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Abstract: Sequencing of the 16S rRNA gene (16S) has long been a go-to method for microbiome
characterization due to its accessibility and lower cost compared to shotgun metagenomic sequencing
(SMS). However, 16S sequencing rarely provides species-level resolution and cannot provide direct
assessment of other taxa (e.g., viruses and fungi) or functional gene content. Shallow shotgun
metagenomic sequencing (SSMS) has emerged as an approach to bridge the gap between 16S
sequencing and deep metagenomic sequencing. SSMS is cost-competitive with 16S sequencing,
while also providing species-level resolution and functional gene content insights. In the present
study, we evaluated the effects of sequencing depth on marker gene-mapping- and alignment-based
annotation of bacteria in healthy human stool samples. The number of identified taxa decreased
with lower sequencing depths, particularly with the marker gene-mapping-based approach. Other
annotations, including viruses and pathways, also showed a depth-dependent effect on feature
recovery. These results refine the understanding of the suitability and shortcomings of SSMS, as well
as annotation tools for metagenomic analyses in human stool samples. Results may also translate
to other sample types and may open the opportunity to explore the effect of sequencing depth and
annotation method.

Keywords: alignment; marker gene; microbiome; shallow sequencing; shotgun metagenomic
sequencing; virome

1. Introduction

Sequencing-based studies are commonly employed to identify patterns in the microbiome and
cause–effect relationships of microorganisms with their host and environment [1,2]. Although both
16S rRNA gene (16S) sequencing and shotgun metagenomic sequencing (SMS) can be utilized for this
purpose, traditional SMS is often more cost-prohibitive than 16S sequencing and typically requires
substantially greater computational resources to process [3]. For these reasons, 16S sequencing is
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often the preferred option to acquire bacterial diversity and taxonomy information in a time- and
cost-efficient manner. However, species-level resolution is rarely provided by 16S sequencing, as only
one or two variable regions are usually sequenced. In addition, partial 16S sequence reads may not
provide the resolution needed to differentiate species that share a high degree of homology across
the 16S rRNA gene (e.g., Escherichia/Shigella and Staphylococcus spp.) [4]. Although groundbreaking
discoveries have been made using 16S-based data, species-level resolution has become increasingly
important for translational microbiology purposes [5,6]. In addition, 16S sequencing does not allow for
the identification of viruses, fungi, and other small eukaryotes or the direct identification of pathway
information. Although pathway information can be imputed from 16S data, SMS data provide more
reliable and complete information that can be used for downstream analyses [7–9].

An intrinsic challenge in the application of SMS for microbiome research is determining the
sequencing depth necessary for meaningful taxonomic and functional comparisons. A limited number
of studies have evaluated the sequencing depth needed to identify important taxonomic and functional
signals from SMS data [3,10]. These studies have shown that a sequencing depth of 0.5 M sequences
per sample is sufficient to capture taxonomic and functional signals on par with those obtained
with sequencing depths > 100 M sequences [3,10]. Other studies using reference materials have also
found that taxonomic classification does not necessarily improve beyond 60 M paired sequences,
and classification of eukaryotic communities can be estimated with 0.5 M reads [11,12]. Shallow
SMS (SSMS) has recently emerged as a cost-effective and information-rich alternative to SMS and
16S sequencing [3]. While SSMS results in a lower number of sequences, it poses several advantages
compared to 16S sequencing, including (i) species-level resolution; (ii) direct functional characterization;
(iii) identification of viruses, fungi, and other small eukaryotes; (iv) lack of amplification biases
associated with 16S sequencing, which can skew community representation; (v) increased cost-efficiency
relative to deep SMS, particularly for large-scale studies; and (vi) potentially reduced computational
costs relative to deep SMS.

In addition to the sequencing depth, the annotation approach may exert an effect on diversity
and taxonomic profiles. Particularly, application of marker gene-mapping- and alignment-based
methods for taxonomic classification may influence results. Marker gene-mapping-based tools, such
as Metagenomic Phylogenetic Analyses v.2.0 (MetaPhlAn2), infer the presence and read coverage
of clade-specific markers to estimate relative abundance of microbial species [13]. On the other
hand, alignment-based tools, such as BURST, work as high-speed pairwise sequence aligners and
may specialize in aligning short reads against reference databases [14]. The effect of both marker
gene-mapping- and alignment-based approaches on metagenomic datasets has not been widely
determined in association with sequencing depth.

Taxonomic classification is often restricted to bacteria in microbiome studies [15]. However, viruses
also comprise a less studied but important fraction of the microbiome known as the virome [16]. Virome
studies often involve the amplification of the virus signal by applying several physical, molecular,
and computational methods, including virus separation from the host (e.g., human, animal, and
plants) and bacterial cells using cesium chloride (CsCl) gradient ultracentrifugation, DNAse and
RNAse treatment prior to nucleic acid extraction, amplification of viral nucleic acids using random or
targeted amplification, and in silico removal of host DNA post-sequencing [17–20]. Despite variation
in upstream sample processing across laboratories and research groups, viral taxonomic profiles from
SMS data can often be useful and readily available to gather a global understanding of viral community
composition. This is particularly true for DNA viruses (when no a priori RNA extraction and cDNA
conversion has been applied), which tend to be present at abundances that do not necessarily require
viral enrichment step(s) in order to facilitate their detection. Since SMS has the potential to provide viral
taxonomic profiles, estimating the SMS depth needed for virome characterization is also of importance.

Here, the main aims of our study were to augment the current understanding of the effect of
SMS depths and annotation method (marker gene-mapping- vs. alignment-based) on the detection of
bacterial genera in comparison to 16S information, and on the detection of bacterial species, as well as
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the effect of SMS depth on pathway identification and viral communities, using healthy human stool
samples as proxies of the gut microbiome.

