
Article

Estrogen-dependent control and cell-to-cell
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Abstract

Cellular decision-making and environmental adaptation are depen-
dent upon a heterogeneous response of gene expression to exter-
nal cues. Heterogeneity arises in transcription from random
switching between transcriptionally active and inactive states,
resulting in bursts of RNA synthesis. Furthermore, the cellular state
influences the competency of transcription, thereby globally
affecting gene expression in a cell-specific manner. We determined
how external stimuli interplay with cellular state to modulate the
kinetics of bursting. To this end, single-cell dynamics of nascent
transcripts were monitored at the endogenous estrogen-respon-
sive GREB1 locus. Stochastic modeling of gene expression impli-
cated a two-state promoter model in which the estrogen stimulus
modulates the frequency of transcriptional bursting. The cellular
state affects transcriptional dynamics by altering initiation and
elongation kinetics and acts globally, as GREB1 alleles in the same
cell correlate in their transcriptional output. Our results suggest
that cellular state strongly affects the first step of the central
dogma of gene expression, to promote heterogeneity in the tran-
scriptional output of isogenic cells.
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Introduction

Heterogeneity is an essential feature of cellular decision-making.

Genetically identical cells frequently respond in different ways to

the same external stimulus, leading to differences in differentiation

programs (Chang et al, 2008), drug resistance (Sharma et al, 2010;

Paek et al, 2016), and viral pathogenesis (Weinberger et al, 2005).

Such heterogeneous cellular behavior can be beneficial for the

diversification of tissues and was shown to be related to variable

expression of key regulators of cellular differentiation programs

(Goolam et al, 2016).

Variability in protein levels arises because gene expression in

single cells is a stochastic process (Harper et al, 2011; Suter et al,

2011; Molina et al, 2013). As a consequence of random, limiting,

biochemical interactions, each gene has intrinsic temporal fluctua-

tions in activity. For instance, mammalian transcription involves

alternating transcriptionally active and inactive intervals, which are

observed as transcriptional bursts (Chubb et al, 2006; Raj et al,

2006). Mathematical models have been developed that capture the

stochastic nature of transcription and that interpret single-cell tran-

scription datasets. In such models, promoters randomly switch

between active (ON) and inactive (OFF) states (Paulsson, 2005;

Suter et al, 2011; Zoller et al, 2015). The number of transcripts

produced over time (i.e., the expression level) can be regulated by

modulating burst frequency and burst size; that is, how often the

promoter is active and by the number of transcripts produced per

burst, respectively.

In addition to these intrinsic fluctuations, cells differ in their

phenotypic state (e.g., cell cycle stage, cell volume, stimulation by

extracellular conditions). This class of factors influences gene

expression globally and introduces correlated fluctuations in multi-

ple or in all genes. Such differences are referred to as extrinsic noise,

and they can influence gene expression at various levels including

transcription and translation. A unifying model that quantitatively

describes gene regulation and that incorporates noise contributed by

intrinsic and extrinsic factors is still lacking.

Live-cell microscopy of fluorescently labeled nascent transcripts

provides a unique methodology to directly observe temporal fluctua-

tions at the level of gene promoter activity. The PP7 reporter system

enables such visualization and is based on the integration of PP7

sequences into a gene of interest. The PP7 sequences fold into stem-

loop structures in nascent transcripts, which in turn associate with

fluorescently labeled PP7 coat protein (PCP) (Chao et al, 2008).

Observing transcription in four dimensions, that is, at distinct loci

within multiple single cells over time, permits characterization of

intrinsic and extrinsic variability.
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In this work, we employed CRISPR/Cas9 genome engineering to

introduce PP7 sequences into an endogenous GREB1 locus. GREB1

is a central mediator of estrogen-induced cell growth in vitro and is

a marker of tumor growth in estrogen-sensitive breast cancers (Rae

et al, 2005; Laviolette et al, 2014). Estrogen (17b-estradiol, E2)

activates transcription of target genes by binding to the ligand-

dependent transcription factor estrogen receptor alpha (ERa). This
signaling pathway is a paradigm for the dynamic behavior of chro-

matin in transcription (Métivier et al, 2003) and is a relevant

mammalian system in which to study the adaptation of bursting to

external cues.

We performed quantitative and time-resolved imaging of nascent

GREB1 transcripts to characterize how the dynamics of transcrip-

tional bursting are modulated by E2 and by extrinsic noise sources.

We employed a model fitting framework, known as approximate

Bayesian computation (ABC), to calibrate stochastic models of tran-

scription based on our data and to discriminate between alternative

hypotheses of promoter regulation. We present a unifying model

that quantitatively describes GREB1 transcription as a two-state

promoter cycle in which E2 regulates the frequency of transcrip-

tional bursts. The cellular state modulates the amount of transcripts

that are produced per burst by affecting kinetics of transcriptional

initiation and elongation, thereby coordinately affecting multiple

GREB1 alleles in the same cell. Furthermore, we report that the rela-

tive importance of intrinsic and extrinsic noise sources can be

altered by small-molecule inhibitors of histone deacetylases. In

conclusion, our work quantifies how noise at different time scales is

shaped by the contributions of transcriptional bursting, extrinsic

noise, and the additive effects of multiple alleles.

Results

Direct observation of endogenous estrogen-mediated
transcriptional activity

We wished to monitor endogenous estrogen-regulated transcription

in living cells within a native chromatin environment. To achieve

this, we modified a GREB1 locus, using CRISPR/Cas9, in the

ERa-positive breast cancer cell line MCF7 and visualized

nascent transcripts using the PP7 reporter system. We generated the

MCF7-GREB1-PP7 cell line by knocking-in an array of 24 PP7

sequences into exon 2, directly upstream of the start codon within a

minimally perturbed GREB1 gene (Fig 1A). Correct knock-in and

recombination was confirmed by genomic PCR (Fig EV1A). Stable

co-expression of the GFP-labeled PP7 coat protein (PCP-GFP) led to

fluorescent labeling of nascent transcripts, with transcription sites

visible as bright foci within the nucleus (Fig 1B and C). The pres-

ence of GREB1 transcripts at these transcription sites was indepen-

dently confirmed using single-molecule (sm) RNA fluorescence

in-situ hybridization (FISH) with probes against intronic and exonic

sequences of GREB1 (Fig EV1D and E). The knock-in allele was

transcribed at comparable levels to the two remaining endogenous

GREB1 alleles, as judged by exonic smRNA FISH spot intensities

(Fig EV1G). Furthermore, the knock-in and wild-type alleles showed

similar sensitivity to E2 stimulation in RT–qPCR analyses (Fig EV1B)

and smRNA FISH (Fig EV1G). This suggests that the knock-in of

PP7 sequences did not significantly perturb GREB1 expression.

The mean intensity and frequency of occurrence of transcription

sites increased in an E2 dose-dependent manner in the cell popula-

tion (Figs 1D and EV1C and G). In the absence of E2, only a few

cells had dim transcription sites, whereas at the saturating E2

concentrations, the GREB1 locus was actively transcribed in around

90% of cells, highlighting an appropriate dynamic range within our

experimental system. The pure anti-estrogen ICI 182,780 and the

transcriptional inhibitor actinomycin D reduced spot intensities and

the number of cells with active transcription, confirming that the

occurrence of nuclear foci depends on estrogen signaling and on

transcription (Fig 1D).

Digital modulation of GREB1 transcription by estrogen

Snapshot measurements at particular time points contain limited

information about the kinetics of transcriptional bursting. We there-

fore monitored the temporal fluctuations of GREB1 transcription for

13 h using time-lapse fluorescence microscopy at an imaging inter-

val of 3 min, which is well below the estimated ~30 min residence

time of individual, nascent GREB1 RNAs at the locus (Fig 1E). Tran-

scribing foci were detected, tracked within nuclei, and quantified

from their 3D image volume (see Materials and Methods). Absolute

transcript numbers were derived through calibration to the intensity

of single transcripts from images at high excitation intensities

(Fig EV1H). This quantification was independently confirmed

through exonic smRNA FISH (Fig EV1F). We observed that endoge-

nous GREB1 is transcribed in stochastic bursts with up to ~150

elongating polymerases present on the body of the gene.

