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Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a 
subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted 
antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves 
relapse-free and overall survival in patients with early-stage and advanced disease. 
Nonetheless, considerable proportions of patients develop resistance to treatment, high-
lighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific 
antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular 
cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; 
both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-
dependent NK cell activation results in the release of cytotoxic granules as well as the 
secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, 
NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well 
as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene 
expression signatures associated to the presence of cytotoxic lymphocyte infiltrates 
benefit from trastuzumab-based treatment, NK  cell-related biomarkers of response/
resistance to HER2-specific therapeutic antibodies in breast cancer patients remain 
elusive. Several variables, including (i) the configuration of the patient NK  cell reper-
toire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant 
therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and  
(iv) evasion mechanisms developed by progressive breast tumors, have been shown 
to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this 
review, we discuss possible interventions for restoring/enhancing the therapeutic activity 
of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through com-
binatorial approaches, including immune checkpoint blocking/stimulatory antibodies, 
cytokines and toll-like receptor agonists.
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BOX 1 | Antibody structure and FcγR family.

Antibodies (Abs) or immunoglobulins (Ig) display two functionally different 
domains: a variable Fab region which determines specificity and affinity for 
a particular antigen and a constant region or Fc fragment which can engage 
a diversity of cellular receptors in immune cells. Immunoglobulins of the G 
subclass (IgG) can interact with distinct FcγR family members, respectively, 
displaying activating and inhibitory signaling capacity. Human activating 
FcγRs include FcγRI (CD64), FcγRIIA (CD32A), FcγRIIC (CD32C), and 
FcγRIIIA (CD16A), whereas FcγRIIB (CD32B) is the counterpart with inhibitory 
function. FcγR in mouse includes FcγRI, FcγRIII, and FcγRIV with stimulatory 
potential and the inhibitory FcγRIIB. Human NK  cells primarily express 
FcγRIIIA in the absence of inhibitory FcγR; B  cells exclusively express the 
inhibitory FcγRIIB; human dendritic cells express both the activating and the 
inhibitory forms of FcγRII A and B. Distinct monocyte/macrophage subpo-
pulations have been shown to express diverse combinations of activating 
and inhibitory FcγR, including FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIA. It is 
nowadays recognized that the Fc fragment of therapeutic antibodies elicits 
several of their effector mechanisms. Engagement of activating FcγR results 
in antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and 
ADCP). With the exception of FcγRI, remaining FcγR show intermediate/low 
affinity for IgG and will bind to immune complexes or IgG-coated targets, 
resulting in receptor crosslinking and triggering of cellular responses. Human 
IgG2 and IgG4 isotypes display a poor interaction with FcγR whilst human 
IgG1 and IgG3 interact more strongly (15, 16).
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iNTRODUCTiON

Breast cancer is a major health-care problem worldwide, with 
an estimated 1.67 million women diagnosed annually.1 Human 
epidermal growth factor receptor 2 (HER2, also known as ErbB2 
or HER2/neu) is a transmembrane receptor with tyrosine kinase 
activity, capable of activating several pro-survival intracellular 
signaling pathways (1). HER2 overexpression occurs in approxi-
mately 15–20% of breast tumors and is associated with aggressive 
disease and decreased survival (2). Addition of HER2-targeted 
therapeutic monoclonal antibodies (mAb) to chemotherapy 
improved overall survival in patients with early-stage and advanced 
disease (3). Currently, two complementary anti-HER2 therapeu-
tic mAbs, trastuzumab, and pertuzumab, and the antibody-drug 
trastuzumab-emtansine (T-DM1) are approved for clinical use. 
Combination of chemotherapy with dual HER2 targeting with 
trastuzumab and pertuzumab are the prevailing therapeutic 
approaches for HER2+ tumors in the neoadjuvant setting and 
in the first-line treatment of metastatic disease; trastuzumab 
and lapatinib (a dual EGFR/HER2 tyrosine kinase inhibitor 
small molecule) can also be used in refractory patients with 
advanced disease (4, 5); T-DM1 has been approved for treating 
advanced HER2+ breast cancer patients with progressive disease  
following trastuzumab/pertuzumab and chemotherapy regimens 
(6). Despite significant improvement in the clinical outcome of 
HER2+ breast cancer since the introduction of these anti-HER2 
drugs, there are patients with early disease that eventually 
relapse and disease progression inevitably occurs due to de 
novo or acquired resistance to treatment in metastatic patients 
(7). Potential tumor cell-intrinsic mechanisms of resistance to 
anti-HER2 mAb treatment have been identified, yet their clinical 
relevance remains uncertain (8).

All currently approved anti-HER2 mAbs are immunoglobu-
lins (Ig) of the G1 subclass (IgG1) and, in addition to block HER2 
oncogenic signaling, share the capability of triggering antitumor 
immune function by engaging specific receptors expressed by 
immune cells (FcγR family, Box 1) through their constant domain 
(Fc). Several publications indicate that NK and tumor-specific 
T  lymphocytes significantly influence disease development and 
response to treatment with anti-HER2 mAbs (9–12). In addition 
to considerable data supporting the importance of T  cells in 
immunosurveillance (9), a role for NK cell function in preventing 
early tumor development and metastatic spread is being increas-
ingly appreciated (13, 14).

In this review, current understanding of antitumor immune 
responses driven by anti-HER2 mAbs will be discussed from the 
NK cell perspective, integrating a conceptual framework for the com-
binatorial use of anti-HER2 antibodies and several immunotherapy 
approaches enhancing NK cell function/survival in breast cancer.

