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Abstract

Purpose: Chronic Lymphocytic Leukemia (CLL) is defined by a perturbed B-cell receptor-mediated signaling machinery. We
aimed to model differential signaling behavior between B cells from CLL and healthy individuals to pinpoint modes of
dysregulation.

Experimental Design: We developed an experimental methodology combining immunophenotyping, multiplexed
phosphospecific flow cytometry, and multifactorial statistical modeling. Utilizing patterns of signaling network covariance,
we modeled BCR signaling in 67 CLL patients using Partial Least Squares Regression (PLSR). Results from multidimensional
modeling were validated using an independent test cohort of 38 patients.

Results: We identified a dynamic and variable imbalance between proximal (pSYK, pBTK) and distal (pPLCc2, pBLNK, ppERK)
phosphoresponses. PLSR identified the relationship between upstream tyrosine kinase SYK and its target, PLCc2, as
maximally predictive and sufficient to distinguish CLL from healthy samples, pointing to this juncture in the signaling
pathway as a hallmark of CLL B cells. Specific BCR pathway signaling signatures that correlate with the disease and its
degree of aggressiveness were identified. Heterogeneity in the PLSR response variable within the B cell population is both a
characteristic mark of healthy samples and predictive of disease aggressiveness.

Conclusion: Single-cell multidimensional analysis of BCR signaling permitted focused analysis of the variability and
heterogeneity of signaling behavior from patient-to-patient, and from cell-to-cell. Disruption of the pSYK/pPLCc2
relationship is uncovered as a robust hallmark of CLL B cell signaling behavior. Together, these observations implicate novel
elements of the BCR signal transduction as potential therapeutic targets.
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Introduction

Chronic lymphocytic leukemia (CLL) results from the accumu-

lation of mature monoclonal CD5+ B cells in the bone marrow,

lymphoid organs and peripheral blood. CLL B cells are

characterized by low expression of surface CD20 and co-

expression of CD19 and CD5 [1]. While some patients have

rapidly progressive disease that is characterized by early need for

treatment, resistance to chemotherapy and short survival, others

have a stable, indolent course over many years and often succumb

from other causes [2]. In patients with evidence of clinically

indolent course, treatment is generally delayed and a period of
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‘‘watch and wait’’ is typically indicated [3]. Over the past decade

molecular and cellular prognostic markers have been identified

that correlate with response to treatment and/or overall survival

(among which one of the most accurately predictive is the

immunoglobulin heavy chain (IGHV) gene mutation status),

though the discriminatory power of these known prognosticators

is not absolute [4–8].

At the cellular level, clonal expansion of B cells depends on the

efficient propagation of signal from the cell membrane to target

genes following antigenic stimulation of the BCR [9,10]. It has

been proposed that unmutated surface immunoglobulins in CLL

are more responsive to antigenic stimulation, resulting in strong

BCR-mediated signal transduction and induction of anti-apoptotic

proteins such as XIAP and MCL-1 [11–13], while CLL cells with

mutated IGHV more closely resembles anergic B cells [14], with

incomplete responsiveness through the BCR pathway and

induction of tolerogenic signals. CLL B cells have been described

to have constitutive activation of several members of the BCR

signalosome. For instance, levels of phosphorylated Lyn and Syk

have been shown to be higher in CLL cells [15,16]. Similarly, the

PI3K/Akt pathway has been shown to be aberrantly activated in

CLL cells [17,18]. BCR signaling aberrancy has been shown to

correlate with prognostic clinical parameters or disease stage at the

time of diagnosis. Recent work from the Jumaa laboratory

identified a possibly parallel BCR activation mechanism, whereby

a structural motif of the CLL BCR drives antigen-independent

autonomous signaling [19]. Regardless of the initial activating

event, the BCR pathway is clearly an ideal target for new drug

development in CLL. Small molecule inhibitors of the BCR

signaling pathway are demonstrating remarkable activity in

clinical trials. The target specificity, off-target activity and exact

mechanism of action of these novel drugs, however, are not

completely understood at this time [20–25].

Single-cell network profiling is a method that allows the

investigation of cell signaling events with single-cell resolution

and requires minimal sample manipulation [26]. Using combined

immunophenotyping and multiplexed phosphospecific flow cy-

tometry Irish et al. identified a subpopulation of lymphoma cells

with impaired BCR signaling from tumor samples of patients with

follicular lymphoma [27,28]. A negative impact of these low-

responding cells on patients overall survival was noted. More

recently, using a similar methodology, Palazzo et al. demonstrated

that CLL B cells could be stratified into two groups depending on

the efficiency of BCR signal amplification caused by hydrogen

peroxide (H2O2), a broad tyrosine phosphatase inhibitor. Further-

more, in vitro response to the nucleotide analog F-Ara-A by

primary CLL cells was highly associated with the ability of CLL B

cells to undergo peroxide-augmented signaling [29].

We applied phosphospecific flow cytometry to study the

heterogeneous response of stimulated B cells with the goal of

identifying BCR pathway signaling signatures that correlate with

the disease and with its degree of aggressiveness. We hypothesized

that this method would allow the identification of CLL-specific

signaling behavior that would be highly predictive of the presence

of disease in a B cell population. To do this, we stimulated the cells

with anti-IgM and H2O2, a highly standardized, widely published

method for probing the signaling pathway of B cells [28–30]. We

found that the development of a sophisticated computational

method was essential to analyze the phospho-flow data in its

multidimensional nature, rather than as a series of individual

results.