To evaluate the effect of E2 on burst properties, we recorded

single-cell transcription after 3 days of stimulation at eight concen-

trations of E2, ranging from absence to saturating conditions

(Figs 2A–C and EV2A–C, Dataset EV1). We analyzed about 60–90

cells per condition and observed that E2 increased the transcrip-

tional activity of the GREB1 gene in a dose-dependent manner. Dose

dependence is also visible in the global intensity histogram over all

cells and time points (Figs 2D and EV2D) as a characteristic bimodal

distribution, in which transcription is either close to the background

intensity or much higher, with intermediate intensities rarely

observed. Similar bimodal distributions were also observed in

smRNA FISH experiments (Fig EV2D). This suggests that GREB1

exhibits digital ON/OFF-behavior, where increasing E2 increases the

duration of time the gene spends in the transcriptionally active state.

Higher doses of E2 furthermore gradually shift the right peak in the

histogram toward higher intensity values. This suggests either an

analog mode of transcription regulation, where more polymerases

are recruited per burst, or an overlap in the signal between consecu-

tive bursts after short OFF-times.

To further characterize the dynamics of E2-dependent regulation

of transcriptional behavior, we directly extracted the duration of

transcriptionally active and inactive periods from single-cell time

courses by assuming that active periods are characterized by posi-

tive slopes in the time course (see Materials and Methods). We

observed that the average pause duration in between bursts short-

ens with increasing E2 levels (from 184 to 26 min), while the aver-

age burst size increases (from 5 to 17 RNAs/burst) (Figs 2E and F,

and EV2E and F). We thereafter employ mathematical modeling to

quantitatively describe how burst properties change with the stimu-

lus concentration.
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Figure 1. Knock-in of PP7 stem-loop sequences provides visualization of estrogen-mediated transcription from the endogenous GREB1 locus in living cells
(see also Fig EV1 and Movie EV1).

A Knock-in strategy to integrate PP7 sequences into a GREB1 locus in MCF7 cells. CRISPR/Cas9-mediated knock-in of PP7 sequences, together with a selection cassette,
into the 50 UTR within exon 2 of GREB1 was followed by excision of the selection cassette by Cre recombinase to yield the cell line MCF7-GREB1-PP7 (ERE: estrogen
response element, HA: homology arm, pA: polyadenylation site, Puro: puromycin resistance, IRES: internal ribosomal entry site, CMV: promoter of cytomegalovirus).

B Schematic description of the PP7 system. Binding of GFP-labeled PP7 coat protein (tdGFP-tdPCP) to PP7 stem-loops within nascent transcripts leads to fluorescence
accumulation at the transcription site. Spot intensity decreases upon termination and transcript release. A schematic description of the fluorescence signal of a single
transcript is shown below, with the 30 min which a transcript is observable estimated from gene length and published Pol II elongation rates.

C Transcriptional foci in MCF7-GREB1-PP7 cells grown at low and high concentrations of E2. Single fluorescent foci (arrowheads) are observed within nuclei due to
nuclear localization of tdGFP-tdPCP. Maximum intensity projections of z-stacks are shown. Scale bar: 10 lm.

D E2 dose-response. Transcription sites were automatically identified and quantified in images of fixed MCF7-GREB1-PP7 cells. The mean � standard deviation from
three biological replicates of > 3,000 cells per condition is shown along with a fitted Hill function. ICI 182,780 (pure anti-estrogen) and actinomycin D (ActD;
transcriptional inhibitor) serve to prevent transcription at 100 pM E2.

E Endogenous E2-initiated transcription occurs in bursts. MCF7-GREB1-PP7 cells were imaged for 13 h at 10 pM E2. Transcription sites (red cross) were tracked within
nuclei (dashed line). A zt-kymograph of the tracked transcription site demonstrates stable focus. Quantified transcript numbers are shown for a transcription site
(red) and a control site at the center of the nucleus (gray). Scale bar: 5 lm.
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The productivity of GREB1 RNA synthesis exhibits considerable
cell-to-cell variability

We observed that, although all individual cells show stochastic

bursting, some cells generate low total amounts of RNA through-

out the 13-h observation period, whereas others synthesize much

larger total amounts of GREB1 RNA (Fig 2A, right). This results in

a considerable spread in the time-integrated intensity, which varies

from 3,600 to 32,000 RNA∙min between individual cells at a satu-

rating E2 concentration of 100 pM. Considering the background

intensity and that a single RNA contributes to the fluorescence

signal for 30 min, this corresponds to a total RNA output of

between ~110 and 1,100 GREB1 RNAs within 13 h. The observed

cell-to-cell variability is stable over time, as the RNA output during

the first half of the movie correlates with the RNA output during

the second half (Appendix Fig S1A). Thus, the GREB1 locus
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Figure 2. The transcriptional behavior of GREB1 changes with estrogen dose and exhibits considerable cell-to-cell variation (see also Fig EV2 and Movie EV2).

A Cell-to-cell variation in GREB1 expression at multiple E2 concentrations. Transcription was observed for 13 h in individual MCF7-GREB1-PP7 cells at different E2
concentrations. Trajectories of single cells are represented as color maps and are sorted from lowest (top) to highest (bottom) total RNA output (ΣRNA), calculated as
area under the curve divided by the average signal from single transcripts (right). Color denotes the absolute number of nascent RNAs. The squared coefficient of
variation (standard deviation2/mean2) of the total RNA output among the population is indicated (right). Dashed lines indicate exemplary cells shown in panels (B
and C).

B Representative time traces for low, medium, and high expressing cells.
C Autocorrelation (ACF) curves of the individual time traces in (B).
D Increasing E2 increases the proportion and productivity of transcriptionally active periods. Histograms were generated from the number of RNA molecules at the

transcription site from all data points at different E2 concentrations. The distribution of the background signal is shown in gray.
E, F Increasing E2 concentrations decrease the length of inactive periods and increase the burst size. Promoter OFF-times (E) and burst sizes (F) were extracted from the

experimental tracks (see Fig EV2E). Exponential functions (red) with the same mean (dashed line) are shown for the OFF-times.
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exhibits intrinsic stochastic dynamics and experiences more stable

(extrinsic) fluctuations that affect long-term RNA production rates.

This highlights that stable extrinsic factors, which reflect cellular

state, directly impact gene expression on the level of nascent tran-

scription.

Furthermore, at low E2 concentrations, we observe cells that do

not have any transcriptional activation during the entire imaging

period. Such cells can be reliably identified through analysis of their

autocorrelation function, which decays instantaneously to zero if a

trajectory consists solely of background noise (Figs 2C and EV2C).

Based on this criterion, non-responders make up approximately

50% of the population in the absence of stimulation; all cells

however respond when the concentration of E2 is above 10 pM. In

responding cells, the autocorrelation function decays with slower

kinetics (t1/2 ~20–30 min), with a longer decay occurring with

increasing E2 concentrations.

To investigate why individual cells show stable differences in

transcriptional output, we extracted several morphological

features from our microscopy images, namely cell area, nuclear

shape, and local cell density. We found that none of these

features alone correlated strongly and consistently across estrogen

doses with overall transcriptional output (Appendix Fig S2). As a

weak trend, we observe that cells with higher transcriptional

activity tend to exhibit higher nuclear and cytoplasmic areas,

supporting previous studies showing that the cell volume contri-

butes to transcriptional output (Kempe et al, 2015; Padovan-

Merhar et al, 2015). We consider it unlikely that the cell cycle

stage constitutes a major source of extrinsic noise, as we comple-

tely discarded cells that show two transcription sites from a repli-

cated allele at any time point during the observation period.

Hence, cells that were analyzed never passed through S, G2 or M

and were restricted to the G0/G1 phases of the cell cycle.

Furthermore, we tracked cells after cell division and observed

that stable differences in transcriptional output persist over the

subsequent 6 h, when all cells are exclusively in early G1 phase

(Appendix Fig S3 and Dataset EV2).