ReGULATiON OF NK CeLL ANTiTUMOR 
FUNCTiON

Natural killer cells are cytotoxic members of the innate lympho-
cyte cell family, important in the defense against virus-infected 

1 http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp.

and transformed cells. NK cell activation leads to the polarized 
release of cytolytic molecules, such as granzyme B and perforin 
stored in preformed granules, causing target cell death (14, 17, 18).  
NK  cells can also trigger perforin-independent apoptosis by 
FasL- and TRAIL-mediated engagement of death-inducing 
receptors on target cells (19). Time-lapse imaging has revealed 
that a single activated NK  cell can make serial contacts with 
multiple targets and kill an average of four tumor cells in vitro 
(20, 21). In addition, activated NK  cells secrete IFNγ, TNFα, 
and chemokines (i.e., MIP1α, MIP1β, RANTES), boosting the 
recruitment of other immune effectors and the development of 
subsequent antitumor T cell immunity (14, 17, 18).

The importance of NK cell function for early tumor immune 
surveillance is supported by studies showing increased cancer risk 
in individuals with low NK cell activity (22), including several 
genetically predisposed cases (i.e., NKG2D haplotypes LNK1/
LNK1) (23). On the other hand, correlation between tumor 
NK cell density/function and prognosis has been reported for a 
number of cancer types (e.g., colorectal, hepatocellular, gastric 
carcinomas, lung adenocarcinoma, and renal cancer), supporting 
their importance for metastasis control in vivo (13, 24, 25).

Natural killer cell activation is regulated by an array of germ-
line encoded surface receptors with stimulatory or inhibitory 
function. NK cells use inhibitory receptors to prevent the killing 
of healthy cells, whereas crosslinking of activating receptors is 
required to initiate an immune response against transformed 
cells (26). NKG2D, NKp46 and NKp30, together with the 
co-stimulatory molecule DNAM-1, are considered the main 
activating receptors involved in direct tumor cell recognition 
(27–29). NKG2D recognizes stress-induced self-molecules, such 
as MICA/B and the ULBP family, upregulated in most neoplas-
tic cell types (30); natural cytotoxicity receptors (NKp30 and 
NKp46) can recognize self-molecules exposed in damaged cells  
(i.e., BAT3, MLL5) or induced by inflammatory stimuli  
(i.e., B7-H6) (31, 32); and DNAM-1 specifically recognizes 

http://www.frontiersin.org/Immunology/
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BOX 2 | KIR receptors and their ligands.

The KIR receptor family includes six inhibitory receptors (KIR2DL1, KIR2DL2, 
KIR2DL3, KIR3DL1, KIR3DL2, and KIR2DL5), six activating receptors 
(KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1), and 
one, KIR2DL4, harbouring an ambiguous signaling motif. Inhibitory KIRs are 
characterized by a long cytoplasmatic tail containing ITIM motifs whereas acti-
vating KIRs have a short cytoplasmic tail and interact with DAP-12 for transdu-
cing stimulatory signals. Inhibitory KIR recognize specific epitopes on HLA-A, 
-B, and -C molecules, determined by polymorphisms within residues 77–83 
of the α1 helix. KIR2DL2/L3 and KIR2DL1 respectively recognize the C1 and 
C2 epitopes, found in mutually exclusive subsets of HLA-C alleles. KIR3DL1 
binds to the Bw4 epitope, carried by subsets of HLA-A and HLA-B alleles 
whereas KIR3DL2 interacts with the A3/11 epitope, restricted to HLA-A3  
and A11 molecules. The HLA class I specificity of activating KIRs is still a 
matter of study. KIR2DS1 has been shown to recognize the C2-epitope, 
whereas KIR2DS4 can interact with groups C1 and C2 HLA-C alleles 
and HLA-A11. Inhibitory KIR2DL1, KIR2DL2/L3, and KIR3DL1 are highly 
polymorphic. Allelic variants display distinct avidity and/or specificity of the 
ligand-binding site, level of cell-surface expression, and signal transduction 
capacity. Combinations of particular KIR and HLA class I have been associa-
ted to differential susceptibility to a wide range of diseases (e.g., infectious and 
autoimmune syndromes) and can influence hematopoietic cell transplantation  
outcomes (34–36).
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CD155 (PVR) and CD112 (Nectin-2), overexpressed in a variety 
of tumor types (33). NK cell tolerance to self depends on inhibi-
tory receptors specific for HLA class I molecules (HLA-I), which 
suppress NK cell activation against healthy cells expressing nor-
mal levels of surface HLA-I. Downregulation of surface HLA-I 
expression, in some virus-infected and transformed cells, allows 
for rapid NK  cell responses against these targets (34). HLA-I 
specific NK cell receptors comprise killer cell immunoglobulin-
like receptors (KIRs; Box  2) specific for distinct sets of HLA-I 
molecules (HLA-A, -B, -C); the CD94/NKG2A receptor specific 
for the HLA-I class Ib molecule HLA-E; and the leukocyte 
immunoglobulin-like receptor B1 (LILRB1) interacting with a 
broad spectrum of HLA-I molecules, including HLA-G. KIR and 
NKG2 receptor families also include members with activating 
function which, in some cases, can interact with HLA-I molecules 
albeit with lower affinity than their inhibitory counterparts  
(i.e., KIR2DS1 and CD94/NKG2C) (18).

Besides direct recognition, FcγRIIIA (CD16A) triggers 
NK cell activation against antibody-opsonized cells by a mecha-
nism known as antibody-dependent cell-mediated cytotoxicity 
(ADCC). NK  cells and certain T  lymphocyte subsets (i.e., γδ 
T  cells) are the only immune cells expressing the activating 
CD16A, in the absence of other members of the FcγR family with 
inhibitory function (15) (Box 1). Among all activating NK cell 
receptors, CD16A was described as the only one capable of trig-
gering resting NK cell activation in the absence of co-stimulation 
(37) and of increasing the killing frequency per NK cell (38).