Materials and Methods

Sample preparation
We used samples from 67 CLL patients and 10 healthy

volunteers who signed informed consent to have their sample used

for research purposes, in accordance with the Declaration of

Helsinki and approval by the Memorial Sloan-Kettering Cancer

Center (MSKCC) institutional review board. Treated and

untreated CLL patient samples were randomly selected. Patients

were not treated uniformly under a specific clinical trial. Clinical

characteristics are described in Supplementary Table S1. 38

additional samples from another institution (a generous gift of Dr.

Sami Malek, University of Michigan) were used as a validating

cohort for BCR signaling analysis, or combined with the MSKCC

samples for selected analysis.

Isolation, storage, and thawing of primary cells
Peripheral blood mononuclear cells (PBMCs) were isolated

using density gradient separation (Ficoll-Paque Plus; GE Health-

care) and frozen within 6 hours from collection, without further

manipulation. For signaling analysis, cells were thawed and

washed in RMPI+10% FBS. Mononuclear cells were resuspended

at 107 cells/mL, and allowed to rest at 37uC for up to 2 hours.

Immunophenotyping and total cytoplasmic Zap-70
analysis

For immunophenotyping, cells were stained anti-CD3, -CD5, -

CD19, -CD20 (cytoplasmic), and -CD38 (all BD-Biosciences), and

anti-IgM F(ab9)2 (Biosource International). For cytoplasmic Zap-

70 analysis, resting cells were fixed with a 1.6% paraformaldehyde

solution for 10 minutes at 37uC then permeabilized with cold

methanol at 220uC for 10 minutes. Cells were then washed with

PBS with 2% FBS and stained with anti-Zap-70 antibody (clone

1E7.2, BD Biosciences) for 30 minutes. Cells were washed once

with PBS+2% FBS, and collected on an LSRII cytometer (BD

Biosciences).

IGHV gene sequencing
DNA was amplified using BIOMED-2 multiplex PCR assays

with consensus primers that have been previously developed and

standardized for detecting clonally rearranged immunoglobulins

[1]. The DNA was sequenced using Applied Biosystem’s BigDye

Terminator v3.1 Cycle Sequencing Kit. Mutation levels were

analyzed by comparison to known germline sequences using

VBASE.

BCR stimulation
After thawing, cells were rested in FBS-containing medium,

then stimulated by adding goat polyclonal anti-IgM F(ab9)2
(Biosource International) to a final concentration of 10 mg/mL

at 37uC. A resting time of 2 hours was chosen based on time

course experiments that demonstrated that, while a 15 minute

resting time was sufficient to achieve maximum stimulation in

highly responding samples, continued incubation in FBS-contain-

ing medium up to 2 hours provided enhanced phosphoresponses

in the lower responders (Supp. Fig. S1A). Addition of hydrogen

peroxide (H2O2) further enhanced observed phosphoresponses in

non-maximally activated samples, in a dose-dependent manner

(Supp. Fig. S1B and S1C). A working concentration of 3.3 mM

H2O2 was chosen. Fixation was achieved with the addition of pre-

warmed paraformaldehyde (BD Biosciences) to a final concentra-

tion of 1.6%. Cells were fixed for 10 minutes at 37uC,
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permeabilized with cold methanol at 220uC for 10 minutes, and

stored at 280uC until staining step, no longer than 48 hours.

Phosphospecific flow cytometry
Fixed and permeabilized cells were washed once with PBS with

2% FBS. An antibody mix containing conjugated phosphospecific

antibodies was added, and incubated for 30 minutes at room

temperature. Phosphospecific Alexa Fluor 488 and Alexa Fluor

647, or R-PE-conjugated antibodies (all from BD-Biosciences)

against pBLNK(Y84), pBTK(Y551)/Itk(Y511), pERK1/2(T202/

Y204), pPLCc2(Y759) and pSYK(Y348) were used. Detection of

PBMC subsets was achieved with Pacific Blue-conjugated anti-

CD3 (clone UCHT1, BD Bioscience), PerCPCy5.5-conjugated

anti-CD20 (clone H1, BD Biosciences), and PE-Cy7-conjugated

anti-CD5 (clone L17F12, BD Biosciences) antibodies.

Data analysis
Flow cytometry data were acquired on an LSR II Flow

cytometer (Beckton Dickinson). After gating out doublets and dead

cells, the CD32/CD20+ gate was used to identify B cells within the

healthy PBMCs. The clonal CD20low/CD5+/CD32 population of

each patient with CLL was manually gated.

Phosphoresponses for kinase X (pX = pBLNK, pBTK, ppERK,

PLCc2, or pSYK) were quantified by computing the frequency

F(X) of cells whose Mean Fluorescence Intensity (MFI) for

stimulated cells was 99% higher than the MFI for unstimulated

cells. To reduce the dimensionality of the data, we applied a

partial-least square regression (PLSR) using the Matlab statistical

toolbox (Mathworks): the F(X) matrix for all phosphoresponses of

all the samples (CLL or healthy controls) were pooled together in

one matrix and linearly-regressed against a one-dimensional

matrix of 0 for CLL patients and 1 for healthy individuals. The

linear combination of F(X) yielded a one-dimensional variable

VPLSR.

Results

CLL B cells exhibit wide variability in their responsiveness
to BCR stimulation and pathological dysregulation of
proximal signaling components

PBMCs from CLL patients and healthy volunteers were isolated

by density gradient without further B-cell separation. All samples

were collected, frozen and thawed following a uniform protocol to

prevent inter-sample variations due to handling. BCR-mediated

activation with anti-IgM and H2O2 was optimized to a stimulation

time of 4 minutes.