Taken together, our dataset exhibits several characteristic

features, including a digital-to-analog global intensity histogram,

strong cell-to-cell variability in the time-averaged intensity of tran-

scription, and a subpopulation of non-responding cells. The inter-

pretation of these phenomena is not straight-forward, due to the

stochastic nature of the single-cell trajectories. We therefore turned

to mathematical modeling to infer promoter dynamics from the

data, and to understand why individual cells show a different

susceptibility to estrogen-induced GREB1 expression.

Quantitative stochastic modeling of the dynamics of single-
cell transcription

We implemented stochastic models that describe GREB1 promoter

activity and nascent RNA transcription. These models were fitted

to experimental data to discriminate between different hypotheses

of promoter regulation and to estimate kinetic parameters. As in

previous work, the gene promoter was not modeled in molecular

detail, but as an abstract cycle of transcriptionally active (ON) or

inactive (OFF) promoter states (Paulsson, 2005; Zoller et al, 2015).

As model variants, we considered five different promoter topolo-

gies, ranging from a simple two-state model with two rate-limiting

steps in gene (de)activation to a 10-state cycle (Fig 3A). A two-

state model was sufficient to describe the behavior of other

mammalian genes (Harper et al, 2011; Dar et al, 2012; Larson

et al, 2013), while more states may better reflect the multiple

sequential epigenetic steps reported for estrogen-dependent gene

activation (Lemaire et al, 2006). Progression through promoter

states was modeled to occur as a series of irreversible reactions

with rates kON and kOFF, respectively, and transcription could be

initiated from active states with rate kinit. We simulated the

temporal evolution of the promoter using the stochastic simula-

tion algorithm (Gillespie, 1977) and modeled polymerase-mediated

transcript elongation deterministically with rate kelong. To link

model and experiment, we considered how each elongating tran-

script contributes to the fluorescent signal at the transcription site

(Fig 3A, bottom).

The differences in the total GREB1 RNA output observed between

single cells (Fig 2A, right) could not be explained by the suggested

models and consequently prompted us to add extrinsic noise

sources into our model. We assumed extrinsic noise to be stable

over time and implemented it by resampling selected model parame-

ters before each single-cell simulation (Appendix Fig S1). For each

of the five promoter topologies, we considered eight different extrin-

sic noise sources by resampling the elongation speed (kelong), the

transcription initiation rate (kinit), the promoter ON-/OFF-rates

(kON, kOFF), or combinations thereof. Each of those parameters

represents a plausible target that could be influenced by the cellular

state to alter transcriptional bursting.

For fitting the model to the experimental data, we used approxi-

mate Bayesian computation (ABC), as it provides a model fitting

approach to simultaneously estimate model topologies and model

parameters (Pritchard et al, 1999; Beaumont et al, 2002; Toni &

Stumpf, 2009). We implemented a sequential Monte Carlo version

of ABC (SMC ABC) which iteratively refines a population of 2,000

particles, each consisting of a combination of model topology and

corresponding parameters, to yield measurement-compliant poste-

rior distributions (Toni et al, 2009). The simulation result of each

particle was compared to experimental data using a distance

metric based on the global histogram of transcription site intensi-

ties, the autocorrelation function, and its heterogeneity to evaluate

goodness of fit (Appendix Supplementary Methods). We bench-

marked our SMC ABC framework using synthetic datasets with

various combinations of promoter cycle topologies, extrinsic noise

sources, and parameter values. We observed that kinetic parame-

ter values and model structure are well recovered, though with

some tendency to also retrieve closely related model topologies

(Fig EV3A–C).

We fitted datasets from each E2 concentration separately and

found that the best particles accurately recapitulate features of

experimental data (Figs 3B and EV3D, and Appendix Fig S4) and

yield posterior distributions of kinetic parameters (Fig EV3E). We

analyzed the fitting results to determine which promoter cycle topol-

ogy and extrinsic noise sources can describe the data (Fig 3C).

Model selection strongly favored a two-state promoter cycle,

consisting of a single rate-limiting step in promoter activation and

deactivation. A two-state promoter model would predict that the

OFF-times are exponentially distributed (Suter et al, 2011) and

accordingly, we observed such a distribution in the OFF-times

directly extracted from the data (Figs 2E and EV2F). As source of
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extrinsic noise, the model selection chose a combination of cell-to-

cell variability of transcription elongation kinetics (kelong) and initia-

tion rate (kinit). This model variant, consisting of five parameters,

was one of the few topologies observed in all fits (Fig EV3F) and

made up as much as 42% of the fits when combining the particle

populations of all E2 concentrations. By separately fitting two-state

models with and without extrinsic noise sources to the data, we

validated that extrinsic fluctuations in both the initiation and elon-

gation rates are necessary to describe the experimental observations

across a range of E2 concentrations (Fig EV3G and Appendix Fig

S5). Hence, extrinsic noise sources, reflecting cellular state, alter

two parameters of transcriptional bursts irrespective of stimulus

conditions. This explains observed cell-to-cell variability and

suggests that a unifying model can describe estrogen-mediated tran-

scription. We next sought to validate the retrieved model structure

by independent experiments.

A simple promoter model is recapitulated in
induction experiments

The model prediction of a simple two-state promoter cycle suggests

that the transitions between ON- and OFF-states occur with highly

heterogeneous kinetics as opposed to extended promoter cycles with

many states (Lemaire et al, 2006; Fig EV4A). Releasing cells from

E2 starvation provides an experimental approach to determine the

time it takes each individual cell to switch the gene from an OFF- to

an ON-state and consequently, to estimate population heterogeneity

in GREB1 activation kinetics. Cells were starved of E2 for 3 days.

After 51 min of imaging, transcription was induced by adding either

10 or 1,000 pM E2, following which GREB1 nascent transcription

trajectories were quantified (Fig 4A and Dataset EV3). Almost all

cells showed transcriptional activation within 4 h, with a stronger

response occurring at 1,000 pM E2, as expected based on steady-state

Mean
autocorrelation

Global intensity
distribution

5 
pM

 E
2

10
0 

pM
 E

2

Autocorrelation
half-life

Autocorrelation
at lag = 1

A

C

kinit

Fl
uo

re
sc

en
ce

low kelong

10-state (2-8)

ON
OFF

OFF

ON

OFF
OFF OFF

OFF

OFF

OFF

ON OFF
kOFF

kON

2-state (1 ON - 1 OFF)

ON

OFF

OFF

3-state (1-2)

Model topologies & parameters

RNA transcription:

Time

0.0 0.2 0.4
Frequency

None (0)

kelong (1)

kinit (2)

kON (3)

kOFF (4)

kelong + kinit (5)

kelong + kON (6)

kelong + kOFF (7)

1-
1

1-
2

2-
2

1-
9

2-
8

C
el

l-t
o-

ce
ll 

va
ria

bi
lit

y

Model topology

Model selectionB Model fitting

0.0

0.1

0.2

D
en

si
ty

0.0

0.5

1.0

A
C

F

0.0

0.2

0.4

D
en

si
ty

0

5

10
D

en
si

ty

0.0

0.1

0.2

D
en

si
ty

0.0

0.5

1.0

A
C

F

0.0

0.2

0.4

D
en

si
ty

0

5

10

D
en

si
ty

0.1 1 10 100
#RNA

0 50 100
Lag (min)

0 5 10 15
ACF HL (min)

0.0 0.5 1.0
ACF @ lag = 1

15

15

Fits
Data

high kelong

10-state (1-9)

OFF
OFF

OFF

ON

OFF
OFF OFF

OFF

OFF

OFFON

OFF

OFF

4-state (2-2)

ON

Figure 3. Stochastic model fitting can discriminate promoter complexity and cell-to-cell variability (see also Fig EV3).

A Topologies and kinetic parameters of models of different complexity. Top: The promoter cycles stochastically through active (ON) and inactive (OFF) states with rates
kON and kOFF. New transcripts are initiated stochastically from the active state(s) with rate kinit. Extrinsic noise is implemented by cell-to-cell variability in model
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C Model selection favors a two-state promoter cycle with cell-to-cell variability in elongation and initiation rate. Posterior frequencies are shown for all 40 model
topologies integrated over all eight E2 concentrations.
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measurements (Fig EV2A). Furthermore, the response time for tran-

scriptional activation was shorter at the higher E2 stimulus, in

agreement with time-resolved RT–qPCR data (Fig EV4B). We

observed highly variable response times for reactivation of tran-

scription and no concerted initial transcriptional activation or subse-

quent coherent cycling between active and inactive states occurred.