Natural killer cells also express functional toll-like receptors 
(TLRs) (i.e., TLR2, TLR3, TLR5, TLR7/8, and TLR9), which sense 
the presence of microbe-associated molecular patterns (MAMPs) 
and damage-associated molecular patterns (DAMPs) in the 
microenvironment, priming NK cell effector function (39, 40).

Overall NK cell antitumor efficacy depends on the combina-
tion of activation, effector function, proliferation, and survival, all 
these modulated by cytokines. IL-2 and IL-15 signaling through 

STAT5 promotes NK  cell survival as well as increased IFNγ 
secretion, cytotoxicity, and proliferation (41); IL-12 and IL-18 
signaling through STAT4 enhances NK cell cytotoxicity and 
cytokine production whereas type I IFNs (IFNα/β) are strong 
stimuli regulating NK cell cytotoxicity through the upregulation 
of perforin and FasL and promoting IFNγ secretion (42, 43). 
Conversely, TGFβ has been shown to repress the mTOR pathway 
in NK cells, consequently reducing their proliferation, the abun-
dance of various activating receptors and cytotoxic activity (44).

Similar to T  lymphocytes, NK  cells can express several 
activation-induced co-receptors with stimulatory (e.g., CD137, 
OX40, NKp44) or inhibitory (e.g., PD1, TIGIT) function which 
constitute yet another layer of regulatory elements for NK  cell 
activation (45).

NK CeLL-MeDiATeD ADCC AS 
MeCHANiSM OF ACTiON OF ANTi-HeR2 
ANTiBODieS

Natural killer cell recognition of HER2-overexpressing target 
cells involves a number of receptors that can determine natural 
cytotoxicity upon direct recognition or influence the magnitude 
of ADCC in the presence of HER2-specific mAbs (Figure 1).

HER2 signaling was shown to downregulate HLA-I and 
promote MICA and MICB protein expression in breast cancer 
cell lines in  vitro, enhancing their susceptibility to NKG2D-
mediated NK cell recognition and elimination (46–49). Indeed, 
an inverse relationship between HER2 and HLA-I expression 
was corroborated by immunohistochemistry (50) and concord-
ant mRNA signatures in HER2+ tumors (51). As a matter of fact, 
gene expression signatures associated to cytotoxic lymphocytes 
are enriched in the stroma of good prognosis HER2+ tumors (52), 
suggesting that HER2+ breast carcinomas might be permissive to 
NK cell infiltration, at least at early stages of tumor development.

Anti-HER2 therapeutic mAbs introduced a novel ground 
by which NK  cells could contribute to breast tumor control. 
Preclinical and clinical observations indicate that triggering of 
NK cell-mediated ADCC is one of the mechanisms accounting 
for anti-HER2 mAb therapeutic activity (53). Trastuzumab 
activity against xenografted tumors was severely attenuated in 
mice deficient in activating FcγR receptors (54) and trastuzumab 
F(ab′)2 fragments (lacking Fc domain) showed marginal antitu-
mor activity in vivo despite retaining their anti-proliferative and 
pro-apoptotic effects in vitro (55). More precisely, NK cell deple-
tion abolished anti-HER2 mAb therapeutic activity in preclinical 
mouse models of HER2+ breast cancer (56–59).

Indirect evidence also points to a significant contribution of 
NK cells to the clinical success of anti-HER2 mAb in breast cancer 
patients. Numbers of tumor-infiltrating leukocytes, particularly 
NK cells, were reported to increase after trastuzumab-docetaxel 
(60, 61) and T-DM1 treatment (62), suggesting that anti-HER2 
mAb promoted NK  cell tumor homing or in  situ expansion. 
Remarkably, immune–gene expression signatures reflecting 
an increased recruitment of activated NK and T cells in breast 
tumors (i.e., CD8A, CD247, CD3D, GZMA) have been shown to 
be predictive of clinical benefit from preoperative and adjuvant 
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FiGURe 1 | Receptor–ligand pairs involved in natural killer (NK) cell recognition of HER2+ breast cancer cell lines. Several receptor–ligand pairs are involved in the 
crosstalk between breast cancer (BC) cells and NK lymphocytes. Natural cytotoxicity against HER2+ BC is mainly driven by NKG2D, DNAM-1, and NKp30 activating 
receptors upon interacting with their cognate ligands MICA/B, PVR/Nectin-2, and B7-H6, respectively. Human epidermal growth factor receptor 2 (HER2)-
dependent downregulation of surface HLA-I expression impairs KIR-mediated inhibition facilitating NK cell recognition of BC cell lines. Anti-HER2 therapeutic 
monoclonal antibodies elicit a strong NK cell-mediated antibody-dependent cell-mediated cytotoxicity response against HER2+ BC cells upon interaction with the 
activating CD16A receptor. E-cadherin expression can be recognized by KLRG1 inhibitory receptor expressed by some NK cell subsets, modulating their direct and 
antibody-dependent cytotoxicity.
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trastuzumab-based treatment (52, 63, 64). On the other hand, 
peripheral blood NK  cells from patients undergoing complete 
or partial remission upon trastuzumab plus chemotherapy 
displayed high ADCC activity in in  vitro lysis assays, whereas 
impaired NK  cell-mediated ADCC responses correlated with 
therapy failure (65, 66). Of note, a number of factors, including 
the disparity in markers used for precise NK  cell enumeration 
in tumor sections (e.g., CD57, CD56, GzmB) and the absence 
of standardized functional read-outs, have hindered the develop-
ment of NK  cell-related biomarkers of response to anti-HER2 
therapeutic mAbs.