In the CLL samples, CD20+/CD5+ cells represented a variable

proportion of the total cells for each individual patient, depending

on the extent of the circulating CLL clone. As expected, the mean

fluorescence intensity (MFI) of the CD20 staining was generally

dim, though some samples were strongly CD20+. Similarly, CD5

expression varied among patients.

At baseline, both CLL and healthy B cells had no or minimal

constitutive activation of each of the upstream or downstream

BCR signaling proteins analyzed. Addition of H2O2 amplified the

stimulatory effect of BCR cross-linking, significantly more so in

CLL B cells than in healthy controls (Supp. Fig. S1C). This

confirms that CLL B cells are overall anergic, possibly because of

an excess of phosphatase activity that can be blocked upon H2O2

treatment [31–33]. Following H2O2 exposure and BCR cross-

linking for 4 minutes, we analyzed the intensity of activation,

measured as MFI of five specific phosphoepitopes of a selected

number of BCR signaling pathway members (Fig. 1A). The

detectable fraction of cells responding with phosphorylation of

SYK, BLNK, BTK, PLCc2, or ERK1/2 was highly variable

among the 105 CLL patient samples analyzed. Examples of ‘‘high

responder’’ and ‘‘low responder’’ CLL samples, compared with B

cells from one healthy individual, are shown in Fig. 1B.

Preliminary analysis of sample phosphoresponses revealed strong

correlation between each pairwise pX and pY (i.e. pPLCc2 and

pSYK) (Supp. Fig. S2A, S2B). Contour plots of MFI illustrate

bimodal patterns of stimulation within all CLL patient samples;

bimodality is absent from healthy B cell populations (Fig. 1C,
Supp. Fig. S2C). Therefore, within a single population, the B

cells of healthy individuals show modest variability (yielding mostly

uniformly intermediate responses), while the CLL B cells can be

distinguished by their all-or-none response (visualized by two

populations separated by phosphoresponse). Importantly, we

checked that cell viability was homogeneous among all samples,

thus variable bimodality of the B cell response to stimulation is not

an artifact of our cell preparation protocol (Supp. Fig. S3).

Bimodality of the stimulated response is a novel observation of

BCR signaling pathway dynamics in CLL patients [34].

Comparison of the percentage of responding cells over the

corresponding unstimulated control in all CLL samples and

healthy controls is shown in Fig. 1D. This representation reveals

the wide, continuous range of CLL patients’ phosphoprofiles and

highlights the high variability in the responsiveness of the BCR

signaling pathway in this patients’ population. Importantly, this

analysis reveals that while CLL cell populations all have some

degree of bimodality in their signaling response, the fraction of the

population with a stimulated phenotype is widely variable between

CLL patients. Surface IgM staining revealed no correlation

between expression of IgM and magnitude of signaling response,

indicating that the changes in %pX+ among CLL patients is due to

alterations in the signal transduction mechanism (data not shown).

Using this simple comparison of each isolated phosphoresponse,

only the PLCc2 activation showed statistical significance when

comparing healthy to CLL samples (p,0.0001) (Fig. 1D).

Analysis of the percentage of pX+ and of the MFI values of all

phosphoresponses in every possible pairwise combination shows

good linear correlation of the entity of phosphoresponses, and

again highlights the greater variability observed in CLL patients

(Supp. Fig. S2A, S2B).

Multidimensional phosphoresponse signatures partition
CLL patients into clinically relevant subgroups

For more than 75% of the CLL cases analyzed, CLL B cells

were either uniformly high-responders to IgM cross-linking (n = 17/

105), low-responders (n = 28/105), or healthy-like with intermedi-

ate response (n = 36/105). Hence, we defined a five-dimensional

filter based on the amplitude of the signaling responses (Fig. 2A)

for these three populations and tested their ability to match known

indicators of clinical outcome (time to first treatment, TTFT, or

mutational status of IGHV genes).

Patients whose CLL B cells responded to IgM cross-linking with

high BCR responsiveness required treatment after shorter periods

of expectant monitoring (50% of cases treated by 12.4 months),

compared to patients whose CLL B cells exhibited intermediate

(healthy-like)-responsiveness (26.9 months) or low-responsiveness

(36.3 months) (p,0.01). Hence, it appears that stronger B cell

signaling response to BCR cross-linking in CLL B cells when

compared to healthy B cells correlates with the severity of the

disease (Fig. 2B). We also found that the degree of BCR

responsiveness inversely correlated with the percentage of muta-

tion in the IGHV genes compared to the germline BCR (Fig. 2C).

Specifically, patients with high BCR responsiveness were more

likely to have unmutated IGHV genes (using the standard 2%
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mutation cut-off compared to germ-line sequences), while patients

with low responsiveness had overall mostly mutated IGHV genes.

IGHV genes mutation rate in patients with intermediate, healthy-

like responsiveness fell, on average, on the 2% cutoff. When

comparing clinical parameters of disease aggressiveness (TTFT,

treatment status, ZAP70 abundance) to individual phosphore-

sponses only pPLCc2 correlated significantly with treatment status

(Supp. Fig. S4), thus further supporting the multidimensional

view of the BCR signaling pathway as an independent indicator of

disease state. Indeed, visualization of the phosphoresponses in

higher dimensions is a powerful tool to resolve disease status

between a CLL and healthy B cell. Three-dimensional visualiza-

tion of three phosphoresponses (pPLCc2+, pSYK+ and either

pBLNK+ or ppERK+) for all CLL and healthy samples

demonstrated a clear separation of the healthy individuals’ samples

from the CLL patients’ samples solely by virtue of the combined

%pX+ values (Fig. 2D). Unlike other biomolecular factors utilized

as diagnostic tools in CLL, the phosphorylation of BCR proximal

signaling components unambiguously distinguishes aberrant sig-

naling pathway behavior from healthy functionality.