2. Materials and Methods

2.1. Samples Processing for 16S rRNA Sequencing

Ten human stool samples were purchased from Lee Biosolutions (Maryland Heights, MO, USA)
and stored at −20 ◦C until further processing. ATCC® mock community MSA1001, comprised of
DNA from 10 organisms in staggered concentrations (ranging in relative abundances from 44.78 to
0.04%) was processed in parallel as a control. A no template PCR sample was included as a negative
control. For 16S rRNA gene sequencing of the ten stool samples, the V4 hypervariable region was
amplified by PCR and sequenced on the MiSeq platform (Illumina; San Diego, CA, USA) using the
2 × 250 bp paired-end protocol following manufacturer’s instructions (Illumina; San Diego, CA,
USA). Amplification of the V4 region of the 16S gene was selected in the present study, because
it is well-standardized, commonly utilized, and has been shown to capture greater diversity than
other variable regions in stool samples [21]. The primers used for amplification contain adapters for
sequencing in the Illumina MiSeq platform, which also contains single-end barcodes, allowing pooling
and direct sequencing of PCR products [22]. The read pairs were demultiplexed followed by merging
using USEARCH v7.0.1090 [23], allowing zero mismatches and a minimum overlap of 50 bases. Merged
reads were trimmed using Trimmomatic (version 0.39) to perform adapter trimming, quality trimming,
and filtering (SLIDINGWINDOW:4:20 MINLEN:75) at the first base with Q5 [24]. In addition, a quality
filter was applied to the resulting merged reads and reads containing above 0.05 expected errors were
discarded. The 16S rRNA gene sequences were clustered into operational taxonomic units (OTUs) at a
similarity cutoff value of 97% using the UPARSE algorithm [25]. OTUs were mapped to an optimized
version of the SILVA (v132) database containing only the 16S v4 region from 6,087,080 rRNA gene
sequences to determine taxonomies. Abundances were recovered by mapping the demultiplexed reads
to the UPARSE OTUs. All downstream analyses including α-diversity, β-diversity, and taxonomic
analyses were performed using in-house data visualization tools. For comparison with SMS data,
OTUs were collapsed to genus level.

2.2. Shotgun Metagenomic Library Preparation, Sequencing, and Data Quality

Genomic DNA from the ten stool samples described above, as well as ATCC® mock community
MSA1001, were prepared for sequencing using the Nextera DNA Flex library preparation kit (Illumina;
San Diego, CA, USA) with Nextera Index Kit (Illumina; San Diego, CA, USA). Library size estimation
and quantification were determined with the fragment analyzer (Advanced Analytical Technologies,
Inc., Ankeny, IA, USA) electrophoresis system. Sequencing was performed on a NextSeq using
the 2 × 150 bp paired-end protocol following manufacturer’s instructions (Illumina; San Diego,
CA, USA). After sequencing, Trimmomatic (version 0.39) was used as described above [24]. After
quality trimming and filtering, host filtering was performed by aligning reads to a human reference
genome (GRCh38; GCA_000001405.15) that was pulled from Bowtie2 (version 2.3.4.1) with default
parameters [26]. Unmapped reads were retained for downstream analysis, including taxonomic,
pathway, and viral profiling.

2.3. Random Subsampling of Sequences

After quality check (QC), shotgun metagenomic sequences were subsampled using the
fastq-sample command from the fastq-tools suite downloaded from https://homes.cs.washington.edu/

~dcjones/fastq-tools/. Reads were subsampled at the following thresholds: 5 Gb (16.67 M reads), 3 Gb
(10.00 M reads), 1 Gb (3.00 M reads), 0.75 Gb (2.50 M reads), 0.5 Gb (1.65 M reads), 0.25 Gb (0.85 M
reads), and 0.1 Gb (0.34 M reads).

https://homes.cs.washington.edu/~dcjones/fastq-tools/
https://homes.cs.washington.edu/~dcjones/fastq-tools/
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2.4. Taxonomic and Pathway Annotations

After subsampling the reads, bacterial taxonomic annotations were performed using MetaPhlAn2
(v2.7.7) [13], which uses clade-specific markers that provide bacterial, archaeal, viral, and eukaryotic
quantification at the species level using default parameters for reported relative abundances. This
version of the MetaPhlAn database was developed using 16,904 reference genomes. Since the bacterial
component was the most abundant, only bacteria were considered, and data were re-normalized prior
to downstream analysis. DNA sequences were also aligned to the Venti database (originally developed
at CoreBiome), a curated proprietary database containing 19,840 complete and/or high-quality draft
bacterial genomes from RefSeq. Alignments were made at 97% identity against all reference genomes.
Every input sequence was compared to every reference sequence in the Venti database using fully
gapped alignment with the BURST mapping algorithm [14]. Ties were broken by minimizing the
overall number of unique genome hits. For taxonomy assignment, each input sequence was assigned
the lowest common ancestor that was consistent across at least 80% of all reference sequences tied
for best hit. The number of counts for each genome was normalized to genome length, and genomes
accounting for less than one millionth of all species-level hits and those with less than 0.01% of their
unique genome regions covered (and <1% of the whole genome) were discarded. Samples with fewer
than 10,000 sequences were also discarded. Count data were converted to relative abundance for
each sample. Both MetaPhlAn2 and BURST data were further filtered to remove taxa present in
relative abundances <0.01% using the script filter_otus_from_otu_table.py in the Quantitative Insights
into Microbial Ecology (QIIME) platform [27]. The normalized and filtered table was used for all
downstream analyses.

Viral profiles from the SMS data, subsampled to 5 Gb (16.67 M reads), 3 Gb (10.00 M reads), 1 Gb
(3.00 M reads), 0.75 Gb (2.50 M reads), 0.50 (1.65 M reads), 0.25 Gb (0.85 M reads), and 0.1 Gb (0.34 M
reads), were obtained using VirMap [28]. VirMap merges nucleotide and protein information to assign
taxonomy independently from genome coverage or read overlap. Relative abundances of selected
viruses were acquired by dividing the number of counts of the virus of interest per sequencing depth
divided by the genome size in bp.

