSO

and other penalized likelihood methods have been proposed in order to more

fully account for the uncertainty in parameter estimates, which we contend is

particularly important in small n/large p problems, and to tackle the tendency

of the LASSO to underestimate large effects [3–5].

Some authors have focused on the subset of such problems in which the

predictors have a known grouping structure, for example, in problems from

genetics in which the groups correspond to known regulatory networks [6].

This has led to the development of both penalized likelihood [7] and Bayesian

[8,9] modifications of common shrinkage methods.

In this paper, we present a new shrinkage prior—the logit-normal continuous

analogue of the spike-and-slab (LN-CASS)—based on a logit-normal relaxation of
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Figure 1. (a) The logit-normal distribution with m ¼ 0 and s given by (blue, orange, green) ¼ (2.5, 5, 50). (b) The LN-CASS priors induced by the logit-normal
distributions of (a).
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the Bernoulli distribution used in the spike-and-slab prior [10].

The spike-and-slab is considered the gold standard of Bayesian

variable selection [11], but is computationally intractable in

practice due to its combinatorial complexity.

The LN-CASS prior has the advantage that its intuitive

formulation allows it to be simply extended to almost any

hierarchical situation—two of which are covered below—

allowing the modeller to tailor the specifications of

common statistical models to favour ‘simpler’ models in a

variety of senses. Below we structure our models to favour

first homogeneous groups of predictors before allowing

within-group heterogeneity (simulation study) and to

favour purely linear effects before nonlinear effects (metabo-

lomics study), as well as applying the method in its simplest

form to shrink logistic regression coefficients (microarray case

study). The Bayesian formalism ‘allows the data to decide’

the appropriate level of complexity through the likelihood

function.

In the simulation study, the LN-CASS prior empirically

appears robust to group misspecification, and outperforms

the horseshoe prior [3], the LASSO [1] and the sparse group

LASSO [7]. Additionally, we apply the LN-CASS prior to a

real-life classification task, in which we aim to distinguish

benign from malignant adrenal tumours. Our method leads

to an out-of-sample predictive performance comparable to

state-of-the-art machine learning methods, but offers more

interpretable results. We also use the method to build a predic-

tive model of colon cancer malignancy using the well-known

Colon dataset [12]. The code is available as a collection of R

functions (see Data accessibility).
2. Results
To illustrate the utility of the LN-CASS prior, we conducted

three comparative studies with the intention of assessing its

two primary functions: identification of genuinely non-zero

effects and improving out-of-sample performance by redu-

cing overfitting. Additionally, we chose two of the three

settings to highlight the flexibility of the approach, in particu-

lar its capacity to include known group structure (simulation,

§2.3.1.) and to perform non-parametric regression (metabolo-

mics, §2.3.2.). These two extensions are by no means

exhaustive, but are illustrative of the myriad possible areas

of application (see Discussion).
2.1. The logit-normal continuous analogue of the
spike-and-slab prior

We now provide a brief outline of the LN-CASS prior. Math-

ematical details are available in electronic supplementary

material, section S1.

The fundamental motivation for developing the LN-CASS

prior is to provide a computationally tractable alternative to

the theoretical gold standard of Bayesian variable selection,

the spike-and-slab prior.

The spike-and-slab prior is based on the simple idea that,

a priori, we believe each parameter has some non-zero prob-

ability of being zero, and the rest of the probability mass is

assigned to other plausible parameter values (often uniformly).

This hard zero/non-zero distinction introduces a discrete

component into our prior beliefs and renders the practical use

of the prior combinatorially intractable—we need to visit 2p par-

ametercombinations in order to adequately cover the parameter

space, where p is the number of parameters in our model.

For even moderately sized problems, this complexity renders

the spike-and-slab impractical. Indeed, this combinatorial com-

plexity is the same problem faced by the frequentist ‘best subset

selection’, in which every possible subset of parameters is

compared and the best performing subset is chosen.

By constructing a fully continuous approximation to the

mixed spike-and-slab prior, we enable greatly improved

sampling efficiency at the cost of relaxing the hard distinction

between zero and non-zero parameters. The LN-CASS prior

accomplishes this relaxation by replacing the discrete

Bernoulli distribution in the mixture formulation of the

spike-and-slab with a logit-normal distribution (see the elec-

tronic supplementary material, sections S1 and S2 for details).