Multifactorial statistical modeling of CLL-specific BCR
signaling behavior reveals key sources of dysfunction

The immunophenotypic diagnosis of CLL relies on the

identification of CD5+CD32CD23+CD20low light chain-restricted

lymphocytes in the blood or bone marrow of affected patients.

Here, we use only phosphoresponses following BCR stimulation to

reliably identify CLL patients. Partial-least square regression

(PLSR) was applied to correlate the measured phosphoresponses

Figure 1. Phosphoprofiling of the Proximal BCR Signaling Pathway Uncovers High Variability in BCR Signaling Pathway Behavior in
CLL B cells. A. Simplified diagram of the BCR signaling pathway components investigated in this study. B. Representative histograms of
phosphoresponses of B- cells for two CLL patients (a high and a low responder) and one healthy individual. CLL and healthy B cells were gated as
described in the methods section. Stimulated samples (anti-IgM+H2O2) are indicated by a black line, unstimulated samples are shaded grey. C.
Contour maps of the average B cell population: For each cohort, CLL and healthy, the cellular phosphoresponse fluorescence intensity values are
averaged and viewed two dimensionally. Bimodality in the phosphoresponse of CLL B cells can be seen for the pairwise pPLCc2 vs. pSYK) (see also
Supp. Fig. S2 for other combinations of phosphoresponses). Healthy B cells show modest variability within the B-cell population, while the CLL B cells
can be distinguished by their all-or-none response. D. Following IgM crosslinking, phosphoresponses are shown as the percentage of responding
cells for each patient over an unstimulated matched control. This view of the wide, continuous range of each CLL patients’ phosphoprofile highlights
the high variability in the behavior of the BCR signaling pathway. Only the pPLCc2 response showed statistical significance when comparing healthy
to CLL cells (***p,0.0001).
doi:10.1371/journal.pone.0079987.g001
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with the disease status; creating a novel variable that accurately

distinguishes and classifies pathological from healthy B cells.

Figure 3A depicts in detail the practical application of PLSR

analysis of phosphoflow data. CLL B cells or healthy B cells were

isolated using the gating strategy previously described. Phosphos-

pecific antibodies allowed detection of bimodal phosphoresponses

for pPLCc2, pSYK, pBTK, pBLNK and ppERK. The percentage

of cells positive for each phosphospecific antibody was calculated

based on the unstimulated histograms. These %pX+ (X =

pPLCc2, pSYK, pBLNK, pBTK, ppERK) provide the raw data

for PLSR analysis. PLSR correlates the magnitude of each

patient’s phosphoresponse (%pX+) with a variable defining disease

status (0 for healthy individuals and 1 for CLL patients; 7 healthy

and 67 CLL pooled together). The PLSR algorithm attempts to

optimize weights (b, in Fig. 3A, B) to match the differences

between healthy and CLL phosphoprofiles. The output of PLSR

analysis is a linear combination, VPLSR, that applies weights to

each observed ‘‘predictor’’ variable (%pX+). Thus, we created the

following metric (VPLSR) that encodes Healthy vs. CLL BCR

signaling behavior, given the inputs %pX+. (Fig. 3C, D):

VPLSR~1:1z½z21:5|(%pSYKz)z2:6|(%pBTKz)

{1:0|(%pERKz){4:3|(%pBLNKz)

{20:2|(%pPLC2z)� � 0:001:

100% of the variance in phosphoresponse fluorescence intensity

and 66% of the variance in clinical status is encompassed in this

VPLSR component. This weighted sum of individual phosphor-

esponses includes negative contributions from distal pPLCc2,

pBLNK and ppERK and positive contributions from more

proximal kinases pSYK and pBTK. This implies that CLL B

cells respond to BCR cross-linking with hypo-responsiveness for

the distal pPLCc2, pBLNK and ppERK, relatively to the proximal

signaling events, compared to B cells from healthy individuals

(Fig. 3C). By nature of the regression methodology, this

dysregulation between proximal and distal signaling components

is among the factors that most maximally distinguish a CLL BCR

signaling pathway from that of a healthy B cell. PLSR on the most

significant variable phosphoresponses (pPLCc2 and pSYK) is in

fact sufficient to deliver the same discrimination between CLL and

healthy individuals (Supp. Fig. S5).

We then demonstrated how differential responsiveness in

signaling responses discriminates between CLL and healthy

individuals with high statistical significance (p,261025).

(Fig. 4A). Optimization of a VPLSR threshold found that

VPLSR = 0.695 best discriminated between our training set of

CLL and healthy individuals (Supp. Fig. S6, S7). Utilizing the

VPLSR model defined during our training phase, we tested the

validity of our model using a ‘‘test set’’ from a separate CLL

patient cohort (38 independently-acquired CLL patient samples, 3

healthy samples). We measured the stimulated signaling response

of the test cohort, applied our VPLSR classifier and found it 100%

accurate (Fig. 4B, Supp. Fig. S6B). As pPLCc2, pSYK and

pBLNK account for 63% of the variability in the output,

‘‘response’’ variables (healthy vs. CLL) (Fig. 4C), we generated

a 3D-representation of these phosphoresponses (Fig. 4D). This

multidimensional visualization of the VPLSR variable illustrates

how CLL B cells respond with colinearity in these three critical

phosphoresponses (pPLCc2, pSYK and pBLNK) while healthy

individuals display a deviation from this strict colinearity (grey

plane in Fig. 4D, Supp. Fig. S2A).