Thus, our single-cell data do not support a model in which estrogen

target genes were postulated to be activated synchronously and

rhythmically based on chromatin immunoprecipitation measure-

ments of promoter modifications (Métivier et al, 2003).

To determine whether the measured cell-to-cell variability under

synchronization conditions can be quantitatively described by a

two-state promoter model, we separately fitted small (two states,

1-1-5) and large (ten states, 1-9-5) promoter models to the synchro-

nization data using SMC ABC. Synchronization was simulated by

assuming that all cells are initially in the OFF-state and are simulta-

neously released upon activation of the GREB1 gene. As expected,

we found that the two-state model provided a better fit to the previ-

ously introduced data features than the ten-state model (Fig EV4C).

Simulations of the fitted two-state model are qualitatively simi-

lar to the experimental data, showing highly variable response

times for transcriptional reactivation and no periodic transcription

events (Fig 4B). To quantitatively compare model and data, we

extracted response times from the time courses and calculated

their coefficient of variation (CV = standard deviation/mean) as a

measure of heterogeneity among the cell population. Both the

experimental measurements and the two-state model had a CV

close to unity (Fig 4C), as expected for a single rate-limiting step

in gene reactivation in which response times follow an exponen-

tial distribution (Suter et al, 2011). In contrast, the ten-state

model showed a substantially lower variability (CV = 0.6–0.7;

see also Figs 4C and EV4D), consistent with a reduction of

stochastic effects in sequential multistep regulatory processes

(Lemaire et al, 2006). Taken together, these results suggest that

only a few rate-limiting steps are needed to reactivate transcrip-

tion from an OFF-state. Hence, the selection of small promoter

cycles by the SMC ABC algorithm from steady-state measure-

ments is plausible.
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Figure 4. Kinetics of GREB1 induction by estrogen in single cells (see also Fig EV4 and Movie EV3).

A Response times after E2 induction are highly variable. Transcriptional trajectories of labeled GREB1 loci upon addition of a sub-saturating (10 pM, top) and saturating
(1,000 pM, bottom) E2 concentration were sorted based on their response time. MCF7-GREB1-PP7 cells were grown under E2-free conditions for 48 h prior to
imaging. After 51 min of imaging, E2 was added at the indicated time point. Median response times are indicated (red arrow).

B Simulated synchronization recapitulates variability in induction. Simulation of synchronized cells with parameters obtained from fits of the two-state (1–1–5) model
to the 10 pM (top) and 1,000 pM E2 (bottom) synchronization datasets (panel A) produce trajectories that closely resemble the experiments (tON = 0.8 min;
tOFF, 10 pM = 60 min; tOFF, 1,000 pM = 30 min; b = 6 RNAs/burst; model topology: 1–1–5).

C Experimental response-time heterogeneity is explained by small promoter models. Response times were extracted from simulated induction experiments for all
posterior particles of the SMC ABC fit (described in B). The boxplots show how the coefficients of variation (CV) in the response times (calculated over all cells of each
simulated cell population) are distributed over the posterior particles (central line: median, box: 25 and 75% percentiles, whiskers: 5 and 95% percentiles).
Experimental CVs are indicated as dashed lines with standard deviation from bootstrapping as shaded areas. A two-state model provides similar response-time
heterogeneity as the data.
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Allele extrinsic sources dominate cell-to-cell variability

Our model suggests that the cell-to-cell variability in total GREB1

RNA output can be explained by different rates of transcription initi-

ation and elongation between cells. We next investigated whether

these variations arise at the level of each individual allele (cis-

acting, e.g., due to allele-specific chromatin states) or affect all alle-

les simultaneously (trans-acting, e.g., due to variability in cellular

state). We established a further independent knock-in cell line that

harbors two modified GREB1 alleles, thereby permitting visualiza-

tion of two estrogen-dependent loci within the same cell.

The MCF7-GREB1-PP7-Dual cell line was derived similarly to the

single allele cell line, using CRISPR/Cas9-mediated knock-in and

was validated by genotyping and smRNA FISH (Appendix Figs S6

and S7). To maintain protein function of the cell growth regulator

GREB1, the PP7 sequences were delivered into intron 2 at two out of

three GREB1 alleles, about 1 kb downstream of the above-described

knock-in site within exon 2. Transcription was recorded at 10 pM E2

(Fig 5A and C and Dataset EV4). Both alleles were visible as distinct

fluorescent spots in the nucleus, with unrelated transcriptional burst-

ing dynamics (Pearson correlation coefficient (PCC) = 0.01, Fig 5B).

However, sister alleles were highly correlated in their RNA output

(PCC = 0.54, Fig 5D), indicating a shared extrinsic noise source.

No such correlation was observed for random pairs of alleles

(PCC = 0.00). Furthermore, correlated total RNA output was

observed between GREB1 alleles of daughter cells within the first 6 h

after division (PCC = 0.50, Appendix Fig S3 and Dataset EV2), indi-

cating inheritability of factors that determine extrinsic noise. Taken

together, these results suggest that stable extrinsic fluctuations in

GREB1 expression mostly arise from global cellular fluctuations of a

trans-acting factor, while allele-specific variation is limited.

In order to compare these results to our fitted model, we

performed dual-allele simulations in which the extrinsic noise

source coordinately affects both sister alleles (Fig 5E). Specifically,

sister alleles were simulated using the same values for the sampled

transcription initiation rate and elongation kinetics. Under this

assumption, both sister alleles showed independent stochastic burst-

ing, but their total RNA output was correlated (PCC = 0.67, Fig 5F),

in agreement with the experimentally observed correlation

(Appendix Fig S8). No correlation was observed when the extrinsic

noise source was eliminated from the model (PCC = �0.01). In

conclusion, the predicted cellular fluctuations in transcription initia-

tion and elongation rates are plausible.

Estrogen modulates the frequency of transcriptional bursts

E2 increases GREB1 transcription in a dose-dependent manner, with

the posterior distributions of the individual fits (Fig EV3E) suggest-

ing that it does so by increasing the frequency of transcriptional

bursts, their size, or both. We refined our model fitting approach

and asked whether we could simultaneously explain transcription at

all E2 concentrations using a common model topology, assuming

that E2 only modulates a single kinetic parameter.

Based on our previous fitting results, we fixed the model topol-

ogy to a two-state promoter cycle with extrinsic variations in the

transcription initiation and elongation rates. We found that the data

at eight different E2 concentrations could be simultaneously fitted if

we only allowed the promoter OFF-time to vary with the stimulus

(Fig 6A). This model outperformed a competing model variant in

which E2 specifically modulates the burst size (i.e., the product of

burst duration and number of RNAs produced per time unit in the

ON-state). These fitting results hint at an estrogen-dependent modu-

lation of burst frequency (Fig 6B) with GREB1 being inactive for

about 400 min in the absence of E2; this interval decreases to

< 20 min at saturating E2 concentrations (Fig 6C). Given an average

OFF-time of 400 min at low doses, a proportion of cells will not

respond within an observation period of 750 min, in qualitative

agreement with experiments (Fig 2A). When OFF-times are compa-

rable to the residence time of fluorescent GREB1 transcripts at the

transcription site (~30 min), frequency modulation accounts for the

analog shift of the right peak in the global intensity histogram, as

consecutive fluorescent signals start to overlap (compare Figs 2D/

EV2D with Fig EV5D). For all levels of E2, the estimated ON-time is

0.56 min with 7.9 RNAs being produced per burst from the GREB1

gene on average (Fig 6C).

Analytical calculations predict that transcriptional noise scales

inversely with mean transcription for a frequency-modulated two-

state model along lines of constant burst size (Elowitz et al, 2002;

Singh et al, 2010). To compare these analytical results with our

data, we separated the intrinsic and extrinsic noise components (see

Materials and Methods) and observed that intrinsic noise follows

this theoretically predicted noise–mean scaling (Fig 7A), thereby

providing support for our global model.