The logit-normal distribution, with suitable parameter

choices, is a U-shaped distribution on (0, 1), assigning most

of its mass to values close to the endpoints (figure 1). The

reason for choosing the logit-normal distribution for this

purpose over the similar and more common Beta distribution

is that it can be expressed as a transformation of standard

normal random variables, which greatly aids the convergence

properties of our sampler. Indeed, models can be specified

purely in terms of parameters with (conditionally) standard

normal prior distributions.

We interpret the values of the logit-normal random vari-

able as approximate variable inclusion probabilities, which

allows simple propagation of these probabilities through a
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hierarchical prior structure. For example, in the simulation

study below we impose a hierarchical prior structure in

which we favour first exclusion of whole groups of variables,

then allow inclusion of groups with a shared parameter, and

finally allow groups with differing parameters. In the meta-

bolomics case study below, we use this prior structure to

favour linear effects first, before allowing nonlinear effects if

the data support such effects strongly enough. This corre-

sponds to imposing a hierarchy on the complexity of the

model and allows us to refine exactly how we control model

complexity.
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2.2. Performance measures
The main measure of performance we employ is the area

under the receiver operating characteristic (ROC) curve

(AUC). The ROC curve is a plot of the false-positive rate

(specificity) against the true-positive rate (sensitivity) as the

probability threshold for classifying a prediction as positive

or negative is varied. The AUC is interpretable as the prob-

ability of successfully distinguishing a positive result from a

negative result, i.e. the probability of correctly assigning a

larger predicted value to a positive case than a negative

case. An AUC of 0.5 corresponds to a model that simply

uses the class proportions as a prediction, while an AUC of

1 corresponds to a classifier which perfectly distinguishes

positive and negative cases at some threshold. We use the

AUC to quantify the trade-off between false- and true-

positives in two settings. Firstly, in the simulation study the

AUC is used to quantify the degree to which each method

uncovers the correct ordering of ground-truth parameter

values—the degree to which genuinely small parameters

are estimated to be small, and large parameters to be large.

In this first case, positive and negative results are related to

the sparsity pattern of the ground-truth parameter values: if

a parameter has a non-zero ground truth value, it is assigned

a positive result, otherwise it is assigned a negative result.

The AUC, therefore, measures the probability that truly

non-zero parameters are estimated to be larger (in absolute

value) than truly zero parameters. Secondly, in the metabolo-

mics and microarray case studies, we use the AUC in the

more conventional setting of quantifying the out-of-sample

performance of a classifier.

To quantify the agreement between the estimated and

true parameters in the simulation study, we use the mean

absolute error (MAE). The MAE is simply the average

distance of the estimated from the true parameters.
2.3. Applications
We now present the results of three case studies to evaluate

the comparative ability of the LN-CASS prior to perform its

two main duties—sparse parameter estimation and improv-

ing out of sample performance. In the first case study, we

attempt to recover ground-truth parameters in a simulation

study in which we impose a known grouping structure in

the predictors. In the second case study, we use real-world

metabolomics data [13] to build a predictive model of adrenal

tumour malignancy. In the third, we apply the LN-CASS

prior in the context of Bayesian logistic regression to the

well-known colon cancer dataset [12].
2.3.1. Simulation study (grouped predictors)
The motivation for this case study is to illustrate the ability of

the LN-CASS prior to penalize not only model complexity in

terms of the number of parameters, but also the granularity

of the model. Such a formulation might be applied when

there is some ‘subset’ or ‘tree-like’ structure in the predictors.

For example, in immunological applications, cell subsets are

often nested—T-cells are subdivided into CD4þ and CD8þ

T-cells, which in turn are subdivided into naive and memory

subsets. The grouped LN-CASS prior favours within group

homogeneity, essentially favouring less granular models, i.e.

a model using total T-cell counts would be favoured over a

model using CD4þ and CD8þ subsets as predictors.

We generated a simulated dataset of n ¼ 100 observations

from the linear regression model

yi ¼ b0 þ Xibþ 1i, (1)

for three different settings with grouped predictors, i.e. where

pre-specified groups share mostly the same or similar par-

ameter values (electronic supplementary material, table S1).

The matrix X was sampled from a unit Latin hypercube.

The 1i were chosen to be i.i.d. zero-mean Gaussian.

We then fit the model in R with the following methods for

each of the three settings (p ¼ 20, 70, 120): group LN-CASS,

LASSO, horseshoe, sparse group LASSO and ordinary least

squares. Ordinary least squares was tested only for the p , n
cases because the problem is not well defined when p . n.