Our multidimensional PLSR analysis demonstrates that the

malignant properties of CLL B cells are evident and detectable in

the B cell signaling response. PLSR analysis offered a robust filter

to process multiple signaling readouts into a single discriminating

variable, VPLSR. Comparison of VPLSR with CD5 and CD20 MFI

indicates independence of the BCR signaling dysregulation in

CLL from these established phenotypic features of CLL B cells.

(Supp. Fig. S8) This independence of VPLSR from CD5 supports

the ability of using the BCR signaling pathway phospho-signature

as an independent measure of CLL disease status.

Cell-to-cell heterogeneity in VPLSR within the B cell
population is both a characteristic hallmark of healthy
samples and predictive of disease aggressiveness

Parsing of signaling responses in conjunction with CD5 and

CD20 levels demonstrates heterogeneity of responsiveness within a

CLL population. We applied cell-to-cell variability analysis

(CCVA) [35,36] to our single-cell phosphoprofiling measurements

of CLL B cells. For each sample of stimulated B cells, CCVA

parsed cells into subpopulations according to their abundance of

CD20 and CD5 (Fig. 5A). Within each subpopulation, we

computed the average VPLSR and obtained the distribution

VPLSR(CD20,CD5). We then estimated the variability of BCR

signaling by computing the standard deviation s of the distribution

VPLSR(CD20,CD5): s (CD20, CD5) quantifies the heterogeneity of

BCR signaling conditioned by the abundance of CD20 and CD5.

Using the definition of subgroups of patients based on their

responsiveness as defined in Figure 2A (‘‘low responders’’,

‘‘intermediate, healthy-like responders’’ and ‘‘high responders’’),

we found that healthy-like responders were individuals whose B

cells displayed significantly larger s (CD20, CD5) i.e. larger

Figure 2. Variability in the Signaling Profile Allows Partioning of CLL Patients Into Distinct Prognostic Groups. A Graphic
representation of all five phosphoresponses for CLL patients (blue, n = 110) as compared to the healthy controls (red, n = 11). A pentagon was created
for each sample by connecting the percent of responding cells (over unstimulated control) recorded on the axes. A wide variability in extent of
response was observed in the CLL group, encompassing all possible level of responsiveness. Three distinct groups of CLL could be defined based on
the responsiveness (inset): patients with uniformly low response (left, at least 4 of the 5 pX+,40%), patients with uniformly high response (right, at
least 4 pX+.75%), and patients with intermediate, healthy-like response (middle, at least 4 pX+ within the range of healthy samples). This groups of
patients yielded n = 28 among low-responders, n = 36 among intermediate (healthy-like) responders and n = 17 among high-responders. B Kaplan-
Meyer curves showing time from diagnosis to first treatment (TTFT) was plotted for the three distinct CLL subgroups described in D. Patients whose
phosphoprofile consists of uniformly high phosphoresponses had a statistically significant (p,0.01) shorter time to first treatment (TTFT).
Furthermore, high responders had a larger fraction that had required treatment (p,0.04). Those patients whose %pX+ values were uniformly low or
similar to healthy individuals across the 5 responses studied had a significantly longer time to first treatment, and fewer patients within this cohort
have required treatment at the time of this analysis. C Distinct IGHV status (% deviation from germline sequence) is also observed between these
three subgroups. The dashed line indicates the 2% cutoff for mutational status, mutated vs. unmutated. Mean 6 Std. Error % Mutated: Healthy-
like = 2.0260.43; High = 0.736.21; Low = 3.96.86. D Three-dimensional visualization of three phosphoresponses ([%pPLCc2+, %pBLNK+ and %pSYK+],
or ([%pPLCc2+, %pSYK+ and %ppERK+]) for (blue) all CLL and (red) healthy samples. Each panel demonstrates the clear separation of the healthy
patient samples from the CLL patient samples solely by virtue of the combined %pX+ values for the three phosphoresponses.
doi:10.1371/journal.pone.0079987.g002
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Figure 3. Statistical Analysis of CLL B-cell Phosphoprofile using Partial Least Squares Regression (PLSR) against disease status. This
figure details our method for analyzing phosphoflow data by Partial Least Squares Regression (PLSR) against disease status: A Training: 1 CLL B cells
or healthy B cells were isolated using the gating described in the methods section. 2 Phosphospecific antibodies allowed detection of the
phosphoresponse for pPLCc2, pSYK, pBTK, pBLNK and ppERK. The percentage of cells positive for each phosphospecific antibody was calculated
based on the unstimulated histograms. These %pX+ provide the raw data for Partial Least Squares Regression analysis, PLSR. 3 PLSR was applied to
best correlate a linear combination of these phosphoprofiles for each patient (all healthy controls and all CLL samples pooled together) with a
variable defining disease status (arbitrarily set to 0 for healthy individuals and 1 for CLL patients). This step of the analysis is referred to as ‘‘Training’’
as the PLSR algorithm uses a subset of CLL B cells and Healthy B cells to model the covariance of each phosphoresponse. 4 The output of PLSR
analysis is a linear combination VPLSR with weights (bi) to each observed ‘‘predictor’’ variable (%pXi