vARiABLeS POTeNTiALLY MODULATiNG 
NK CeLL-MeDiATeD ADCC iN HeR2+ 
BReAST CANCeR

The specific contribution of NK  cell-mediated ADCC on the 
clinical benefit of anti-HER2 mAb in breast cancer patients could 
be modulated by several NK cell-, tumor cell- and therapy-related 
variables (Figure 2).

influence of the NK Cell Repertoire 
Configuration on the Magnitude of ADCC
In healthy adults, approximately 90% of NK cells in peripheral 
blood belong to the cytotoxic CD56dimCD16+ subpopulation 
capable of developing ADCC responses. A second major NK cell 
subpopulation, defined by a CD56bright phenotype and the absence 
of the CD16A receptor, accounts for 10% of circulating NK cells, 
prevails in secondary lymphoid organs and lacks ADCC poten-
tial. Among CD56dimCD16+ NK cells, several subsets displaying 
different NK  cell receptor combinations are found at variable 
frequencies. Interindividual variability on the NK  cell receptor 
repertoire is dictated by genetic and environmental factors. Major 
genetic factors include KIR and HLA-I genotypes. The KIR locus 
contains a variable number of genes, which together with their 
allelic diversity, determine the existence of a substantial number 
of distinct KIR haplotypes distributed in the world population 
(34, 35). KIR genes are stochastically expressed along NK  cell 
differentiation, generating NK  cell clones with discrete KIR 
combinations (34, 67). Only NK  cell clones expressing at least 
one inhibitory receptor specific for self-HLA-I achieve functional 
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FiGURe 2 | Variables modulating NK cell-mediated ADCC against HER2+ breast cancer. The overall magnitude of NK cell-mediated ADCC induced by anti-HER2 
therapeutic monoclonal antibodies can be modulated by several factors including the configuration of the human NK cell repertoire, the heterogeneity in HER2+ 
breast tumor molecular subtypes and differences in treatment regimens. Factors such as specific KIR-HLA combinations, the CD16A 158V/F genotype and the 
prevalence of human cytomegalovirus (HCMV) adaptive NKG2C+ NK cells have been shown to modulate the overall NK cell-mediated ADCC potential. A number of 
tumor molecular features associated to estrogen receptor (ER) co-expression (e.g., expression of Serpin B9, E-cadherin, and HLA-I) can also modulate NK cell-
mediated ADCC responses. Finally, the NK cell effector potential against HER2+ breast cancer is also modulated by therapeutic regimens, including the type of 
HER2-targeting drugs and the combined chemotherapy agents.
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maturity. Thus, KIR–HLA-I interactions contribute to set the over-
all functional potential in the patient NK cell repertoire (68–70). 
Whether certain KIR–HLA-I gene combinations can modulate 
the efficacy of anti-HER2 mAbs in breast cancer patients remains 
unaddressed, yet associations between distinct paired KIR/KIR-
ligands and clinical responses to other tumor antigen-specific 
mAbs, such as anti-GD2 dinutuximab, anti-CD20 rituximab, or 
anti-EGFR cetuximab have been reported (71, 72).

Another genetic factor known to modulate antibody-depend-
ent NK cell activation is the CD16A (FcγRIIIA) 158V/F allelic 
dimorphism encoding for two receptor variants harboring either 
a phenylalanine (F) or valine (V) at amino acid position 158 in the 
receptor IgG-binding domain (73). Presence of a V residue defines 
receptors with high affinity for IgG1 (73). An initial association 
between the high affinity CD16A 158V/V genotype and complete 
clinical responses to trastuzumab-based treatment was described 
in a retrospective analysis of a small cohort of metastatic breast 

cancer patients (74). Nonetheless, the association of CD16A 
158V/F dimorphism with time to relapse and overall survival 
in larger patient cohorts receiving trastuzumab in adjuvancy 
remains controversial (75–77). Possible caveats accounting for 
the different results in these studies have been discussed in critical 
reviews (9, 78).

Environmental factors challenging the immune system, 
such as autoimmune or chronic inflammatory diseases and 
infections, can also shape the configuration of the NK cell com-
partment. In this regard, infection by human cytomegalovirus 
(HCMV) promotes, in some individuals, a persistent adaptive 
expansion of long-lived NK  cells hallmarked by the elevated 
expression of the CD94/NKG2C activating receptor (79–81). 
Adaptive NKG2C+ NK  cells are functionally mature and have 
been associated with the control of HCMV infection in kidney 
transplant recipients (82, 83) as well as with protection from 
leukemia relapse upon hematopoietic stem cell transplantation 
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FiGURe 3 | Actionable NK cell checkpoints for enhancing anti-HER2 mAb-induced ADCC responses. Several strategies can be tackled for harnessing NK cell 
ADCC responses with the objective of enhancing the clinical efficacy of anti-HER2 mAbs. Toll-like receptor (TLR) agonists and cytokines such as IL-2, IL-15, and 
IL-12 have been shown to lower NK cell activation threshold and enhance their effector potential. Among immune checkpoint modulators targeting surface 
receptors, anti-TIGIT and anti-PD-1 blocking mAbs as well as anti-CD137 agonist mAbs enhance NK cell-mediated ADCC and survival. Impeding CD16 shedding 
with A disintegrin and metalloproteinase 17 (ADAM17) inhibitors can be yet another strategy amplifying NK cell-mediated ADCC triggered by HER2-specific 
therapeutic mAbs.
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(84). Remarkably, NKG2C+ NK cells display enhanced effector 
function upon antibody-driven recognition of virus-infected 
targets and rituximab-coated B lymphoblastoid cell lines in vitro 
(85–87).