In summary, quantitative modeling revealed that estrogen signal-

ing acts upon the transition from an inactive to a transcriptionally

permissive promoter state and has limited effect on polymerase

loading during active periods. In such a regime of burst frequency

regulation, noise is reduced with increasing estrogen levels.

Burst properties and noise behavior are altered through
protein acetylation

Previous studies reported that small-molecule inhibitors of epige-

netic processes might regulate burst size and/or frequency (Suter

et al, 2011; Vinuelas et al, 2013). Using live-cell imaging, we wished

to directly characterize burst modulation by small-molecule inhibi-

tors and asked whether noise in gene expression can be uncoupled

from mean expression levels. Using high-content imaging of fixed

cells, we observed that two inhibitors of zinc-dependent histone

deacetylases (HDAC), the carboxylate butyrate and the hydroxamic

acid trichostatin A, decreased total transcriptional output of the

GREB1 locus (Fig EV5A and B), as reported previously (Reid et al,

2005).

In order to quantify effects on transcriptional bursting, we

performed live-cell imaging at intermediate concentrations of buty-

rate and E2 (Fig 7B and Dataset EV5). Interestingly, we observed

that butyrate had no effect on gene expression noise at a low dose

(2.5 mM), and only moderately increased noise at a higher dose

(4 mM), while substantially reducing expression levels (Fig 7B–D,

Appendix Fig S9 and Dataset EV6). Similarly, PFI1, a bromodomain

inhibitor that blocks the recognition of acetylated moieties in chro-

matin, reduced GREB1 expression, with moderate impact on noise

(Appendix Fig S9 and Dataset EV6). Hence, these inhibitor effects

did not follow the inverse noise–mean scaling exerted by E2 titra-

tion, implying that noise and mean can be controlled independently.

Only intrinsic noise was affected by butyrate-mediated HDAC
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Figure 5. Dual allele labeling reveals a trans-acting source for extrinsic noise.

A Observation of transcriptional bursts from two GREB1 alleles in the same cell. MCF7-GREB1-PP7-Dual cells were grown at 10 pM E2. Two GREB1 transcription sites
(red and yellow crosses) were tracked in nuclei (dashed line), and the intensity of both transcription sites was quantified (bottom). The zt-kymograph demonstrates
that both sites stay in focus during the movie. Scale bar: 5 lm. Also see Movie EV4.

B Sister alleles have uncorrelated temporal fluctuations. Intensities of both transcription sites from the cell in panel (A) were plotted, with each dot representing one
time point. The inset shows bootstrapped correlation coefficients for all 45 cells in panel (C).

C Dual allele transcription in a cell population. Transcriptional activity was quantified in MCF7-GREB1-PP7-Dual cells at 10 pM E2. The signal of two alleles from the
same cell is represented as pair of rows, separated by a dark line. Cells are sorted for the total RNA output (ΣRNA) of the brighter allele from low (top) to high
(bottom) as indicated on the right. The squared coefficient of variation across all alleles is shown.

D Total RNA output of sister alleles is highly correlated. The relationship of the total transcriptional output between sister alleles for all cells in panel (C) (pairs).
Randomly reassigned alleles from different cells do not show correlation (random). To ensure unbiased calculation of the correlation coefficient, the dataset was
doubled with each allele within one cell once assigned as allele one and once as allele two, causing symmetry around the diagonal axis.

E Simulations recapitulate transcriptional profiles of dual allele reporter cells. Sister alleles were simulated using two stochastic simulations with the same extrinsic
noise realization with parameters yielded by the model fit (Fig 3) to the steady-state 10 pM E2 dataset (tON = 0.6 min; tOFF = 50 min; b = 10 RNAs/burst; model
topology: 1–1–5).

F Simulations incorporating extrinsic noise recapitulate correlation in transcriptional output between alleles. Sister alleles were simulated using the same assumptions
and parameters as in (E). The transcription initiation and elongation rates were (1–1–5 model topology; red) or were not (1–1–0 topology; blue) resampled for each
cell to include/exclude extrinsic noise. The simulated alleles were treated the same as the real data to calculate correlation coefficients.

Data information: (D, F) Pearson correlation coefficients (PCC) are reported as mean � standard deviation and were obtained via bootstrapping.
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inhibition, while extrinsic noise was still comparable to that at an

E2 concentration giving rise to the same output (Appendix Fig S10).

According to analytical calculations, uncoupling of noise and mean

can occur if a stimulus does not control the burst frequency, but

instead regulates the burst size (Singh et al, 2010). To test whether

our data support this hypothesis, we adopted the previously

described fitting approach and separately calibrated our models

using the DMSO and butyrate datasets. The posterior distributions

confirmed that a low dose of NaBu (2.5 mM) primarily affects burst

size when compared to DMSO control, while the higher dose addi-

tionally affects the burst frequency (Fig 7E). Burst features extracted

directly from raw trajectories support this finding (Appendix Fig

S11). To further support burst size modulation by butyrate, we

performed a titration with this inhibitor using fixed-cell high-content

imaging and extracted transcription site intensity histograms

(Fig EV5C). At low doses, NaBu specifically affected the intensity of

transcription sites (reflecting burst size), but not their frequency in

the cell population. These results were consistent with stochastic

simulations of pure burst size modulation (Fig EV5D). Collectively,

these data indicate that burst frequency and burst size can be

orthogonally controlled to adjust intrinsic noise. Thus, protein

acetylation levels allow for fine-tuning transcriptional output and

associated noise independent of the estrogen stimulus.

Discussion

A two-state promoter model explains GREB1 activation
and deactivation

In this study, we quantified the dynamics of nascent transcription

from an endogenous GREB1 locus in individual breast cancer cells
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Figure 6. Estrogen modulates the OFF-time between bursts.

A Global model fit to datasets at different E2 levels reveals stimulus-dependent frequency modulation. The distribution of summed particle distances when (1) fitting
each E2 concentration with a separate parameter set (Fig 3) and variable model topologies (left); (2) fixing the model topology (1–1–5) and allowing all kinetic
parameters to be different between E2 concentrations, (3) only allowing the OFF-time to change locally with E2 concentration and keep all other parameters global
and (4) only allowing the transcription initiation rate to change locally (right).

B Scheme of selected global model: Two-state model with burst frequency (i.e., OFF-time) modulation by E2 and cell-to-cell variability in initiation rate and elongation
kinetics.

C Parameter posterior distributions. Boxplots show posterior distributions of the promoter OFF-times obtained from the global SMC ABC fit with only the OFF-time
being a local parameter (left). Histograms depict global posterior distributions and mean value (dashed line) for burst size (middle) and ON-time (right).

Data information: (A, C) Description of boxplots: central line, median; box, 25 and 75% percentile; whiskers, 5 and 95% percentile.
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and demonstrated that estrogen-controlled transcription occurs in

bursts. Stochastic modeling, in combination with a Bayesian fitting

approach, discriminated between a range of promoter model topolo-

gies with up to 10 states. Modeling predicted and experiments in

synchronized cell populations supported the existence of two rate-

limiting promoter states. A two-state model has also been used by

others to describe transcriptional discontinuity (Peccoud & Ycart,

1995; Paulsson, 2005; Raj et al, 2006), although additional states

were sometimes required to explain refractory periods in inactive

promoter states (Harper et al, 2011; Suter et al, 2011; Zoller et al,

2015). It is surprising that a two-state model describes the estrogen

response, a system that is known for multiple, ordered, cyclical and

sequential steps in gene activation (Métivier et al, 2003; Lemaire

et al, 2006). We do not yet understand the discrepancy between

such biochemical ensemble measurements of protein occupancy at

the promoter and single-cell transcriptional activation. We speculate

that only a subset of cells might contribute to the ordered effects

observed at the population level, while single-cell studies observe

the entire heterogeneous population.

Estrogen modulates the frequency of transcriptional bursting

Gene regulation has been studied widely in the context of transcrip-

tional bursting. Cells use a range of gene-specific burst sizes and
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Figure 7. Modulation of protein acetylation perturbs estrogen-mediated transcription (see also Fig EV5).