+). The PLSR algorithm output attempts to find
weights that best match the differences between healthy and CLL patient phosphoprofiles with disease status. B Test: Using the model (VPLSR)
defined during the training phase, we tested the power of our model by its ability to correctly predict the disease status of independently-acquired
CLL patients and healthy individuals. Phosphoresponses are measured and linearly-combined into a VPLSR variable as specified by the training step. C
BCR signaling diagram highlighting pathway-based understanding of the VPLSR score and weights. D Example of VPLSR predictive power: two samples
(one CLL and one healthy control) were tested side-by-side. As predicted, VPLSR helps discriminate their differences in phosphoresponses. As
illustrated in Fig. 3A, %pX+ values over an unstimulated control are calculated and linearly combined to yield VPLSR for the sample under
consideration. Sample 1119, yields VPLSR = 0.02, while Sample 1062, yields VPLSR = 0.84, consistently with disease status (healthy and CLL, respectively).
doi:10.1371/journal.pone.0079987.g003

Figure 4. PLSR Model Results. A Distributions of VPLSR scores for CLL and healthy samples from the training cohort. The x-axis shows the range of
VPLSR solutions, with healthy individuals significantly clustering on the lower extreme, and CLL patients’ phosphoprofiles producing high VPLSR scores
(p,0.0001). This plot shows only patients included in the training set. The vertical black line at VPLSR = 0.695 represents the optimized cutoff between
CLL and healthy phosphoprofiles (see Supp. Fig. S7). B Distribution of VPLSR scores for CLL and healthy samples from the training set (light and dark
grey bars), overlaid to the VPLSR distribution of the training set. The model is upheld as the test set data is correctly partitioned by disease status
(p,0.0001). Root mean squared error (RMSE) measurements quantify the regression error, supporting the validity and applicability of the model to
other datasets: RMSEtraining = 0.1750; RMSEtest = 0.1576; RMSEall = 0.1644. Training set: CLL = 67; Healthy = 7. Test set: CLL = 38; Healthy = 3. C Percent
variance between the disease states, according to VPLSR weight. Each phosphor-epitope individually accounts for the indicated percentage of the
variability between CLL samples and healthy samples within the PLSR model. As shown, pPLCc2+ has the strongest power in distinguishing healthy
from CLL. D 3D-representation of VPLSR: a compendium of phosphoresponses best discriminating between CLL and healthy individuals. Each samples
is represented as a datapoint, positioned in space according to the value of %pX+, for each axis. The grey plane corresponds to VPLSR = 0.695, which
best separates CLL from healthy individuals.
doi:10.1371/journal.pone.0079987.g004
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variability in signaling compared to low- or high-responders

(Fig. 5B).

Discussion

The ability of CLL cells to defy apoptosis is the result of a series

of signaling events that favor survival over cell death. Gene

expression profiling analyses have demonstrated that normal B

cells and CLL B cells differ by thousands of differentially expressed

genes. However, only a relatively small number of genes can

differentiate between CLL with mutated and unmutated IGHV

genes [37,38]. The CLL genes that distinguished between the two

subtypes were enriched for genes that are modulated upon BCR

stimulation, particularly in the unmutated samples. Additionally,

the presence of stereotyped IGHV genes in a significant

proportion of CLL patients further supports the hypothesis of

chronic antigenic BCR stimulation [39–41]. A recent study

revealed a mechanism of cell-autonomous BCR stimulation in

CLL, totally independent of antigenic stimulation, but requiring

the presence of distinct epitopes intrinsic to the BCR itself [19].

Such variation in the degrees of autonomous or antigen-dependent

signaling response via the BCR might explain the variation in

clinical behavior among CLL patients.

We postulated that a quantitative assay probing CLL-specific

signaling signatures in a large patient cohort could distinguish

between CLL and healthy B cells, and that specific signatures

Figure 5. Cell-to-cell variability analysis for VPLSR as a function of CD20 and CD5 abundance. A VPLSR analysis of high responder, low
responder, and healthy-like responder groups. Three representative patient samples are shown for each responder type. All CLL B-cell samples have a
majority of their cellular population exhibiting a VPLSR.0.695 consistent with the CLL range (blue, as shown in the scale bar). Histograms represent
the mean and spread of the VPLSR values within each sample’s B-cell population for low, high, and healthy-like responders. While low and high
responders have a VPLSR score centered around 1, the width of this peak is highly variable, but much more so in the healthy-like CLL. Healthy samples
uniformly have a large variance of VPLSR scores. B Evaluation of the heterogeneity within the samples as a measure of the variance of VPLSR within the
B cell population. Healthy-like responders exhibited a significantly larger variance compared to high or how responders (healthy-like vs. high:
p = 0.0005; healthy-like vs. low: p = 0.0008; high vs. low: p = 0.23). The variance of VPLSR within the B cell population of healthy samples is also shown.
doi:10.1371/journal.pone.0079987.g005
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could correlate with the heterogeneity of the disease. Heteroge-

neity has been shown by phospho-flow cytometry in recently

published work. A recent small-scale study of 11 CLL samples

showed generally impaired CLL signaling responses to BCR

stimulation compared to healthy B cells, and an association was

noted between signaling ability and outcome [42]. In a separate

study, phosphoprofiling of 23 CLL samples demonstrated that,

while anti-IgM crosslinking alone produced minimal phosphor-

esponses, addition of H2O2 as a mean of signal amplification via

tyrosine phosphatase inhibition could segregate patients’ CLL cells

in high and low responders, implying variability in the differential

proximal BCR modulation within the clonal population. Further-

more, the apoptotic response to F-Ara-A exposure was directly

correlated to the size of the H2O2-responsive population,

indicating that there is a direct association between BCR signaling

ability and apoptotic response [29].