Pathway profiling was performed using HUMAnN2 v0.11.1 with default parameters [29]. Pathway
searches were performed against UniProt and MetaCyc50 [30,31]. Unclassified and unmapped
categories were removed, and data were re-normalized for further analyses.

2.5. Statistical Analyses

Statistical analyses were performed in RStudio version 1.1.456. For α-diversity comparisons, the
Friedman Rank test was used to determine statistical differences among sequencing depths, as repeated
measure was considered, and the Nemenyi post hoc test was further applied for sequencing depth
comparisons. Permutational multivariate analysis of variance (PERMANOVA) was performed using
proprietary tools to visualize differences based on weighted Bray–Curtis distances. Distance values
were then visualized using Principal Coordinate Analysis (PCoA) plots. Nonparametric permutation
tests were employed to test for statistical significance amongst sequencing depths and taxonomy and
pathways relative abundances. Briefly, comparisons of genera or species across the various sequencing
depths were performed using Kruskal–Wallis in QIIME using the group_significance_analyses.py
script, with default parameters. The group_significance.py script compares each feature (e.g., OTU,
species, gene family) to see if it is differentially abundant based on the groupings of interest, as defined
in the metadata file. The script will group together samples that have the same value in the mapping
file under the header passed with the -c option. The script output includes unadjusted p-values, and
false discovery rate (FDR) values. Correlation plots were generated using the function ggscatter () in
RStudio with the addition of correlation coefficient and p-value to indicate significance.
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2.6. Data Availability

The sequences generated and analyzed during the current study are available in the NCBI
repository under accession number PRJNA676159.

3. Results

3.1. Bacterial Richness, but Not Evenness or β-Diversity, Is Affected by Sequencing Depth When Using Marker
Gene-Mapping- and Alignment-Based Approaches

A total of 10 healthy human stool samples were included in the present study. After QC, a total
average number of 25,491,462 ± 5,449,536 sequences were analyzed (Supplementary Table S1). SMS
data were subsampled to 5 Gb (16.67 M reads), 3 Gb (10.00 M reads), 1 Gb (3.00 M reads), 0.75 Gb
(2.50 M reads), 0.5 Gb (1.65 M reads), 0.25 Gb (0.85 M reads), and 0.1 Gb (0.34 M reads) and annotated
using MetaPhlAn v.2.0 [13], as well as BURST to assess the potential effects of marker gene-mapping-
and alignment-based approaches on bacterial taxonomic classification, respectively [14]. In addition,
we performed 16S sequencing for comparison at the genus level. Prior to further analyses, data
were filtered to remove bacterial genera and species with relative abundances < 0.01% to decrease
potential false positives. This was performed separately for both stool and mock community samples.
α-diversity at the genus level was determined at the various mentioned sequencing depths (Figure 1).
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Figure 1. Boxplots of the α-diversity of ten stool samples from healthy subjects at various sequencing
depths, including 5 Gb (16.67 M reads), 3 Gb (10.00 M reads), 1 Gb (3.00 M reads), 0.75 Gb 2.50 M reads),
0.5 Gb (1.65 M reads), 0.25 Gb (0.85 M reads), and 0.1 Gb (0.34 M reads). The 16S sequencing analysis at
the genus level was performed for comparison. (A) Number of observed genera and Shannon diversity
at the genus level for the marker gene-mapping and alignment methods. (B) Number of observed
species and Shannon diversity at the species level for the marker gene-mapping and alignment methods.
Outliers are shown.

Results show a slightly lower number of observed genera using SMS and a marker
gene-mapping-based approach at 5 Gb compared to 16S sequencing (Figure 1A) (Supplementary
Dataset 1), although this difference was not statistically significant (p-value = 0.96) (Supplementary
Dataset 2). Observed genera significantly decreased at 0.5 Gb compared to 5 Gb (p-value = 0.020) when
data were annotated using the marker gene-mapping-based approach (Supplementary Dataset 2).
Interestingly, higher numbers of observed genera were noted at all sequencing depths when using
the alignment approach compared to 16S sequencing at similar depths (Figure 1A) (Supplementary
Dataset 1). Differences between the alignment vs. the 16S methods were determined using a Friedman
rank sum test and were statistically significant at 5 Gb (p-value = 1.40 × 10−7), 3 Gb (p-value = 4.20 ×
10−7), 1 Gb (p-value = 8.60 × 10−4), and 0.75 Gb (p-value = 2.65 × 10−3). Observed genera significantly
decreased at 0.25 Gb (p-value = 3.79 × 10−3) compared to 5 Gb when data were annotated using the
alignment-based approach. Shannon diversity at the genus level did not significantly decrease at any
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of the sequencing depths tested when using the marker gene-mapping-based- and alignment-based
approaches (Figure 1A and Supplementary Dataset 1).

α-diversity analyses also included observed species and Shannon diversity at the species level
using Friedman rank sum test (Figure 1B). While the number of observed species was not significantly
different between the marker gene-mapping-based approach (5 Gb) and 16S sequencing (p-value =

0.99), the number of observed species identified at 5 Gb (p-value = 1.10 × 10−8), 3 Gb (p-value = 2.00 ×
10−6), 1 Gb (p-value = 7.00 × 10−4), and 0.75 Gb (p-value = 0.002) when using the alignment-based
approach was significantly higher than those observed when using 16S sequencing. Notably, most of
the 16S sequences were unable to be classified at the species level (Supplementary Dataset 3). The
number of observed species significantly decreased at 0.5 Gb when using the marker gene-mapping-
(p-value = 0.009) and alignment-based approaches (p-value = 0.012) compared to 5 Gb (Supplementary
Dataset 2).