For code see Data accessibility. Details of the grouped

LN-CASS prior are available in electronic supplementary

material, section 2.1 and full details of all methods can be

found in the code (see Data accessibility).

LN-CASS substantially outperforms all of the other

methods in recovering the ground-truth parameters and

correctly identifying zero parameters (figure 2).
2.3.2. Steroid metabolomics and adrenal tumour malignancy
(hierarchical GAM)

We applied a hierarchical version of the LN-CASS prior to

clinical data regarding the concentrations of metabolites in

the urine of patients with two different adrenal tumours.

The task was to predict the tumour type based on the metab-

olites, and to do this we used a generalized additive model

(GAM) with logit link. The implementation of the prior in a

hierarchical fashion here was strongly inspired by a recent

paper by Griffin & Brown [14].

The GAM we implemented represented the effect of each

covariate as the sum of linear basis functions. We imposed a

hierarchy through the LN-CASS prior which favoured firstly

the complete removal of a covariate from the model, then

inclusion of a purely linear effect, and finally allowed each

of the basis functions to be used to construct a nonlinear

effect (for details, see electronic supplementary material,

subsection 2.2).

The dataset consisted of 158 measurements of 32 covariates

[13] collected as part of the EURINE-ACT study, with 45 posi-

tive cases (malignant adrenal tumours). All of the covariates

are measurements of steroid concentrations in urine samples

taken from each of the patients. There is a small proportion

of missing data (up to 7% of a covariate’s measurements),

which we imputed via the mice() function in R [15]. We

then log(1 þ x) transformed all of the data because many of



90 30

120

60

horseshoe LASSO

LN-CASS SGL
actual

fitted

90 30

120

60

90 30

1203
2
1
0

–1
–2

3
2
1
0

–1
–2

60

90 30

120

60

coefficient index

va
lu

e 
of

 c
oe

ff
ic

ie
nt

horseshoe LASSO LN-CASS OLS SGL

1 35 70 1 35 70 1 35 70 1 35 70 1 35 70

–1

0

1

2

3

4

–1

0

1

2

3

–1

0

1

2

3

–1

0

1

2

3

–1

0

1

2

3

coefficient index

va
lu

e 
of

 c
oe

ffi
ci

en
t

actual

fitted

(a) (b)

(c) HS LASSO LN-CASS OLS SGL

MAE AUC MAE AUC MAE AUC MAE AUC MAE AUC
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Figure 2. Agreement between ground truth and estimated parameters for the simulation study in the (a) p ¼ 120 case, (b) p ¼ 70 case; (c) performance
measures for each method. HS, horseshoe; OLS, ordinary least squares; SGL, sparse group LASSO.
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the predictors spanned several orders of magnitude. We

subsequently scaled all covariates to lie in the interval [0, 1].

We compared the classification performance of our

hierarchical GAM with the performance of the following

methods: support vector machine (SVM), neural network

(NN), random forest (RF) and elastic net (a modified version

of the LASSO). Classification performance was measured

using the mean AUC over 16 � 10-fold cross-validated

runs. The results are presented in figure 3a.

All of the methods perform comparably in terms of

out-of-sample predictive performance, with the NN perform-

ing the best and LN-CASS second in terms of both the mean

and variability (inter-quartile range) of cross-validated

AUCs. The authors are not aware of an appropriate and

well-established statistical test to formalize the comparative

performances of each method given the unequal variances,

clear non-normality and obvious dependency between

samples for a given method. However, the Kruskal–Wallis

test with a post hoc Dunn test (and appropriate multiplicity

correction) provides a non-parametric test for stochastic dom-

inance (i.e. the tendency of values from one distribution to be

larger than values from the other). We used two multiplicity

corrections, both of which account for positive dependency
(i.e. the tendency of large AUCs to be correlated within

cross-validation folds). Using the Benjamini–Hochberg [16]

correction, the only null hypotheses to be rejected at 95% sig-

nificance levels were that the distribution of AUCs for the NN

stochastically dominates those for the elastic net and the RF

(adjusted p-values 0.0344 and 0.0203, respectively). Using

the Benjamini–Yekutieli [17] correction, no null hypotheses

were rejected; that is, no significant differences were found

between the distributions in terms of stochastic dominance.

Note that the Benjamini–Yekutieli correction allows for

arbitrary dependencies.

The results suggest that the out-of-sample performance of

the hierarchical GAM with LN-CASS prior is comparable

with that of state-of-the-art machine learning methods. We

argue that this performance, in conjunction with the accuracy

with which LN-CASS recovers ‘true’ parameters and offers

more classically interpretable results make it a valuable

addition to the shrinkage and regularization toolbox for

applied scientists.