Our methodology combining flow cytometry and multifactorial

statistical analysis of phosphoresponse profiles for 105 CLL

patients uncovered a robust signaling defect in CLL B cells.

Though activation of B cells with anti-IgM and H2O2, a

commonly used in vitro method of stimulation, likely does not

perfectly reproduce in vivo conditions, it shifts the system into a

state of maximal activation. This permits insights into signaling

mechanisms that differentiate CLL from healthy B-cells. Multidi-

mensional regression analysis (PLSR) of B cell phosphoresponses

against disease status assigned positive weights for activation of

proximal kinases (SYK and BTK) and negative weights for

activation of distal kinases (PLCc2, BLNK and ERK). The

resulting PLSR variable from our study was found to strongly

correlate with disease status (high for CLL versus low for healthy).

Thus we analyzed the overall 5-dimensional phosphoprofile as a

whole in order to uncover the defect in the pathologic CLL clone

compared to healthy cells. Other groups have utilized similar

methodologies to analyze multidimensional data, in which

complex statistical models are summarized in a practical

mathematical procedure [43,44]. Yet, none have applied these

approaches to flow cytometric data, nor focused on defined

biochemical networks to uncover mechanistic properties.

The critical utility of the PLSR analysis lies in its ability to

model and probe mechanistic differences between CLL and

healthy B cell; it is not meant to be used as a diagnostic tool for

CLL. Furthermore, the information contained in the PLSR model

is independent from established prognosticators. In fact, our

discovery may be of fundamental biological significance as PLCc2

is a critical signaling regulator of B-cell activation, whose

hypoactivation could be used as a biomarker for response to

therapies targeting the BCR signaling pathway, in CLL and other

lymphoproliferative disorders. Along those lines, Song et al.

reported how total SYK and PLCc2 phosphorylation upon

dasatinib treatment (a SRC inhibitor) predicted the apoptotic

response to the drug [45]. Previous studies of BCR signaling

response may have failed to discover the differential pSYK vs

pPLCc2 defect that we report here, because it is not absolute.

Indeed, we found that there exists vast variability in signaling

behavior between patients, which prevents using PLCc2 or SYK

phosphorylation alone as a direct readout of BCR aberrant

signaling. This is particularly significant for future studies as the

identity of the dysfunctional regulators in CLL BCR signaling

(possibly a differentially-regulated phosphatase) must carry more

specificity towards pPLCc2 inhibition compared to other kinases.

Relating VPLSR to other diagnostic and prognostic readouts, we

found that those of worse outcome (treatment status, CD38

expression, cytogenetic defects associated with poor prognosis) did

correlate, though with only modest statistical significance, with

lower VPLSR (data not shown).

Our study also confirmed bimodality in the phosphoresponse of

CLL patients, as previously described by Palazzo et al. [29], here

for each of the five kinases under study; this is characteristic of a

globally-perturbed kinase network structure in CLL. Furthermore,

while vast variability was observed between the stimulation

signatures of different CLL patients, the tightly-controlled

activation of the healthy donors was found to be robust,

reproducible, and independent of healthy donor age (Supp.
Fig. S9). This is particularly significant as access to blood samples

from age-matched healthy donors can be limiting, yet unnecessary

in the case of our methodology. Our study also identified two

groups of patients, based on differential responsiveness within their

CLL B cell population: patients whose majority of CLL cells

strongly responded to antigenic activation were found to require

treatment earlier and to harbor more frequently unmutated IGHV

genes (both indicators of poor prognosis).

To conclude, this work demonstrates that a combination of

phospho-specific flow cytometry and PLSR analysis can quantify

how different neoplastic and benign cells behave within the same

sample. Our multiparametric methodology can help identify

mechanisms of dysregulation, that otherwise could never be

explored by less sophisticated techniques. Hence, with minimal

manipulation in a clinical setting, direct activation and probing of

signaling responses with single–cell resolution by flow cytometry

can yield new measurements to further classify subtypes of CLL

with statistical significance.

Supporting Information

Table S1 Patient Profiles and Clinical Characteristics.

(PDF)

Figure S1 Optimization and Validation of thaw, rest, and

stimulation procedure. A. Rest time: Two CLL (blue) and two

healthy donors (red) were rested for varied amount of time (as

indicated on the x-axis), followed by a 4-min stimulation with anti-

IgM and 3.3 mM hydrogen peroxide. These data demonstrate

that B cells rapidly reach a steady-state of BCR-responsiveness

after thawing and we conservatively chose a 2 hr-rest period for all

our assays. B. H2O2 Titration: Four CLL patients (blue) and two

healthy samples (red) were stimulated with anti-IgM and various

concentrations of hydrogen peroxide (3.3 mM, 33 mM, 330 mM

and 3.3 mM). %pBLNK+, %pPLC2+, %pSYK+ and %pBTK+
was used to measure the stimulation outcomes. We chose to use

3.3 mM H2O2 to boost the signaling responses of B cells in our

assay. C. Stimulation conditions employed represent optimal

setting for analysis of signaling mechanisms in CLL: Four

experimental conditions and their effects on the signaling pathway

response of CLL and healthy samples are shown. Data presented

here justify the combined use of hydrogen peroxide and anti-IgM

to achieve maximal discriminatory power among samples.