β-diversity (Bray–Curtis weighted dissimilarity distances) of the stool samples at the genus
level showed separation of samples based on method (marker gene-mapping vs. alignment vs. 16S
sequencing), with the 16S sequencing data clustering closer to the alignment-based data (PERMANOVA;
p-value = 0.001; R-Squared = 0.338; F-Statistic = 37.5) (Figure 2A). PCoA plots of the marker
gene-mapping-based Bray–Curtis distances at the genus level showed clustering by subject rather than
sequencing depth (PERMANOVA; p-value = 1; R-Squared = 0.00814; F-Statistic = 0.0862) (Figure 2B).
Interestingly, subject-specific effects were noted, as marker gene-mapping-based data from some
subjects at 0.1 Gb did not cluster closely to their counterpart profiles generated at greater sequencing
depths (Figure 2B). Similarly, PCoA plots of the alignment-based Bray–Curtis distances at the genus
level showed clustering by subject (PERMANOVA; p-value = 0.155; R-Squared = 3.55 × 10−6; F-Statistic
= 3.73 × 10−5) (Figure 2C). Bray–Curtis weighted dissimilarity distances of the stool samples at the
species level showed separation of the data based on the method used (marker gene mapping vs.
alignment) (PERMANOVA; p-value = 0.001; R-Squared = 0.62; F-Statistic = 226) (Figure 2D). Plotting
of the marker gene-mapping- (PERMANOVA; p-value = 1; R-Squared = 0.0148; F-Statistic = 0.157)
(Figure 2E) and alignment-based data (PERMANOVA; p-value = 1; R-Squared = 1.73 × 10−5; F-Statistic
= 0.000182) (Figure 2F) at the species level showed clustering by subject.
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Figure 2. PCoA plots of the β-diversity (weighted Bray–Curtis distances) of ten stool samples from
healthy subjects at various sequencing depths including 5 Gb (16.67 M reads), 3 Gb (10.00 M reads),
1 Gb (3.00 M reads), 0.75 Gb (2.50 M reads), 0.5 Gb (1.65 M reads), 0.25 Gb (0.85 M reads), and 0.1 Gb
(0.34 M reads). The 16S rRNA (16S) V4 hypervariable region sequencing analysis at the genus level was
performed for comparison. (A) SMS data annotated using the marker gene mapping and alignment
methods, in comparison with the 16S sequencing information described above at the genus level.
(B) SMS data annotated using the marker gene-mapping method at the genus level. (C) SMS data
annotated using the alignment method at the genus level. (D) SMS data annotated using the marker
gene mapping and alignment methods at the species level. (E) SMS data annotated using the marker
gene-mapping method at the species level. (F) SMS data annotated using the alignment method at the
species level. Clustering of data by subjects is highlighted using circles or ellipses.
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3.2. Identification of Certain Bacterial Genera and Species Is Affected by SMS Sequencing Depth When Using a
Marker Gene-Mapping-Based Approach, but Not an Alignment-Based Approach

The effects of marker gene-mapping- and alignment-based tools at various SMS sequencing
depths, as well as 16S sequencing, to the relative abundances of bacterial genera were determined
(Supplementary Dataset 3 and Supplementary Dataset 4). The average relative abundances of
common gut commensals typically varying in abundance in human stool, including Bifidobacterium
(Figure 3A), Alistipes (Figure 3B), Roseburia (Figure 3C), and Lactobacillus (Figure 3D) were plotted.
Relative abundances of these commensals were relatively consistent across sequencing depths, with the
exception of Lactobacillus, when using the marker gene-mapping- versus alignment-based approaches
(Supplementary Dataset 3 and Supplementary Dataset 4). Lactobacillus, which is present at relatively
low abundance, was rarely detectable when using the marker gene-mapping-based approach at a
sequencing depth < 0.25 Gb (Figure 3D). Notably, each commensal exhibited varying abundances
depending on the sequencing depth and annotation approach (Supplementary Dataset 4). In addition,
marker gene-mapping, alignment, and 16S approaches each captured distinctive taxa (Supplementary
Dataset 3 and Supplementary Dataset 4).
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Correlations of all bacterial genera across the various SMS depths using the marker gene-
mapping- and alignment-based approaches, as well as 16S, were performed to demonstrate the extent 

Figure 3. Line charts of the average relative abundances (%) (genus level) of selected stool taxa based
upon SMS data annotated using marker gene-mapping- and alignment-based methods. Data were
annotated at various sequencing depths including 5 Gb (16.67 M reads), 3 Gb (10.00 M reads), 1 Gb
(3.00 M reads), 0.75 Gb (2.50 M reads), 0.5 Gb (1.65 M reads), 0.25 Gb (0.85 M reads), and 0.1 Gb (0.35 M
reads). The 16S sequencing data were included for comparison. (A) Bifidobacterium SMS data annotated
using marker gene-mapping- and alignment-based methods. (B) Alistipes SMS data annotated using
marker gene-mapping- and alignment-based methods. (C) Roseburia SMS data annotated using marker
gene-mapping- and alignment-based methods. (D) Lactobacillus SMS data annotated using marker
gene-mapping- and alignment-based methods. Standard error is shown by error bars.
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Correlations of all bacterial genera across the various SMS depths using the marker gene-mapping-
and alignment-based approaches, as well as 16S, were performed to demonstrate the extent of signal
variation relative to depth and annotation approach. Data obtained at 5 Gb from both the marker
gene-mapping- and alignment-based approaches showed strong, statistically significant correlations at
3 Gb (Figure 4A), 1 Gb (Figure 4B), 0.75 Gb (Figure 4C), 0.5 Gb (Figure 4D), and 0.25 Gb (Figure 4E)
(R =1; p-value < 2.2 × 10−16). Strong, statically significant correlations were also noted with the
alignment-based approach at 0.1 Gb (Figure 4F) (R = 1; p-value < 2.2 × 10−16), but these were slightly
decreased when using the marker gene-mapping-based approach (R = 0.98; p-value < 2.2 × 10−16).
Moderate (R = 0.67; p-value < 2.2 × 10−16) and weak (R = 0.3; p-value < 2.2 × 10−16) correlations were
noted between the alignment- and marker gene-mapping-based information, with 16S sequencing,
respectively (Figure 4G).
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Figure 4. Correlation plots of the relative abundances of bacterial genera annotated using marker
gene-mapping and alignment methods. (A) Correlations performed with data obtained at 5 Gb (16.67 M
reads) vs. 3 Gb (10.00 M reads). (B) Correlations performed with data obtained at 5 Gb vs. 1 Gb
(3.00 M reads). (C) Correlations performed with data obtained at 5 Gb vs. 0.75 Gb (2.50 M reads).
(D) Correlations performed with data obtained at 5 Gb vs. 0.5 Gb (1.65 M reads). (E) Correlations
performed with data obtained at 5 Gb vs. 0.25 (0.85 M reads). (F) Correlations performed with data
obtained at 5 Gb vs. 0.1 Gb (0.35 M reads). (G) Correlations performed with data obtained at 5 Gb vs.
16S sequencing data.