influence of HeR2 Breast Cancer 
Molecular Subtypes on NK Cell-Mediated 
ADCC
Hormone receptor status differentiates two HER2+ breast tumor 
subgroups with distinct pathological response rate and overall 
survival upon anti-HER2 mAb treatment (88). The benefit of 
anti-HER2 therapy is highest in estrogen receptor (ER)-negative 
tumors and progressively decreases in tumors with increased ER 
expression (89). Globally, many immune parameters in HER2+ 
breast tumors (i.e., TILs, CD8+ infiltrate) are inversely correlated 
with ER or progesterone receptor expression (90), and it is 
tempting to propose a possible relationship between decreased 
clinical benefit of ER+ tumors to anti-HER2 mAbs and their 
increased resistance to NK  cell-mediated ADCC. E-cadherin 

expression associated to ER+ breast carcinomas (91, 92) dampens 
trastuzumab-dependent ADCC through its specific interaction 
with the inhibitory killer cell lectin-like receptor G1 (KLRG1) 
on NK cells in preclinical in vitro and in vivo models (93, 94). 
Remarkably, resistance to trastuzumab-based treatment has been 
associated to E-cadherin expression in tumors from patients 
with HER2+ metastatic breast cancer (94). In addition, estrogens 
regulate the transcription of SerpinB9/proteinase inhibitor 9, a 
granzyme B inhibitor shown to decrease the susceptibility of ER+ 
breast cancer cells to NK and CD8+ T cell cytotoxicity in vitro 
(95, 96). Estrogens also upregulate HLA-I transcription through 
a cis-regulatory element in breast cancer cell lines (97–99), 
potentially modulating their susceptibility to NK cell-mediated 
ADCC. The relationship between ER and HLA-I expression has 
been confirmed by HLA-I immunohistochemical score in ER+/
HER2+ as compared to ER−/HER2+ tumors (90). Whether other 
molecular features underlying breast carcinoma heterogeneity 
(e.g., mutations in PI3K, PTEN, p53, or p95HER2) (8) may 
modulate the susceptibility to NK cell-mediated ADCC remains 
uncertain.
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Therapeutic Strategies Modulating  
NK Cell-Mediated ADCC
HER2 dual targeting with trastuzumab in combination with 
pertuzumab is nowadays the gold standard therapeutic 
approach for HER2+ breast cancer in the neoadjuvant setting 
and in the first-line treatment of metastatic disease. Patients 
that have progressed to prior trastuzumab, pertuzumab, and 
T-DM1 are treated with lapatinib. Both therapeutic strategies 
augment the coating of HER2+ tumors with IgG1 increasing the 
possibilities for NK cell-mediated ADCC antitumor responses. 
Simultaneous binding of pertuzumab and trastuzumab to 
HER2 increases the density of FcγR binding sites on HER2+ 
tumors; lapatinib does so, by preventing HER2 phosphoryla-
tion and internalization, hence increasing HER2 availability for 
trastuzumab (100–103).

Genetic engineering of the antibody Fc domain for optimiz-
ing FcγR engagement is one of the current strategies explored for 
enhancing the clinical success of several tumor antigen-specific 
mAbs (104). Margetuximab, an Fc-optimized HER2-specific 
mAb in clinical development, displayed increased binding to 
CD16A and elicited enhanced ADCC in breast cancer preclinical 
models (105). Promising single-agent activity of margetuximab 
has been recently reported for HER2+ breast and gastric cancer 
patients with advanced disease (106). Results of an ongoing 
two-arm open-label Phase 3 clinical trial in front of trastuzumab 
(NCT02492711) will reveal whether margetuximab displays 
superior efficacy, particularly for patients homozygous for the 
CD16A 158F/F low affinity genotype, in whom margetuximab 
showed the highest enhancement of NK cell-mediated ADCC in 
preclinical studies (105).

In addition to anti-HER2 mAbs, concomitant chemotherapy 
regimens may significantly impact on NK cell ADCC responses. 
Several chemotherapeutic agents currently combined or 
sequentially administered with anti-HER2 mAbs (i.e., anthra-
cyclines, cyclophosphamide, taxanes) elicit a particular type 
of apoptosis, known as immunogenic cell death (ICD), that is 
accompanied by the coordinated release of DAMPs (e.g., ATP, 
and HMGB1) (107). DAMPs released along ICD activate a 
panel of pattern-recognition receptors (e.g., TLRs, P2RX7) and 
promote type I IFN release from cancer cells and the secretion 
of pro-inflammatory cytokines by immune cells (107, 108). 
Among DAMPs released along ICD, HMGB1 has been shown 
to enhance NK cell activation and recruitment to the tumor in 
a TLR2/4-dependent manner in preclinical models (109, 110) 
whereas type I IFNs have been shown to be necessary for the 
therapeutic efficacy of anti-HER2 mAb in MMTV-ErbB-2 
transgenic mouse model (58). Indeed, a type I IFN signature 
predicted clinical responses to anthracycline-based chemo-
therapy in several independent cohorts of patients with breast 
cancer (108). In addition, in vitro treatment with anthracyclines 
and taxanes enhanced anti-HER2 mAb-induced ADCC by 
promoting endoplasmic reticulum-stress and the upregula-
tion of NKG2D-ligands in breast carcinoma cells (111–113). 
Contravening the traditional view that chemotherapeutic drugs 
suppress patient immunity, anthracyclines- and taxanes-based 
treatments associated to enhanced NK  cell function in breast 
cancer patients (60, 113–116).

On the whole, studies integrating information on the patient 
NK cell repertoire, NK cell receptor ligands on tumor cells and 
concomitant treatments might shed light on putative resistance 
mechanisms to anti-HER2 mAbs in HER2+ breast cancer patients.