(TIFF)

Figure S2 Pairwise comparison of two-dimensional phosphor-

esponses. A %pX+ values for all CLL (blue) and healthy (red)

samples. Each possible pairwise combination is shown. B MFI of

cells responding with phosphorylation of X (X = PLC2, BLNK,

SYK, BTK and ERK) in all possible pairwise combination. C

Contour maps of the average B cell population: For each cohort,

CLL and healthy, the cellular phosphoresponse fluorescence

intensity values are averaged and viewed two dimensionally.

Bimodality in the phosphoresponse of CLL B cells can be seen for

3 pairwise combinations (pBLNK vs pSYK, pPLCc2 vs pBLNK

Single-Cell Phosphoprofiling of CLL BCR Signaling

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e79987



and ppERK vs. pBTK). Healthy individuals show modest

variability within a single population, while the CLL B-cells can

be distinguished by their all-or-none response; a novel observation

of BCR signaling pathway dynamics in CLL patients.

(TIFF)

Figure S3 Assessment of Apoptosis after 2-hour rest. A.

Apoptosis measured with Annexin V and 7-AAD, herein

double-positive cells used to identify the percentage of dead cells

within the CD19+ B cells. There is no significant difference of the

mean percent dead cells between high CLL responders, low CLL

responders, or healthy PBMCs. B. No correlation exists between

%pPLCg2 and the percentage of dead B cells (R2 = 0.07, p-

value = 0.44, not significant).

(TIFF)

Figure S4 Correlating CLL patients’ phosphoresponses with

treatment status. Only PLC2 phosphoresponse is significantly

different for treated and untreated patients (***: p,0.001).

(TIFF)

Figure S5 PLSR using only %pSYK+ and %pPLCc2+ illustrates

how these two factors, which accounted for the majority of the

variance in the 5-phosphoresponse PLSR, are sufficient in

partitioning CLL from healthy samples. A VPLSR(pPLCc2, pSYK)

equation. This new PLSR variable only takes into account a

sample’s %pPLCc2+ and %pSYK+ values. Note the similarity in

the PLSR weights between this equation and the original VPLSR. B

BCR signaling diagram highlighting pathway-based understand-

ing of the VPLSR score and weights. C Plot of %pPLCc2+ vs

%pSYK+ for all samples. Datapoints represent individual samples,

blue denotes CLL patients, red denotes healthy individuals. The

dashed line represents the VPLSR(pPLCc2, pSYK) variable solved

such that the disease states are maximally differentiated. D

Frequency distribution of VPLSR(pPLCc2, pSYK) values for all

CLL and healthy controls. This variable is able to distinguish

samples by disease state (p,0.0001).

(TIFF)

Figure S6 Two-dimensional representation of CLL vs Healthy

discrimination based on PLSR values. A. Training Set CLL and

Healthy individuals. VPLSR partitioning line (VPLSR = 0.695) is

shown in black. B. Training and Test set. VPLSR discriminating

line correctly partitions the test data (p,0.0001) by disease state.

(TIFF)

Figure S7 Cross Validation Justifies PLSR Power and the Use of

Other Datasets. A Using Leave-One-Out Cross Validation, the

RMSE remains small, and separation between the BCR signaling

responses of CLL patients and healthy individuals remains strong.

The results here are visualized using a cumulative distribution

function plot, showing that the separation between the two disease

states is consistent. B Using Leave-One-Out Cross Validation, we

can determine frequency of error in the PLSR discrimination

between disease states. A cutoff of VPLSR scores to distinguish CLL

vs. healthy is optimized based on these error frequencies:

cutoff = 0.695. At this cutoff, ,1/10 Healthy samples are falsely

defined as CLL, and 4/105 CLL samples are falsely defined as

Healthy based on their VPLSR score. C Validation of PLSR

Model. The relationship between the number of regression

components included and the root mean squared error (RMSE)

is shown here. Five components, or latent variables, are used to

minimize error without overfitting.

(TIFF)

Figure S8 VPLSR does not correlate with the abundance of CD5

(A) and CD20 (B) in B cells for CLL patients and healthy

individuals.

(TIFF)

Figure S9 The ability of VPLSR to discriminate between CLL

and healthy patients is independent of donor age. Our original

healthy donors (used for training and testing the VPLSR) were not

agematched (HD median age: 36 year-old, CLL median age: 66

year-old). To test if the donor age affected the reliability of our

method, we collected a separate cohort of agematched healthy

donors (median age = 69 year-old) and young healthy donors

(median age = 24 year-old). We applied the BCR stimulation and

VPLSR processing protocol (as outlined in our methods) to (n = 7)

CLL patients, (n = 7) age-matched healthy donors and (n = 6)

young healthy donors. A) VPLSR of CLL patients (blue) and

healthy donors (red) from ‘‘training’’ and ‘‘test’’ cohorts as a

function of age. Note the lack of correlation (CLL: R2 = 0.004;

Healthy: R2 = 0.03, n.s.), which justifies using samples collected

from non age-matched healthy donors. B) Stimulation and analysis

protocols (Fig. 3) were applied to a novel group of CLL patients

(blue), age-matched healthy donors (dark red), and younger

healthy donors (red). Independent of age, our methodology

discriminates between disease states in this new experimental

cohort. This figure is representative of two repeats.

(TIFF)
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