A The dose-response to E2 shows an inverse noise–mean relationship. The measured intrinsic noise component (see Materials and Methods) is plotted as squared
coefficient of variation against the mean expression level for each of eight datasets at various E2 concentrations. Dashed lines indicate the theoretical inverse noise–
mean relation at fixed burst sizes, and changing burst frequencies (CV2 = burst size/meanRNA). Error bars represent standard deviation from bootstrapping.

B Deacetylase inhibition reduces GREB1 output. Transcription was quantified in cells exposed to 20 pM E2 after 4 h of pre-treatment with DMSO or butyrate (NaBu).
Each line in the color maps represents an intensity trajectory from an individual cell. The total RNA output is plotted on the right with the CV2 indicated.

C Global intensity distributions for the datasets in panel (B). A shift to lower expression levels is apparent upon butyrate treatment.
D Deacetylase inhibition affects noise in nascent GREB1 transcription. The noise–mean relation is shown as in panel (A) for cells treated with 20 pM E2 or with solvent

control (DMSO) or butyrate (NaBu). Butyrate leads to reduced GREB1 expression at a lower noise level as compared to an E2 concentration with similar mean (E2
titration follows dashed lines, see panel A).

E Butyrate predominantly reduces the burst size. Distributions of parameter posteriors from SMC ABC fits to DMSO and NaBu datasets (B) are shown as boxplots
(central line: median, box: 25 and 75% percentiles, whiskers: 5 and 95% percentiles). A low dose of butyrate only affects burst size, while a higher dose also increases
OFF-times.
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frequencies to control expression levels (Suter et al, 2011; Dar et al,

2012). We observed that E2 increases GREB1 transcription through

reducing the duration of transcriptionally inactive phases. Stimulus-

dependent frequency modulation was postulated decades ago

(Moreau et al, 1981; Weintraub, 1988; Walters et al, 1995) and has

recently been observed during MAPK induction (Senecal et al,

2014) and in early serum and TGF-b1 induction (Molina et al,

2013). However, these studies were limited to indirect observations

using fluorescence in situ hybridization or labeling of proteins,

which has only been recently complemented by direct observation

of frequency-modulated nascent transcription upon stimulation of

an artificial locus with insect hormones (Larson et al, 2013). By

generating extensive, time-resolved datasets at multiple E2 concen-

trations, we provide definitive proof that frequency modulation

occurs in an endogenous chromatin environment under native

signaling. The frequency of bursts is dictated by the rate of forma-

tion of a transcriptionally competent initiation complex, suggesting

that estrogen regulates the kinetics of gene activation, but not inacti-

vation.

Control of noise in transcription

In a frequency modulation regime, intrinsic noise in gene expression

is coupled to its mean, such that lower noise is obtained with

increasing expression levels (Singh et al, 2010). We could shift this

noise–mean trajectory to lower noise levels through HDAC inhibi-

tion, which decreased burst size. This effect could be specific to a

subset of genes, as intrinsic noise in Nanog expression for example

is not affected by HDAC inhibition (Ochiai et al, 2014) and other

genes show increased burst size (Harper et al, 2011). We anticipate

that post-translational modification of chromatin delivers fine-

tuning of transcriptional bursting and of consequential intrinsic

noise. It is tempting to speculate that cells could utilize either

frequency or burst size modulation in a gene-specific manner to

achieve contrasting noise–mean scaling. A specific noise level could

therefore be realized for each gene already on the transcriptional

level and then be further modulated through downstream processes,

such as RNA export, stability, and translation.

Extrinsic noise shapes cellular heterogeneity

Our direct observation of nascent transcription enabled us to

directly implicate transcriptional regulation as a major mediator of

extrinsic variability, which propagates diversity in cellular states to

temporally stable expression patterns. Other studies inferred intrin-

sic and extrinsic noise contributions by analyzing gene expression

from two alleles at the mRNA (Raj et al, 2006; Gandhi et al, 2011)

or protein (Elowitz et al, 2002; Raser & O’Shea, 2004; Harper et al,

2011) levels using snapshot measurements. Due to the relatively

long half-lives and intermediate steps such as RNA processing and

translation, time-averaging takes place which dampens intrinsic,

bursting-related noise. Direct imaging of nascent transcripts at an

endogenous locus requires long-term imaging and is inherently a

low throughput procedure; however, it provides direct information

on the origin of extrinsic noise without obfuscation from down-

stream processes. Stochastic modeling based on our data identified

the kinetics of transcript initiation and elongation as major sources

of variability, processes that have already been described to vary

between cells (das Neves et al, 2010; Annibale & Gratton, 2015;

Sherman et al, 2015).

The question arises how initiation and elongation are regulated

by the cellular state. Cell volume, metabolic state, upstream signal-

ing, and microenvironment are candidate mechanisms that could

globally influence initiation and elongation rates (Stewart-Ornstein

et al, 2012; Battich et al, 2015; Padovan-Merhar et al, 2015). By

extracting morphological features from our images, we could

exclude that cell and nuclear size (both of which are presumably

related to cell volume) are major determinants of extrinsic expres-

sion heterogeneity. This agrees well with a recent study which

showed that the heterogeneity of housekeeping genes is strongly

determined by cellular volume, whereas this is not the case for cell-

type specific genes such as GREB1 (Padovan-Merhar et al, 2015).

Furthermore, we excluded the cell cycle stage as a relevant source

of extrinsic fluctuations. It will be interesting to see in future

immunofluorescence experiments whether the extrinsic noise in our

data is related to stochastic fluctuations in the general transcription

machinery, estrogen signaling components, or mitochondrial

content. The differences in transcriptional output seem to be stable

within our relatively long imaging time frame of 750 min. There-

fore, we suspect that extrinsic differences will also propagate

through to mRNA and protein levels, even when short-time fluctua-

tions due to bursting are efficiently buffered by cellular systems

(Stoeger et al, 2016).

Our study highlights how cellular state controls long-term tran-

scriptional output, even in the presence of strong intrinsic fluctua-

tions. Heterogeneous cellular states within a tissue are therefore a

major determinant of expression variability. Consequently, the

distribution in the level of growth regulators, such as GREB1, is

broadened, with potential implications in heterogeneous growth

phenotypes. Understanding determinants of cellular state within

healthy and cancerous tissue and their effect on growth and varie-

gated response to therapeutic intervention will be an important

direction for future research.

Materials and Methods

Experimental methods

Cell culture

MCF7 cells were a gift from Edison T. Lui. All cell lines were main-

tained in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/l

glucose (Lonza) supplemented with 10% fetal bovine serum (FBS-

Gold, GE Healthcare), 1% L-glutamine (Lonza), and 1% penicillin/

streptomycin (Lonza) at 37°C in a humidified atmosphere contain-

ing 5% CO2. For experiments with controlled E2 concentrations,

cells were grown in starvation medium composed of DMEM without

phenol red (Thermo Fisher Scientific, Cat#31053-028), 2% charcoal-

stripped FBS (Sigma-Aldrich, Cat#F6765), 1% L-glutamine (Lonza),

1% penicillin/streptomycin (Lonza), and the defined amount of

17b-estradiol (Sigma-Aldrich, Cat#E8875).

Generation of reporter cell lines

To achieve stable expression of the GFP-labeled PP7 coat protein,

MCF7 cells were transfected with 3 lg of pSB-Ubc-NLS-HA-tdPCP-

tdGFP and 1.5 lg of pCMV(CAT)T7-SB100X (gift from Zsuzsanna
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Izsvak, Addgene plasmid #34879) using FuGENE� HD Transfec-

tion Reagent (Promega, Cat#E2311). Single cells with low GFP

signal were isolated after 14 days by flow cytometry on an Aria

III SORP (Becton Dickinson) giving rise to the clonal cell line

MCF7-SBtdPCPtdGFP. The same procedure was carried out on

MCF7-GREB1-PP7-Dual_noPCP cells to yield MCF7-GREB1-PP7-

Dual.