The recovered effects for each of the metabolites are

presented in figure 3b, as estimated from the full dataset.

Clearly, the dominant predictor is THS which is in agreement

with the original study, as are the influential roles of both 5PD
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and 5PT. We believe that the ability of the hierarchical GAM to

produce plots such as these constitutes a considerable advan-

tage over the machine learning methods tested and highlights

the ability of LN-CASS to generate not only strong predictive

models, but also to be used as an exploratory tool for the

generation of hypotheses for future study.

2.4. Microarray data
The final case study we conducted focused on the well-known

Colon dataset of Alon et al. [12]. The dataset consists of

measurements of the expression levels of 2000 genes in 62

subjects, with the response variable being an indicator of

colon cancer incidence, representing a typical p� n problem

in the biological/medical sciences. We compared the perform-

ance of logistic regression, with LN-CASS priors on the

coefficients, to LASSO, RF and NN classifiers. We performed

leave-one-out cross-validation (LOOCV) and computed the

AUC across the left out samples in order to compare the esti-

mated out-of-sample predictive accuracy of each method.

In order to reduce the bias of the AUC estimates, we randomly

removed an observation of the opposite class in each fold

so that the class proportions were identical across folds.

Code to reproduce the results of this section is available in

Data accessibility and contains details of the particular

implementations of all algorithms used.

We preprocessed the data by first log-transforming and

subsequently standardizing (i.e. subtracting the mean and

dividing by the standard deviation) the expression level of

each gene. We then screened the genes via a preliminary

Wald test and selected the 500 genes with the largest

Z-scores in absolute value, leaving us with a predictor

matrix consisting of the expression levels of 500 genes in 62

tissues which acted as the input to all subsequent models.

The pooled LOOCV AUCs for each method were as fol-

lows: LN-CASS, 0.904; NN, 0.8898; RF, 0.8892; LASSO,

0.858. LN-CASS performs the best, but again all of the

methods perform well and there is not a substantial differ-

ence between the estimated out-of-sample performance of

each method.

Interestingly, there is some biological evidence for class-

mislabelling, i.e. samples being incorrectly marked as either

tumour or healthy [12,18] in the Colon dataset. According

to Bootkrajang & Kabán [18], there are nine such samples.

Figure 4 shows the mean posterior prediction for each subject

with these ‘suspicious’ subjects circled. Clearly, there is

reasonable agreement based on a visual inspection of the

plot between the potentially mislabelled samples and those

suggested by visual inspection of the LN-CASS model pre-

dictions. This suggests a possible secondary function of the

LN-CASS prior in identifying mislabelled samples, the details

however are left to future work.
3. Discussion
We have presented a new prior distribution for performing

regularization/shrinkage in a Bayesian framework. We have

shown that its ability to produce generalizable predictive

models is comparable to state-of-the-art machine learning

methods on two datasets of biological interest. Additionally,

we have demonstrated with a simulation study the ability of

our method to recover ground-truth parameters, even when

the number of parameters is larger than the number of
datapoints. In this regard, the performance of the LN-CASS

prior is considerably better than other regularization/shrink-

age methods which aim to estimate the parameters of

classical, generative probability models (linear regression,

logistic regression, etc.).

We believe that, combined, these two properties of the

LN-CASS prior make it a worthwhile addition to the tool-

boxes of applied scientists working with typical biological

datasets.

Our prior requires the choices of three hyperparameters,

although we contend that they are much more interpretable

than those required for other Bayesian shrinkage methods

(see the electronic supplementary material, sections S1 and

S2 for further detail on the roles of the hyperparameters).

The three hyperparameters required correspond to, firstly,

the standard deviation of the ‘slab’ component, which we

refer to as t; for standardized predictors, a default value of

t ¼ 5 has been sufficient for all of our applications because

it essentially provides a vague Gaussian prior for non-zero

coefficients. Secondly, the parameters of the logit-normal

distribution (figure 1a) must be specified; we refer to these

parameters as ml and sl. ml can be chosen based on our

prior beliefs about the probability of a zero coefficient, and

in our experience does not require much tuning; the median

of the logit-normal distribution is given by sigm(ml), where

sigm( � ) is the logistic sigmoid function. Thus, if we believe

a priori that each coefficient has a probability a of being

non-zero, we simply set ml ¼ logit(a). sl simply controls the

quality of the approximation to the spike-and-slab prior,

with larger values corresponding to better approximations.