NK CeLL-MeDiATeD ADCC AND THe 
vACCiNe-LiKe eFFeCT iNDUCeD BY 
ANTi-HeR2 mAbs

Recent data highlight the importance of a vaccine-like effect 
by which antitumor mAb treatment facilitates the subsequent 
development of tumor-specific T  cell responses, contribut-
ing to tumor elimination (117, 118). Antigen-presenting cells  
[i.e., macrophages and dendritic cells (DC)] use FcγR-mediated 
phagocytosis of immune complexes for enhancing tumor antigen 
processing and presentation, which can result in tumor-specific 
T-cell immunity (16, 117–119). Certainly, several evidences 
support the importance of antitumor T  cell immunity for the 
clinical benefit of anti-HER2 mAb in breast cancer patients  
(115, 120–124).

Tumor cell cytotoxicity and cytokine/chemokine secretion 
upon antibody-dependent NK  cell activation might directly 
and indirectly contribute to the vaccine-like effect induced by 
HER2-specific mAbs. On one hand, NK  cell tumor cytolytic 
activity increases the availability of tumor antigen-containing 
immune complexes for antigen processing and presentation by 
DC and macrophages present in the tumor microenvironment. 
Independently of anti-HER2 mAbs, NK cell-DC crosstalk, invol-
ving cell–cell contacts and IFNγ, has been shown to prime DC 
polarization for IL-12 secretion, enhancing cross-presentation 
of tumor antigens to cytotoxic CD8+ T  cells and the polariza-
tion of tumor-specific Th1 CD4+ T  cells in preclinical models  
(59, 125–129). Moreover, activated NK cells are presumably capa-
ble of selectively killing immature DC while sparing activated 
DC, owing to their differential levels of surface HLA-I expression 
(130), thus selecting for immunogenic DC, effective inducers of 
antitumor T cells (127, 131). In patients, evidence of the partici-
pation of NK cell-mediated DC “editing” to the development of 
tumor-specific T  cell immunity remains elusive. On the other 
hand, anti-HER2 mAb-dependent NK  cell activation results 
in the production of IFNγ and chemokines (MIP1α, MCP-1, 
RANTES, IL-8) (132), which might contribute to the recruitment 
and functional polarization of myeloid and T cells with antitumor 
potential. Noteworthy, coordinated NK and tumor-specific T cell 
responses have been detected in HER2+ breast cancer patients 
achieving pathological complete response to trastuzumab (133).

NK CeLL evASiON iN BReAST CANCeR

Neoplastic cells can develop a wide array of strategies to subvert 
NK cell recognition and cytotoxic function along tumor evolu-
tion (134, 135). Indeed, NK cell selective pressure contributes to 
tumor immunoediting leading to the emergence of evasive tumor 
cell clones (136–139). Generally, strategies hijacking NK  cell 
function can be grouped into four categories: (i) shedding of 
ligands for NK cell activating receptors from tumor cells which 
act as decoy molecules leading to NK cell functional impairment 
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(e.g., MICA/B, B7-H6) (140, 141); (ii) upregulation of ligands 
for inhibitory NK cell receptors (e.g., HLA-I molecules; PD-L1)  
(142, 143); (iii) dysregulated expression of molecules confer-
ring resistance to NK  cell-mediated cytotoxicity (e.g., Bcl-2; 
Bcl-xL, cFLIP, caspase 8, Fas) (144); and (iv) immune suppres-
sive cytokines (e.g., IL-10, TGFβ) and metabolites (e.g., PGE2, 
adenosine) leading to NK cell dysfunction (135, 145).

Among all these strategies, increased levels of soluble 
MICA/B have been described in breast cancer patients (146) as 
well as overexpression of HLA-E, HLA-G in HER2+ tumors as 
determined by immunohistochemistry (147, 148). In addition, 
Fas downregulation in breast tumors has been correlated with 
shorter patient survival (149). Hence, several NK  cell-evading 
strategies operating along breast tumor progression may hamper 
the antitumor efficacy of anti-HER2 mAbs.

In concert with the development of an immune suppressive 
microenvironment in the progressing tumor, NK lymphocytes 
infiltrating advanced and metastatic breast carcinomas dis-
played an altered phenotype and reduced cytotoxic potential 
(150). According to data from distinct tumor types, NK  cell 
infiltrates included high proportions of CD56bright NK  cells 
with increased expression of inhibitory CD94/NKG2A and 
decreased expression of activating NKp30, NKG2D, and 
DNAM-1 receptors (150). NK  cells isolated from breast 
tumors also displayed reduced degranulation and IFNγ and 
TNFα production upon direct or antibody-dependent activa-
tion (150). Likewise, stratification of breast cancer patients by 
local and invasive disease, evidenced a progressive functional 
impairment of circulating NK  cells associated to phenotypic 
alterations (150). Remarkably, CD16 expression on circulating 
NK cells was rather preserved, and cytotoxic responses induced 
by trastuzumab against the HER2+ breast cancer cell line 
SKBR3 were only affected at low trastuzumab doses in NK cells 
from patients with locally advanced or metastatic tumors  
(51, 151).

eNHANCiNG NK CeLL-MeDiATeD ADCC 
THROUGH iMMUNOTHeRAPY iN HeR2 
BReAST CANCeR

Only two mAbs, trastuzumab and pertuzumab and the antibody-
drug conjugate T-DM1, are currently approved for breast cancer 
treatment. Strengthening NK  cell-mediated ADCC responses 
through immunotherapy appears a suitable option for enhancing 
their clinical efficacy (45, 152, 153). In the following paragraphs, 
several approaches will be discussed based on data referring to 
HER2+ breast cancer (Figure 3).

immunomodulatory mAbs Targeting 
Constitutive and inducible Receptors in 
NK Cells
Several observations provide the rationale for combinatorial 
approaches including anti-HER2 mAbs and antibodies target-
ing surface NK  cell receptors or co-receptors with activating 
and inhibitory function, termed immune checkpoints modula-
tors. Nonetheless and despite promising results in preclinical 

models, clinical trials combining anti-HER2 mAbs and immune 
checkpoint-targeting antibodies are currently lacking.