MCF7-SBtdPCPtdGFP cells were transfected with 1.5 lg of pX330-
GREB1-ex2 and 3 lg of pHR-GREB1-ex2-24xPP7-LPIBCL with

FuGENE� HD and selected with 0.1 lg/ml puromycin (Thermo

Fisher Scientific, Cat#A1113803). Clonal colonies were picked using

cloning cylinders, screened for the presence of eBFP2 labeled peroxi-

somes, and genotyped using genomic PCRs, giving rise to the MCF7-

GREB1-PP7-BFP-Puro cell line. A similar knock-in strategy was

performed for intron 2 of GREB1, by transfecting pX330-GREB1-int2

and pHR-GREB1-int2-24xPP7-LPIBCL into MCF7 cells to yield MCF7-

GREB1-PP7-Dual_noPCP.

MCF7-GREB1-PP7-BFP-Puro cells were transfected with 3 lg
pCAG-Cre-IRES2-GFP (gift from Anjen Chenn, Addgene plasmid

#26646) and sorted for BFP/GFP double-positive cells. Single BFP-

negative cells were isolated by flow cytometry after 3 weeks. Exci-

sion of the selection cassette in the resulting MCF7-GREB1-PP7 cells

was confirmed by genotyping PCRs.

Quantification of gene expression by RT–qPCR

2 × 105 cells were seeded into a 6-well plate and harvested after

3 days of growing at different conditions. Transcription was induced

overnight (~18 h) for the E2 dose-response curve. Alternatively,

cells were induced with either 10 or 1,000 pM E2 and samples were

collected every 10 min for 2 h to measure kinetics of RNA induc-

tion. 600 ll of TRIzol� reagent (Thermo Fisher Scientific) was used

for RNA isolation according to manufacturer’s instructions. Reverse

transcription was carried out on 400 ng of total RNA in a volume of

12 ll using the SuperScript� II RT (Thermo Fisher Scientific,

Cat#18064014) with random hexamers according to manufacturer’s

instructions. qPCRs were performed on 1 ll of cDNA with 100 nM

of each primer within a 10 ll reaction using Power SYBR Green PCR

Master Mix (Thermo Fisher Scientific, Cat#4364344). All measure-

ments were performed as technical duplicates in a ViiATM 7 Real-

Time PCR System (Thermo Fisher Scientific) in 384-well plates

(Roche) using 40 cycles of a two-step protocol with 15 s at 95°C and

1 min at 60°C. Efficiency of amplification was determined from

serial dilutions of template DNA and confirmed to be above 90% for

all primer pairs.

Mean Ct-values of technical replicates were used. Gene expres-

sion was quantified after normalizing to the reference gene GAPDH

using the ΔΔCt method.

During allele-specific RT–qPCR for wild-type and knock-in allele,

normalization was performed through a serial dilution of pUC-qRT-

GAPDH-GREB1ex2-wt-PP7 plasmid, which contained all PCR

products.

The RT–qPCR E2 dose-response was performed in quadruplicates

and fitted to a four-parameter Hill equation using the “nls” function

in R. E2 induction was carried out in triplicates.

High-throughput imaging

1 × 104 cells were seeded per well of a 96-well SensoPlateTM Plus

glass bottom microplate (Greiner, Cat#655891) 3 days prior to image

acquisition. The medium was replaced with medium containing the

desired concentration of E2 every day, and DMSO (Sigma-Aldrich)

or small-molecule inhibitors (actinomycin D, Sigma-Aldrich,

Cat#A1410; sodium butyrate, Sigma-Aldrich, Cat#303410; tricho-

statin A, Sigma-Aldrich, Cat#T1952; ICI 182,780, Selleckchem,

Cat#S1191) were added 4 h prior to fixation. Cells were washed with

PBS, fixed with 4% PFA in PBS for 10 min on ice, and washed twice

with PBS, and a nuclear counter-staining was performed with

0.5 lg/ml DAPI (Sigma-Aldrich) in PBS for 5 min, or 2.5 lM
DRAQ5TM (eBioscience) for 30 min. Cells were stored in PBS at 4°C

until image acquisition.

Seven fields were imaged per well in an Opera PhenixTM High

Content Screening System (PerkinElmer) with a 20× 1.0 NA water

immersion objective using spinning disk confocal mode as a z-stack

with 22 planes spaced 1.2 lm apart without binning, resulting in a

pixel size of 0.30 lm. Exposure time in the eGFP channel (excita-

tion: 488 nm laser, emission: 500–550 nm) was 500 ms at 100%

illumination intensity. Nuclei were imaged either in the DAPI chan-

nel (excitation: 405 nm laser, emission: 435–480 nm) for 60 ms at

80% intensity or in the DRAQ5 channel (excitation: 640 nm laser,

emission: 650–760 nm) for 300 ms at 50% intensity, depending on

the nuclear counterstain. Images from the high-content screening

microscope were analyzed using the Harmony� High Content Imag-

ing and Analysis Software (PerkinElmer) with a custom pipeline

(see Appendix Supplementary Methods for details).

High-content imaging for the E2 dose-response was performed in

three separate experiments with technical duplicates. Inhibitor treat-

ment was performed twice with technical duplicates.

Live-cell imaging

1.8 × 104 cells were seeded into a channel of a l-Slide VI 0.4

ibiTreat (Ibidi) slide 3 days prior to imaging. Medium was replaced

daily with starvation medium containing the desired amount of E2

until imaging. For inhibitor treatments, 0.05% DMSO (Sigma-

Aldrich) with or without sodium butyrate (Sigma-Aldrich,

Cat#SML0352) or PFI1 (Sigma-Aldrich, Cat#SML0352) was added

4 h prior to imaging after growing cells in 20 pM E2 for 2 days. For

induction experiments, cells were grown in starvation medium with-

out E2 for 48 h and placed into the microscope. After 51 min of

imaging, the medium was replaced with starvation medium contain-

ing either 10 or 1,000 pM of E2.

Live-cell images were acquired on a DeltaVisionTM Elite micro-

scope system (GE Healthcare Life Sciences) equipped with an envi-

ronmental control chamber (Imsol) and a CO2 mixer (Leica) to

maintain 37°C and 5% CO2 during imaging experiments. Excitation

light was generated using a seven-color InsightSSI module and

focused through an 60× 1.42 NA Oil Plan APO objective. Excita-

tion and collection of eGFP fluorescence was achieved using the

FITC filters and the polychroic beam splitter for DAPI, FITC,

TRITC, and Cy5. Images were acquired on a pco.edge sCMOS-

camera operating in 2 × 2 binning mode, yielding a pixel size of

216 nm. The microscope was controlled via softWoRx software in

version 6.5.2.

Z-stacks with 12 planes spaced 0.55 lm apart were acquired

every 3 min for 260 time points (total imaging time ~13 h) in the

FITC channel with 2% light intensity with 100- or 120-ms exposure

time. One brightfield image (50-ms exposure, 5% light intensity)

was acquired at each time point to follow cell viability. The first 10
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frames of each movie were discarded to avoid initial photobleaching

of the medium. For induction experiments, images were acquired

with the same settings every 1.5 min for 200 time points

(300 × 5 min for analysis of daughter cells) without discarding

initial images. Images for visualization of single transcripts were

acquired as a z-stack with 14 slices spaced 0.27 lm apart, with

100% light intensity and 100- or 120-ms exposure time.

Imaging of the E2 dose-response was performed for the 0–20 pM

E2 datasets simultaneously on the same day and for 100–1,000 pM

E2 datasets on a different day. Data for E2 induction are a combina-

tion of two separate experiments for each E2 concentration. The

dual allele dataset, the daughter cell dataset, and the inhibitor

dataset are from one experiment each.

Single-molecule RNA FISH

Stellaris� FISH probes recognizing exons 5–9 of human GREB1 were

obtained from Biosearch Technologies labeled with Quasar� 570

(#VSMF-2158-5). Custom Stellaris� FISH Probes were designed

against introns 2, 9, and 10 of human GREB1 by utilizing the Stel-

laris� RNA FISH Probe Designer (version 4.2) (Appendix Table S4)

and labeled with Quasar� 670. Both probe sets were hybridized to

cells following the manufacturer’s instructions for adherent cells

with adjusted volumes of reagents to adapt to the use of channel

slides. Briefly, 1.8 × 104 cells were seeded into l-Slide VI 0.4

ibiTreat slides (ibidi), grown with different E2 concentrations for

3 days, and fixed with 4% PFA for 10 min. Cells were washed twice

with PBS and permeabilized with 70% ethanol at 4°C for at least

1 h. Cells were rehydrated in wash buffer A and hybridized in 50 ll
hybridization buffer with 125 nM of each probe at 37°C overnight.