We have used a default value of sl ¼ 10 throughout the

paper; results are not sensitive to increases in this value.

The final key advantage of the LN-CASS prior is the ease

with which it generalizes to problems with a hierarchical

complexity structure. This allows finer control of what exactly

we mean by a ‘complex’ model, and what we mean by a desir-

able model—our example of using a GAM for studying the

metabolomics data above illustrates this point. In that case,

we imposed a hierarchical complexity structure: no effect!
linear effect! nonlinear effect. In the simulation study, we
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favoured a complexity structure: no effect! shared group

effect! individual effect. These hierarchies are accomplished

simply by propagating the value of the logit-normal random

variable through each layer and taking its product with a

new logit-normal random variable.

We note that the prior is particularly amenable to problems

in which a hierarchical complexity structure is desired, by

which we mean problems in which simpler models are

nested within more complex models. The simplest case is the

domain of the majority of the shrinkage/regularization

literature: models with fewer parameters are nested within

models with more parameters. However, there are other

problems with similar properties; linear models are nested

within nonlinear models, models with some predictors

sharing coefficients are nested within models in which each

predictor has its own coefficient. One possible area of appli-

cation is in multi-state survival modelling. Multi-state

models describe transitions between disease states by distinct

hazard functions, which may be difficult to fit with a small

sample size. One might expect that the effects of many covari-

ates remain fairly similar regardless of the state, for example

age. Thus, the LN-CASS prior could be used to introduce a

‘soft’ constraint, encouraging but not enforcing covariates

to share a parameter across hazard functions. This would

essentially involve placing a grouped LN-CASS prior on the

regression coefficients (as in the simulation study), with

the groups corresponding to covariate effects.

As with most Bayesian methods, the main obstacle to the

implementation of this methodology is the computational

burden of MCMC sampling. Recent developments have

made this procedure much more straightforward to

implement and much faster [19,20]. However, for large

problems this computational burden is likely to be too large

to compete with the much faster frequentist and machine

learning methods available. Approximate Bayesian methods

offer more computationally tractable alternatives to MCMC

sampling, and would be an interesting avenue of future

research for this problem and allow its scalability to very

large problems. In particular, non-parametric variational

inference [21] appears to be the most reasonable direction,

since it is able to deal both with multimodal posterior

distributions and non-conjugate prior distributions.

One concern with spike-and-slab type inference procedures

is the presence of multi-modal posterior distributions and the

subsequent difficulty of some samplers to sample effectively

from the posterior distribution, due to them becoming ‘stuck’

in local modes. We checked that the sampler we employed

was able to effectively explore multi-modal posterior distri-

butions in a linear model with interactions, a problem that is

particularly prone to multi-modal posteriors. We found that
whenever multi-modal posteriors appeared, they were effec-

tively explored by multiple MCMC chains, and the Gelman–

Rubin statistic [22] revealed that samples were consistent

across chains. Electronic supplementary material, section S4

and the accompanying code provide more details.

The LN-CASS method does not inherently provide ‘hard’

variable selection, i.e. completely removing variables from

the model, in the ilk of the LASSO. We advocate using the

full model (i.e. including all predictors) for making predic-

tions wherever possible, and using the absolute values of

estimated parameters as variable importance measures for

identifying the most important predictors for the purposes

of hypothesis generation and/or obtaining biological insight.

However, particularly in clinical/diagnostic circumstances,

hard variable selection is useful to reduce the burden on

clinicians/diagnosticians in collecting relevant data for

using the model at the point of care.

A variety of applicable procedures for hard variable selec-

tion in Bayesian shrinkage models are available in an excellent

review by Vehtari et al. [23]. One particularly simple method is

to specify a threshold on the absolute values of the median

parameters, i.e. discard all predictors whose absolute value

is below some threshold. This threshold could be chosen

based on the predictive performance of submodels containing

only the predictors corresponding to the largest k coefficients

in absolute value—one simply evaluates the predictive

performance of each submodel and specifies a percentage of

the maximum (i.e. the model including all variables) to retain.

To summarize, we have presented a flexible tool for

performing regularized Bayesian regression in a variety of

settings, which allows one to construct (with relative ease)

problem-specific penalties on model complexity. The per-

formance on out-of-sample data is typically at least as good

as state-of-the-art methods, but the prior allows the use of

classical statistical models which can be interpreted simply

by applied biomedical scientists.
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