The effect of SMS sequencing and the annotation method used (marker gene-mapping- vs.
alignment-based) for bacterial species identification was determined (Supplementary Dataset 5 and
Supplementary Dataset 6). Results show that sequencing depth does not affect the detection of bacterial
species annotated using the alignment-based approach, but it does affect the detection of certain
bacterial species when using a marker gene-mapping-based approach (Supplementary Dataset 6 and
Table 1). To test this, the group_significance.py script using Kruskal–Wallis as the test was applied to
see if each taxon was differentially abundant at the various sequencing depths. For instance, Clostridium
spiroforme (FDR-adjusted p-value = 2.16 × 10−2) and Anaerotruncus colihomnis (FDR-adjusted p-value =

3.26× 10−2) were not detected at sequencing depths < 3 Gb when using a marker gene-mapping-based
approach. Additional bacterial species not detected at sequencing depths lower than 0.5 Gb and
0.25 Gb, as in the case of Lactococcus lactis (FDR-adjusted p-value = 2.16 × 10−2) and Lachnospiraceae
bacterium 3 1 46FAA (FDR-adjusted p-value = 3.55 × 10−2), respectively (Table 1).
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Table 1. Group significance analyses (Kruskal–Wallis) of ten stool samples at various SMS sequencing depths and annotated using a marker gene-mapping- and
alignment-based approaches. Table shows the mean relative abundance (%) of bacterial species that are significantly different across the various sequencing depths
when considering FDR-adjusted p-values (FDR P).

Sequencing Depth

Marker Gene Mapping FDR P 5 Gb 3 Gb 1 Gb 0.75 Gb 0.5 Gb 0.25 Gb 0.1 Gb

C. spiroforme 2.16 × 10−2 3.05 × 10−3 2.55 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

L. lactis 2.16 × 10−2 3.72 × 10−4 3.25 × 10−4 1.80 × 10−4 2.37 × 10−4 4.95 × 10−5 0.00 × 100 0.00 × 100

Roseburia inulinivorans 2.69 × 10−2 3.43 × 10−4 3.19 × 10−4 2.13 × 10−4 1.80 × 10−4 5.65 × 10−5 0.00 × 100 0.00 × 100

L. bacterium 3 1 46FAA 2.69 × 10−2 6.07 × 10−4 5.70 × 10−4 4.67 × 10−4 4.39 × 10−4 4.33 × 10−4 2.23 × 10−4 0.00 × 100

A. colihominis 3.26 × 10−2 2.84 × 10−5 1.24 × 10−5 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Eggerthella lenta 3.55 × 10−2 1.34 × 10−4 1.35 × 10−4 1.35 × 10−4 9.57 × 10−5 8.66 × 10−5 1.76 × 10−5 0.00 × 100

Clostridium bolteae 3.55 × 10−2 1.11 × 10−3 2.22 × 10−4 1.13 × 10−4 1.37 × 10−4 8.32 × 10−5 4.48 × 10−5 0.00 × 100

Streptococcus parasanguinis 3.55 × 10−2 7.19 × 10−4 6.53 × 10−4 5.14 × 10−4 4.78 × 10−4 3.33 × 10−4 2.02 × 10−4 0.00 × 100

Lachnospiraceae bacterium 7 1
58FAA 3.55 × 10−2 2.31 × 10−4 2.20 × 10−4 1.42 × 10−4 1.70 × 10−4 1.37 × 10−4 6.34 × 10−5 0.00 × 100

Holdemania filiformis 3.55 × 10−2 3.58 × 10−4 3.60 × 10−4 2.73 × 10−4 1.68 × 10−4 5.65 × 10−5 0.00 × 100 0.00 × 100

Eubacterium eligens 3.55 × 10−2 1.43 × 10−4 1.21 × 10−4 6.86 × 10−5 4.22 × 10−5 0.00 × 100 0.00 × 100 0.00 × 100

Clostridium leptum 4.25 × 10−2 1.56 × 10−3 1.51 × 10−3 1.29 × 10−3 1.38 × 10−3 1.04 × 10−3 6.93 × 10−4 2.28 × 10−4

Alignment FDR P 5 Gb 3 Gb 1 Gb 0.75 Gb 0.5 Gb 0.25 Gb 0.1 Gb

C. spiroforme 1.00 2.45 × 10−3 2.45 × 10−3 2.45 × 10−3 2.46 × 10−3 2.46 × 10−3 2.46 × 10−3 2.48 × 10−3

L. lactis 1.00 3.79 × 10−4 3.79 × 10−4 3.78 × 10−4 3.78 × 10−4 3.78 × 10−4 3.62 × 10−4 3.84 × 10−4

R. inulinivorans 1.00 8.26 × 10−4 8.27 × 10−4 8.17 × 10−4 8.15 × 10−4 8.16 × 10−4 8.31 × 10−4 8.27 × 10−4

L. bacterium 3 1 46FAA 1.00 1.71 × 10−4 1.70 × 10−4 1.71 × 10−4 1.70 × 10−4 1.72 × 10−4 1.72 × 10−4 1.69 × 10−4

A. colihominis 1.00 5.11 × 10−4 5.08 × 10−4 5.05 × 10−4 5.02 × 10−4 5.00 × 10−4 5.04 × 10−4 4.97 × 10−4

E. lenta 1.00 8.92 × 10−4 8.93 × 10−4 8.95 × 10−4 8.95 × 10−4 8.90 × 10−4 8.96 × 10−4 9.18 × 10−4

Clostridium bolteae 1.00 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.81 × 10−4 1.83 × 10−4 1.81 × 10−4