IFNγ secretion by NK cells has been shown to contribute to 
the tumor adaptive immune resistance response (154) by upregu-
lating the expression of HLA-I and PD-L1 in HER2+ breast cancer 
cells in vitro and in vivo (58, 155, 156). HLA-I and PD-L1 can 
be, respectively, recognized by KIR, CD94/NKG2A, LILRB1, and 
PD-1 inhibitory receptors, modulating the subsequent recogni-
tion of transformed cells by NK and T lymphocytes.

Blocking mAbs targeting HLA-I-specific inhibitory receptors 
with constitutive expression in NK cells include an anti-NKG2A 
(monalizumab, IPH2201) and an anti-KIR (lirilumab, IPH2101, 
BMS-986015) (45). Both antibodies are currently in early clini-
cal development being tested for safety and efficacy mostly for 
the treatment of hematological malignancies.2 No clinical trials 
combining anti-HER2 mAbs and blocking agents targeting KIR 
or CD94/NKG2A are being developed, yet the safety and early 
efficacy of monalizumab and cetuximab (anti-EGFR) combina-
tion is being tested for the treatment of head and neck cancer 
(NCT02643550). Of note, an unexpected NK cell unresponsive-
ness consequent to treatment with lirilumab associated with 
treatment limited clinical efficacy in multiple myeloma patients 
(157, 158) warned about the undesired consequences of chronic 
targeting of HLA-I-specific NK cell receptors.

An alternative strategy, with unprecedented success as stan-
dalone treatment for several cancer types, is the blockade of the 
immune cell inhibitory PD-1/PD-L1 axis. Though generally 
considered a T cell co-receptor, PD-1 is also expressed by human 
exhausted NK cells (159) and circulating PD-1+ NK cell subpopu-
lations were reported to be enriched in individuals with chronic 
viral infections as well as in cancer patients (159–161). PD-1+ 
expression is restricted to mature CD56dimCD16+ NK cells and 
interferes with activation via NKp30, NKp46, or CD16 receptors 
(159). PD-L1 expression was preferentially detected in HER2+ 
breast tumors showing a strong cytotoxic local immune response 
(162) and the numbers of PD-1+ tumor-infiltrating lymphocytes 
were associated with poor prognosis in HER2+ breast cancer 
(163, 164). Remarkably, combination of HER2-specific mAbs 
with blocking antibodies targeting the PD-1/PD-L1 showed 
greater efficacy in preclinical models (58, 62). These observa-
tions support the suitability of combining anti-HER2 mAbs with 
immunotherapy targeting the PD1/PD-L1 axis. Several clinical 
trials assessing the benefit of mAbs targeting the PD1–PD1-L 
axis as monotherapy or in combination with chemotherapy, 
radiotherapy or hormone therapy are currently being developed 
for ER+ or triple-negative breast tumors (see text footnote 2); 
likewise, combinatorial approaches with anti-HER2 mAbs are 
warranted.

TIGIT, a nectin-binding inhibitory co-receptor showing 
overlapping ligand specificity with the activating DNAM-1, is 
another inducible receptor with the capacity to modulate NK cell 
ADCC responses (165, 166). Both receptors recognize CD155 
(also known as PVR) and CD112 (also known as Nectin-2), 
ubiquitous cell-adhesion molecules (167) overexpressed in 

2 http://clinicaltrials.gov
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HER2+ breast cancer cell lines (51). Besides CD8+ T cells, TIGIT 
is preferentially expressed on CD16+ NK cells and upregulated 
upon activation via ADCC (168, 169). TIGIT blockade has been 
shown to enhance trastuzumab-triggered antitumor response by 
human NK cells in vitro (169). Currently, an anti-TIGIT block-
ing mAb (OMP-313M32) is in early clinical development being 
tested for safety as standalone treatment in patients with locally 
advanced or metastatic solid tumors (NCT03119428).

Another immune checkpoint shown to synergize with anti-
HER2 mAb in xenotransplant models of breast cancer is CD137 
(58, 170). CD137 (4-1BB; TNFRSF9) is a co-stimulatory recep-
tor induced in activated leukocytes, originally described for its 
capacity to enhance antitumor T cell responses (171, 172). CD137 
expression following CD16 ligation has been shown in murine 
and human NK cells (173) and CD137 upregulation has been well 
documented on ex vivo circulating NK cells from breast and head 
and neck cancer patients upon tumor antigen-specific mAb infu-
sion (170, 174). Two agonistic anti-CD137 mAb are currently in 
clinical development (urelumab and utomilumab), being tested 
alone or in combination with anti-PD-1 mAbs in advanced solid 
and hematologic tumors (45).

Of note, since NK and some T lymphocyte subsets share many 
receptor/ligand pairs involved in their functional regulation  
(e.g., PD-1, TIGIT, 4-1BB/CD137, and CD94/NKG2A), combina-
tions between anti-HER2 therapeutic mAbs and distinct immune 
checkpoint modulators would promote antitumor immunity by 
dual targeting T and NK cell functional exhaustion.

Anti-HeR2 mAb Combination with 
Cytokines
Several attempts to potentiate NK  cell antitumor function by 
systemic treatment with recombinant cytokines have also been 
carried out. Besides their effects on T  cells, IL-2, and IL-15 
signaling through STAT 5 enhance NK cell antitumor function  
(41, 175, 176).