Cells were washed twice with wash buffer A for 30 min at 37°C

(second wash with 5 ng/ll DAPI), once with wash buffer B,

mounted in oxygen-depleted medium (according to Raj et al, 2008),

and imaged immediately.

Images were acquired on a DeltaVisionTM Elite microscope system

described above. Acquisition was performed without binning, yield-

ing an image with 2,048 × 2,048 pixels and a pixel size of 108 nm.

z-stacks with 32 planes spaced 0.27 lm apart were acquired in the

TRITC channel (50% light intensity, 200-ms exposure) for Quasar�

570, the Cy-5 channel (32% light intensity, 100-ms exposure) for

Quasar� 670, the FITC channel (100% light intensity, 100-ms expo-

sure) for GFP, and the DAPI channel (50% light intensity, 100-ms

exposure). Image analysis was performed with custom MATLAB

scripts (see Appendix Supplementary Methods for details).

Live-cell image analysis

All live-cell image analyses were performed using custom MATLAB

scripts (see Appendix Supplementary Methods for details). Briefly,

nuclei were segmented from maximum intensity projections and

tracked throughout the movie. Nuclear spots were identified on

maximum intensity projections of bandpass-filtered images and

tracked using the u-track package (Jaqaman et al, 2008). Resulting

short tracks were linked to generate full-length tracks, and erro-

neously assigned positions were corrected manually. Transcription

sites were relatively immobile with respect to the nucleoplasm,

allowing for successful tracking relative to the nuclear movement,

even in the absence of visible spots. If no spot was detectable

throughout the whole movie, a position close to the center was

used. Cells in which the transcription site moved out of focus or

duplicated during acquisition were discarded. Spot intensities were

quantified by fitting a three-dimensional Gaussian distribution.

Absolute quantification by calibration to intensities of single RNAs

MCF7-GREB1-PP7 cells grown at 1,000 pM E2 were imaged at 100%

excitation light. Dim spots that likely represent single transcripts

were manually identified and quantified as described above. A

Gaussian distribution was fitted to the resulting intensity histogram,

and its mean was used as the intensity for a single transcript. To

adjust for the relative difference in illumination between 2 and

100% light intensity, images were acquired with both illumination

conditions at the same position, intensities of transcription sites

were quantified, and a linear function was fitted to the ratio of

intensities to yield a normalization factor. The procedure was

repeated every time the setup of the microscope or image acquisi-

tion parameters changed.

Feature extraction from time traces

A running median with a window size of five time points was

applied to smooth the time trace. The slope of the curve was calcu-

lated as the difference between two consecutive time points and

subsampled 10-fold by linear interpolation. A threshold of 0.65 tran-

scripts per 3 min was applied. Gaps and peaks with a duration of

less than one imaging interval were discarded. ON- and OFF-times

were derived from the time the slope is above or below the thres-

hold, respectively. The burst size was calculated for each ON-period

as the difference of intensity of the smoothed time trace. The initia-

tion rate was calculated by dividing the burst size by the ON-time.

ON- and OFF-times were also calculated for regions that encompass

beginning or end of the time trace, to include long OFF-times for

non-responders at low E2 concentrations.

Response times were calculated from induction experiments and

simulations by median filtering with a window size of seven time

points and determining the time from which the trajectory stayed

above a threshold of two transcripts for at least five consecutive

time points.

Computational methods

Model parametrization and stochastic simulation

We implemented hybrid stochastic-deterministic simulations of the

models shown in Fig 3A. All model topologies share the main

parameters promoter ON-time tON, OFF-time tOFF, and burst size

b = kinittON, with kinit being the transcription initiation rate from an

active promoter. For longer promoter cycles with multiple ON- or

OFF-states, the total time is split between those states (see

Appendix Supplementary Methods for details). Switching between

promoter states and time points of transcriptional initiation is simu-

lated using the stochastic simulation algorithm (Gillespie, 1977).

Transcript elongation is modeled deterministically, and the signal of

a single transcript has the profile depicted in Fig 1B: Due to the posi-

tion of the PP7 stem-loops in the gene, the fluorescent signal of a

single transcript gradually appears after a first delay following tran-

script initiation and disappears after a second delay when transcript

termination occurs. The output of the simulation is the sum of fluo-

rescence intensities of all elongating transcripts at a certain time

point. Simulations thus yielded time courses of absolute RNA

numbers at the transcription site and were connected to
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experimental data using a noise model (see Appendix Supplementary

Methods).

As cells exhibited substantial cell-to-cell variability, we included

various potential sources of extrinsic noise into the models, each of

which influences specific kinetic parameters of the model. We

implemented this numerically by resampling the actual parameter

for each single cell from a normal distribution around the popula-

tion mean parameter value. The width of this distribution is an extra

parameter describing the strength of the cell-to-cell variability. In

dual-allele simulations (Fig 5E), we used the same parameter real-

ization for both alleles of the same cell.

Approximate Bayesian computation to calibrate stochastic models

Approximate Bayesian computation (ABC) was used to estimate

model parameters and topologies based on the data (Tavaré et al,

1997; Beaumont et al, 2002). We used five different features to

compare data and simulations, including (i) the global intensity

histogram, (ii) the mean autocorrelation over all cells in the popula-

tion, (iii)-(iv) the single-cell distributions of the autocorrelation half-

lives and autocorrelations at lag 1, respectively, and (v) the maxi-

mum-mean discrepancy. See Appendix Supplementary Methods for

a description of how these features were converted into a quantita-

tive distance metric between model and data.

We followed a Sequential Monte Carlo Approach of ABC in

which a population of 2,000 particles, each representing a model

and the corresponding parameters, are refined iteratively. In an

initial iteration, candidate particles are sampled from prior distribu-

tions and simulations of each particle are compared to experimental

data using the distance metric. In subsequent iterations, new parti-

cles are generated by randomly sampling the parameter space in the

vicinity of the 20% best existing particles using proposal distribu-

tions for each parameter individually. Proposal distributions depend

on the current particle position and a predefined width which was

fine-tuned in algorithm benchmarking. The new particle population

is assembled from at least the 20% of the best particles of the previ-

ous iteration and new particles that provided an improved descrip-

tion of the data. The algorithm stops when there is no significant

improvement between consecutive iterations. Benchmarking using

synthetic datasets confirmed that the algorithm can distinguish

model topologies and correctly recovers parameters (see Appendix

Supplementary Methods, and Fig EV3A–C). The same fitting approach

and distance metric were used to fit steady-state GREB1 expression at

different E2 concentrations (Fig 3), steady-state GREB1 expression

upon inhibitor treatment (Fig 7), and induced GREB1 expression

following E2 starvation (Fig 4). The distribution of initial promoter

states among cells differed between steady-state (randomly sampled

promoter states) and induction (all cells in the first OFF-state of the

promoter cycle) conditions. The first 80 min of the time courses were

not considered when fitting the steady-state data, which ensured an

equilibration of the promoter state distribution.

Global fitting

To pinpoint the effect of E2 stimulation on the promoter cycle, we

simultaneously fitted multiple datasets, while assuming that most

reactions are described by global, condition-independent parameter

values (Fig 6). We fixed the model topology and allowed only one

parameter at a time, namely initiation rate kinit or OFF-time tOFF, to

vary locally, that is, with the experimental condition. To create a

start population of 1,000 particles for the global fitting, we filtered

the results of the condition-specific fits (Fig 3) for overlap in their

posterior distributions (see Appendix Supplementary Methods for

details). The simulation of each experimental condition was

compared to its corresponding dataset, and a total distance over all

experimental datasets was calculated. As described above, parame-

ter values were perturbed in each iteration using proposal distribu-

tions until no further improvement occurred.

Data and software availability

The computer code to run simulations and model fits (Python code

and IPython notebooks) can be found on the following GitHub

resource: https://github.com/baumgast/gene_transcription_SMC_ABC

Expanded View for this article is available online.
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