S. parasanguinis 1.00 1.90 × 10−4 1.90 × 10−4 1.91 × 10−4 1.91 × 10−4 1.95 × 10−4 1.80 × 10−4 1.79 × 10−4

Lachnospiraceae bacterium 7 1
58FAA 1.00 2.77 × 10−4 2.78 × 10−4 2.79 × 10−4 2.80 × 10−4 2.84 × 10−4 2.84 × 10−4 2.78 × 10−4

H. filiformis 1.00 3.08 × 10−4 3.08 × 10−4 3.11 × 10−4 3.11 × 10−4 3.14 × 10−4 3.10 × 10−4 3.19 × 10−4

E. eligens 1.00 7.07 × 10−4 7.04 × 10−4 7.08 × 10−4 7.12 × 10−4 7.19 × 10−4 7.19 × 10−4 7.28 × 10−4

Clostridium leptum 1.00 1.25 × 10−3 1.25 × 10−3 1.25 × 10−3 1.25 × 10−3 1.26 × 10−3 1.28 × 10−3 1.29 × 10−3
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3.3. Assessing the Accuracy of Marker Gene-Mapping- and Alignment-Based Approaches Using
Reference Materials

To assess the accuracy of both the marker gene-mapping- and alignment-based methods, mock
community data (ATCC® MSA1001) were annotated at the various sequencing depths tested. At the
genus level, both annotation methods identified all 10 expected taxa. While no false positives were
identified with the marker gene-mapping-based approach, the alignment-based approach incorrectly
identified Shigella, which was not present in the mock community. The marker gene-mapping-based
approach identified all 10 bacterial genera at 5 Gb in relative abundances similar to those expected
(Supplementary Dataset 7 and Supplementary Figure S1A). However, Bifidobacterium, Deinococcus,
and Enterococcus, expected to be present in relative abundances of 0.04%, were not identified
at a sequencing depth < 0.5 Gb. The alignment-based approach underestimated the expected
abundance of Escherichia, but the remaining bacterial genera were identified at all sequencing depths
in relative abundances compared to the expected relative abundances (Supplementary Dataset 7 and
Supplementary Figure S1B).

At the species level, all 10 of the expected taxa were identified when using the marker
gene-mapping-based method at 5 Gb. The Deinococcus radiodurans signal was lost at a sequencing depth
of <0.5 Gb, while Bifidobacterium adolescentis and Enterococcus faecalis signals were lost at sequencing
depths < 0.25 Gb when using the marker gene-mapping-based approach (Supplementary Figure S1C
and Supplementary Dataset 7). The alignment-based approach captured all 10 of the expected taxa
across the various sequencing depths but underestimated the relative abundance of B. adolescentis
and Escherichia coli (Supplementary Figure S1D). Interestingly, approximately 55.4% of the sequences
in the mock community were not classified (Unclassified), while 2.5% and 0.1% of the sequences
were attributed to Bacillus cereus and Staphylococcus sp. HMSC055B03, respectively (Supplementary
Dataset 7).

3.4. Sequencing Depth Affects Virus Identification from Metagenomic Samples and Is Subject-Specific

SMS data at 5 Gb, 3 Gb, 1 Gb, 0.75 Gb, 0.5 Gb, 0.25 Gb, and 0.1 Gb were processed for virus
taxonomic characterization using VirMap [28]. The total number of identified viruses decreased
significantly at a sequencing depth below 0.5 Gb (p-value = 9.0 × 10−4) (Figure 5A). The stochasticity
of sampling sequences with low counts was evident with the virome dataset analyzed. This limited
the ability to fully understand the effect of SMS depth relative to viral detection; however, data could
still be used as a proof-of-concept. For this, virus abundances from individual, healthy subjects were
normalized by dividing the total counts by the virus genome size (bp). Percentages of normalized
counts were then plotted. Values for Arthrobacter phage Mendel (taxid 2484218) (Figure 5B), CrAssphage
(taxid 2212563) (Figure 5C), Faecalibacterium phage FP cengus (taxid 2070188) (Figure 5D), Lactococcus
phage 16802 (taxid 2029659) (Figure 5E), and Poophage MBI 2016a (taxid 1926504) (Figure 5F) were
plotted. Although not all the viruses shown in Figure 5B–F were identified in all the subjects, these
results suggest that 5 Gb recovered more viruses than lower sequencing depths (Figure 5A), but the
implications of these findings should be considered in a subject-to-subject and virus-per-virus scenario
(Supplementary Dataset 8).
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[29]. HUMAnN2 provides a relatively fast and accurate species-resolved functional profiles by 
aligning the reads to species pangenomes, performing translated search on unclassified reads, and 
quantifying gene families and pathways. The total number of pathways identified using UniProt 
significantly decreased at a sequencing depth below 0.75 Gb (p-value = 0.019) (Figure 6A). The 
pathways identified using UniProt are shown in Supplementary Dataset 9. The relative abundances 
of a number of pathways identified using UniProt were not significantly different across the various 
sequencing depths (Supplementary Dataset 10). Similarly, the total number of pathways identified 
using MetaCyc were significantly reduced at a sequencing depth below 0.75 Gb (p-value = 0.043) 
(Figure 6B). All MetaCyc pathways identified are shown in Supplementary Dataset 11. The number 
of recovered MetaCyc pathways were significantly affected by sequencing depth (Supplementary 
Dataset 12). For instance, when looking at the MetaCyc pathway output, L-glutamine biosynthesis 
pathway was not recovered at a sequencing depth < 0.5 Gb (FDR-adjusted p-value = 9.38 × 10-4). Other 
categories, such as the superpathway (which usually have an additional preceding class within the 
pathway ontology in order to define their biological role) of menaquinol-6 biosynthesis (FDR-
adjusted p-value = 0.020) and the superpathway of demethylmenaquinol-6 biosynthesis (FDR-