IL-2 enhanced NK cell-mediated ADCC triggered by anti-
HER2 mAb against breast cancer cell lines in vitro and in vivo  
(177, 178). However, clinical trials including combined admin-
istration of IL-2 with trastuzumab did not show improved 
disease outcome in metastatic HER2+ breast cancer patients 
(179, 180). Caveats of systemic IL-2 administration include 
treatment-associated toxicity, its rapid clearance in  vivo and 
IL-2 pro-tumor effects through the concurrent activation of 
CD4+ regulatory T  cells. Nonetheless, low-dose IL-2 is cur-
rently included in a number of clinical trials to support cellular 
adoptive approaches with combined infusions of NK cells and 
trastuzumab in HER2+ breast cancer patients (NCT02030561, 
NCT02843126).

IL-15 is an essential cytokine for human NK cell homeostasis; 
nonetheless, early clinical assays including systemic IL-15 were 
withdrawn due to concurrent adverse events and dose-limiting 
toxicities (181). Similarly, IL-15 enhanced the antitumor activ-
ity of trastuzumab, yet causing fatal side effects in a humanized 
tumor mice model (182). Current research efforts include the 
development of cytokine variants with extended in vivo half-life 
and targeted action on precise lymphocyte subsets and tumor 

sites (i.e., engineered IL-2 “superkine,” IL-15Rα Sushi-Fc fusion 
protein; IL-15 tri and tetraspecific killer engagers) (183–186).

IL-12 has been shown to enhance the antitumor actions of 
trastuzumab via the enhancement of NK cell IFN-γ production 
in mouse models (56, 57). In a clinical trial in which IL-12 was 
combined with trastuzumab and paclitaxel, increased levels 
of IFN-γ and several chemokines were detected in sera from 
patients with clinical benefit, but not in patients with progressive 
disease (187). Currently, two clinical trials are ongoing including 
IL-12 and trastuzumab combined treatment (NCT00004074, 
NCT00028535). Preclinical studies are focused on the develop-
ment of approaches for targeting cytokine expression in the 
tumor site to avoid toxicities associated to systemic treatment 
(i.e., tumor-targeting immunocytokines, gene therapy with loco-
regional injections of cytokine-encoding plasmid) (188).

immunotherapy with TLR Ligands
Toll-like receptor TLR ligands have been shown to improve 
both the quality and the magnitude of host antitumor innate 
and adaptive immune responses (189). TLR2, TLR3, TLR8, and 
TLR9 agonists have been shown to prime NK cell effector func-
tion (39, 40) and to synergize with anti-HER2 mAb therapy in 
a type I and II IFNs-, NK-, and CD8+ T cell-dependent manner 
in preclinical models (190–192). In the context of breast cancer, 
TLR ligands are being tested as adjuvants in diverse HER2-
peptide vaccination strategies (i.e., TLR9-ligand CpG ODN in 
NCT00640861; TLR7 agonist imiquimod in NCT02276300; 
AS15 mixture in NCT02364492, NCT00058526, NCT00140738; 
TLR3 agonist Hiltonol in NCT01532960), including trastuzumab 
in some instances (i.e., the TLR9-ligand PF03512676-CpG 7909 
or agatolimod-: NCT03512676, NCT00043394, NCT00031278). 
Strategies for delivering TLR agonists into the tumor site would 
likely potentiate NK cell-mediated ADCC synergizing with anti-
HER2 mAbs antitumor function.

ADAM inhibitors
One of the consequences of CD16-mediated NK cell activation is 
the shedding of CD16 extracellular domain by the induced action 
of the A disintegrin and metalloproteinase 17 (ADAM17), thus 
limiting subsequent CD16A receptor engagement and NK  cell 
activation (193). Intriguingly, ADAM10 (with constitutive activ-
ity) and ADAM17 (inducible) also control the release of ligands 
for EGFR/HER receptors (194) and promote the shedding of 
B7-H6 and MICA/B ectodomains, amplified and overexpressed in 
breast tumors (195, 196) limiting NKp30- and NKG2D-mediated 
NK cell activation (140). In fact, ADAM10 and ADAM17 levels 
have been associated with poor responses and shorter relapse-free 
survival after trastuzumab treatment (197, 198). In this scenario, 
inhibition of ADAM17/10 could improve NK  cell-mediated 
ADCC triggered by anti-HER2 mAb, preventing CD16 and 
B7-H6 shedding as well as enhancing HER2 surface availability. 
ADAM17 specific inhibitor prevented CD16 shedding and 
improved NK cell-mediated ADCC responses in vitro (199). Two 
clinical trials tested the combination of an ADAM17 inhibitor 
(INCB7839) with trastuzumab (NCT01254136, NCT00864175) 
yet the development of the compound was suspended by the 
sponsor corporation and no results were published. Currently, 
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the possibility of enhancing NK  cell-mediated ADCC by 
combining ADAM17 inhibitor (INCB7839) and tumor antigen-
specific antibodies is being tested in combination with rituximab 
(NCT02141451).

CONCLUDiNG ReMARKS

Activation of NK cell effector functions by anti-HER2 therapeutic 
antibodies can directly contribute to tumor control by their direct 
cytolytic activity against transformed cells, but also indirectly by 
their effects on the tumor microenvironment, eventually favor-
ing the development of antitumor adaptive immunity. Multiple 
strategies are being developed for enhancing NK cell-mediated 
antibody-dependent antitumor activity, while simultaneously 
targeting other immune cells which contribute to the control 
of tumor growth and spreading. Understanding which variables 
underlie breast cancer heterogeneity in terms of lymphocyte 
infiltration and susceptibility to immune surveillance, as well 
as how the heterogeneity in the NK  cell repertoire can influ-
ence on the clinical benefit of HER2-targeting mAbs, will aid 
in the design of tailored strategies to broaden their therapeutic 
window.
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