Figure 5. Viruses identified in healthy individuals at various sequencing depths including 5 Gb
(16.67 M reads), 3 Gb (10.00 M reads), 1 Gb (3.00 M reads), 0.75 Gb (2.50 M reads), 0.5 Gb (1.65 M
reads), 0.25 Gb (0.85 M reads), and 0.1 Gb (0.35 M reads). (A) Boxplots of the total number of viruses
identified in ten healthy individuals at the various sequencing depths described. Figure also shows
barplots of normalized counts (%), consisting of total read counts per virus at the various sequencing
depths, divided by the genome size (bp). (B) Arthrobacter phage Mendel (taxid 2484218) total read
counts/genome size (bp) (%). (C) CrAssphage (taxid 2212563) total read counts/genome size (bp)
(%). (D) Faecalibacterium phage FP oengus (taxid 2070188) total read counts/genome size (bp) (%).
(E) Lactococcus phage 16802 (taxid 2029659) total read counts/genome size (bp) (%). (F) Poophage MBI
2015a (taxid 1926504) total read counts/genome size (bp) (%).

3.5. Pathway Relative Abundances Are Dependent on Sequencing Depth and Are Category-Specific

Pathway information was obtained using HUMAnN2, with UniProt and MetaCyc databases [29].
HUMAnN2 provides a relatively fast and accurate species-resolved functional profiles by aligning the
reads to species pangenomes, performing translated search on unclassified reads, and quantifying
gene families and pathways. The total number of pathways identified using UniProt significantly
decreased at a sequencing depth below 0.75 Gb (p-value = 0.019) (Figure 6A). The pathways identified
using UniProt are shown in Supplementary Dataset 9. The relative abundances of a number of
pathways identified using UniProt were not significantly different across the various sequencing depths
(Supplementary Dataset 10). Similarly, the total number of pathways identified using MetaCyc were
significantly reduced at a sequencing depth below 0.75 Gb (p-value = 0.043) (Figure 6B). All MetaCyc
pathways identified are shown in Supplementary Dataset 11. The number of recovered MetaCyc
pathways were significantly affected by sequencing depth (Supplementary Dataset 12). For instance,
when looking at the MetaCyc pathway output, L-glutamine biosynthesis pathway was not recovered
at a sequencing depth < 0.5 Gb (FDR-adjusted p-value = 9.38 × 10−4). Other categories, such as the
superpathway (which usually have an additional preceding class within the pathway ontology in
order to define their biological role) of menaquinol-6 biosynthesis (FDR-adjusted p-value = 0.020) and
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the superpathway of demethylmenaquinol-6 biosynthesis (FDR-adjusted p-value = 0.020) were not
identified at a sequencing depth < 1 Gb (Supplementary Dataset 12).
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4. Discussion

The present study aimed to augment current understanding of the effect of both sequencing depth
and annotation methods using human stool samples and a mock community with a goal of helping to
inform decision making in terms of sequencing method, depth, and annotation tool, particularly for
pilot studies and/or studies with high volume samples. Marker gene-mapping- and alignment-based
methods for SMS were applied to determine bacterial taxonomic classification and compared with
16S rRNA gene (V4) genus level profiles. Bacterial taxonomic comparison between SMS and 16S at
the genus level and at various sequencing depths has not been extensively evaluated. In addition,
bacterial species level classification at the various SMS depths was determined using both marker
gene-mapping- and alignment-based tools, which have not extensively been evaluated in parallel. The
present study also evaluated the effect of SMS depth on the recovery of functional pathways and viral
taxa, two categories of microbiome data that are frequently overlooked. Results of the present study
build upon previous studies that have sought to assess the effect of sequencing depth with regard to
various body sites using k-mer and alignment methods [32]; stool samples and reference materials
using marker, k-mer, and alignment methods [11]; stool and food samples, as well as reference materials
using k-mer-based methods [33].

Achieving accurate taxonomic and functional resolution is increasingly important when aiming
to identify patterns in microbiome studies. However, this is often not achieved when sequencing
one or two 16S variable regions, as with amplicon sequencing. In the present study, α-diversity
results at the genus level showed lower numbers of genera when using SMS data annotated using the
marker gene-mapping-based approach compared to 16S sequencing. This is, in part, a reflection of
the availability of a large number of unclassified OTUs at the genus level in 16S databases, as well as
the ability of amplicon-based sequencing to capture low-abundance taxa. In addition, that a number
of observed genera were not identified using the marker gene-mapping- or the alignment-based
approach indicates that reference databases will continue to benefit from the sequencing of additional
novel bacterial. The ability to detect low-abundance bacterial genera and species being impaired at
shallow sequencing depths when using the marker gene-mapping-based approach suggests that the
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combination of shallow sequencing and marker gene-mapping-base annotation may not be suitable
for studies seeking to characterize low-abundance bacterial taxa, including those that are transient
members of the gut microbiome. Notably, the number of bacterial genera and species detected were
greater when using the alignment method compared to both the marker gene-mapping-based approach
and 16S sequencing. This may be in part due to differing numbers of reference genomes in the
interrogated databases, or alignment of reads to closely related taxa. While only one 16S database and
variable region were tested, results open the opportunity to evaluate the performance of additional
16S databases, as well as other 16S variable regions in comparison with SMS results. α-diversity and
relative abundance results from the selected taxa showed that the alignment-based method may have
a greater concordance in signal across sequencing depths and indicate that this approach may be
more suitable when using SMS with the caveat of having reads aligned to closely related bacteria,
which could result in false positives (Table 2). In addition, these data indicate that, in some cases, 16S
sequencing may be more suitable depending on the organism of interest. These data demonstrate that
the selection of both sequencing depth and annotation method for taxonomic classification should
be carefully evaluated and, ideally, include reference materials to assess performance. Results from
reference materials in the present study demonstrated that further filtering of data may be needed
to decrease the number of false positives with the caveat of losing taxa present in extremely low
relative abundances. This was the case for the alignment-based approach where the selected filtering
percentage (i.e., 0.01%) reduced the number of false positives. Results suggest that further filtering
may need to be tested accordingly.

Table 2. Summary of shotgun metagenomic sequencing results at various sequencing depths and
annotation with marker gene mapping (MetaPhlAn2) and alignment (BURST) at genus and species
levels. Genus level results were compared to 16S information. Table also shows summary of
pathway information annotated using UniProt and MetaCyc, as well as virome information at various
sequencing depths.

Bacterial Genera

Marker Gene-Mapping

• α-diversity: Number of identified genera is slightly lower compared to alignment
and 16S methods. May require > 0.5 Gb to capture diversity similar to 5 Gb.

• β-diversity: Grouping of the data is subject- and not sequencing-depth-based.
• Taxonomy/Abundance: Detection may depend on relative abundance (i.e., low

abundant bacteria may not be detected at lower sequencing depths).

Alignment

• α-diversity: Number of identified genera is higher compared to marker
gene-mapping and 16S methods. May require > 0.25 Gb to capture diversity
similar to 5 Gb.

• β-diversity: Grouping of the data is subject- and not sequencing-depth-based.
• Taxonomy/Abundance: Detection may not depend on relative abundance (i.e.,

bacteria in low abundances may be detected at lower sequencing depths).

16S

• α-diversity: Number of identified genera is slightly higher than marker
gene-mapping, but lower than alignment approach with additional filtering of
taxa present at relative abundances < 0.01%.

• β-diversity: Data group more closely to alignment data.
• Taxonomy/Abundance: Genus level resolution achieved.
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Table 2. Cont.

Bacterial Species

Marker gene-Mapping

• α-diversity: Number of identified species is slightly lower compared to alignment
method. May require > 0.5 Gb to capture diversity similar to 5 Gb.

• β-diversity: Grouping of the data is subject- and not sequencing-depth-based.
• Taxonomy/Abundance: Detection may depend on relative abundance (i.e., low

abundant bacteria may not be detected at lower sequencing depths).

Alignment

• α-diversity: Number of identified species is slightly higher compared to marker
gene-mapping method. May require > 0.5 Gb to capture diversity similar to 5 Gb.

• β-diversity: Grouping of the data is subject- and not sequencing-depth-based.
• Taxonomy/Abundance: Detection may not depend on relative abundance (i.e.,

bacteria in low abundances are detected at lower sequencing depths). Alignment
to closely related taxa may result in false positives.

16S

• One variable region (i.e., V4) did not discriminate species level.
• Multiple variable regions may be required for species level resolution.

Pathways

UniProt

• α-diversity: May require > 0.75 Gb to capture diversity similar to 5 Gb.
• Taxonomy/Abundance: Relative abundances across the sequencing depths

are category-specific.

MetaCyc

• α-diversity: May require > 0.75 Gb to capture diversity similar to 5 Gb.
• Taxonomy/Abundance: Relative abundances across the sequencing depths

are category-specific.

Virome
• α-diversity: May require > 5 Gb to capture diversity if no concentration/filtration

method has been applied.
• Taxonomy/Abundance: Virus taxa are highly individualized.

SMS also exerts an effect on the lower-abundance, less-characterized aspects of the microbiome.
By using viruses as an example, this study demonstrates that the effect of the sequencing depth is more
profound when studying the less-studied members of the human microbiome. While the annotation
method may also affect virus detection and identification, testing different tools was outside the scope of
the present study and has previously been examined in comparison with VirMap [28]. Although not all
viruses were identified in similar relative abundances in all subjects, as viromes tend to be personalized,
results here provide proof-of-concept data covering various subject-to-subject and virus-to-virus
scenarios at various sequencing depths. While we were limited to 5 Gb, it seemed that > 5 Gb may be
best suited to capture DNA viruses from SMS data when no a priori isolation/concentration steps for
viruses have been applied (Table 2). Results may also translate to other low abundant categories of the
microbiome, including potential biomarkers, virulence factors, and antibiotic-resistant genes.

While taxonomic assignments provide key information in microbiome studies, pathway
information has the ability to provide insights into the potential role(s) of specific microbial
members in maintaining health, promoting disease, and/or be associated/correlated with specific
processes. Understanding pathway profiles also represents an opportunity to develop metabolite-based
therapeutics, also known as “postbiotics” [34]. Various well-known examples of postbiotics include
short-chain fatty acids (SCFAs) [35], taurine [36], and flavonoids [37]. SMS provides insights into
the identification of genes associated with the metabolism of some of these specific molecules, but
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sequencing depth also has the potential to influence information recovery and data interpretation.
SSMS may be suitable for a global pathway profile characterization, but it may not be suitable for the
characterization of rare pathways, or those that are present at low relative abundances. For this reason,
the expected prevalence and abundance of each pathway must be considered to determine the specific
sequencing depth needed. Nevertheless, a sequencing depth of approximately 1 Gb in human stool
samples appears to stably capture a large proportion of pathways. Future studies need to focus on
determining the performance of various pathway annotation tools at various sequencing depths and
sample types using appropriate reference materials, as needed (Table 2).

5. Conclusions

In this study, we evaluated the combined effects of depth of sequencing and annotation method
(i.e., marker gene mapping- vs. alignment-based approaches) on information recovery for SSMS.
Sequencing depths > 0.25 Gb and > 0.5 Gb capture α-diversity and genus-level taxonomic abundances
similar to those recovered at sequencing depth of 5 Gb when using marker gene-mapping and alignment
methods, respectively. Sequencing depths > 0.5 Gb captured bacterial species information at levels
analogous to those detected with a sequencing depth of 5 Gb. Pathway recovery at sequencing depths
> 0.75 Gb was comparable to that achieved at 5 Gb. Virus profiles were individualized, and signal
recovery was impaired at sequencing depths < 5 Gb. Results suggest that sequencing depth and
annotation method need to be carefully evaluated depending on the aims of the study.
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