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Permafrost, an important source of soil disturbance, is particularly vulnerable to climate 
change in Alaska where 85% of the land is underlained with discontinuous permafrost. 
Boreal forests, home to plants integral to subsistence diets of many Alaska Native 
communities, are not immune to the effects of climate change. Soil disturbance events, 
such as permafrost thaw, wildfires, and land use change can influence abiotic conditions, 
which can then affect active layer soil microbial communities. In a previous study, we found 
negative effects on boreal plants inoculated with microbes impacted by soil disturbance 
compared to plants inoculated with microbes from undisturbed soils. Here, we identify 
key shifts in microbial communities altered by soil disturbance using 16S rRNA gene 
sequencing and make connections between microbial community changes and previously 
observed plant growth. Additionally, we  identify further community shifts in potential 
functional mechanisms using long read metagenomics. Across a soil disturbance gradient, 
microbial communities differ significantly based on the level of soil disturbance. Consistent 
with the earlier study, the family Acidobacteriaceae, which consists of known plant growth 
promoters, was abundant in undisturbed soil, but practically absent in most disturbed 
soil. In contrast, Comamonadaceae, a family with known agricultural pathogens, was 
overrepresented in most disturbed soil communities compared to undisturbed. Within 
our metagenomic data, we found that soil disturbance level is associated with differences 
in microbial community function, including mechanisms potentially involved in plant 
pathogenicity. These results indicate that a decrease in plant growth can be  linked to 
changes in the microbial community and functional composition driven by soil disturbance 
and climate change. Together, these results build a genomic understanding of how shifting 
soil microbiomes may affect plant productivity and ecosystem health as the Arctic warms.
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INTRODUCTION

Across the sub-arctic and arctic regions, the warming climate is rapidly affecting Alaska’s 
ecosystems through shifts in disturbance regimes, including increased fire and permafrost thaw 
(Chapin et  al., 2008; Johnstone et  al., 2010; Schuur et  al., 2015; Chasmer and Hopkinson, 
2017). Boreal forests, which represent 90% of the world’s forests, are a complex mosaic of 
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coniferous trees and peatlands (Wolken et  al., 2011). Much 
of the boreal forests across Alaska are underlain by discontinuous 
permafrost that is not immune to the pressures of climate 
change. Permafrost thaw is associated with direct and indirect 
changes in plant communities due to significant shifts in soil 
hydrology which in turn affect nutrient availability and carbon 
dynamics (Schuur et  al., 2007; Yang et  al., 2013; Inglese et  al., 
2017; Sewell et  al., 2020), yet only few studies have explored 
the biotic mechanism contributing to changes in plant community 
with thaw (Hewitt et  al., 2016; Schütte et  al., 2019; Seitz 
et  al., 2021).

Permafrost thaw leads to rapid changes in microbial 
community composition and function, including shifts in several 
metabolites and genes involving nitrogen and carbon cycling 
in response to permafrost thaw, and during a thaw event, 
community function within permafrost quickly converges to 
that of the active layer (Mackelprang et  al., 2011; Coolen and 
Orsi, 2015; Monteux et  al., 2018; Johnston et  al., 2019; Messan 
et  al., 2020; Saidi-Mehrabad et  al., 2020). Consistent with the 
pattern of permafrost thaw affecting soil microbial communities, 
Inglese et  al. (2017) found that active layer detachments, a 
form of permafrost disturbance, significantly affect fungal and 
Archaeal community composition of the active layer. They 
observed greater proportions of Nitrososphaerales, an ammonia 
oxidizing Archaea, in disturbed communities compared to 
undisturbed, again indicating a shift in nitrogen cycling following 
permafrost thaw. Within fungal communities, Inglese et  al. 
(2017) saw a large decrease in ericoid mycorrhizal fungi and 
Ascomycota overall in disturbed soils compared to undisturbed 
communities. These groups are often found associated with 
arctic ericoid plant species. These authors suggest that both 
the increase of ammonia-oxidizing Archaea and the reduction 
in hyphal fungi could exacerbate further permafrost thaw and 
landscape change in the arctic.

In a previous study, we found that increased soil disturbance 
was associated with decreased plant productivity across multiple 
key boreal plant species, and that this decrease may be mediated 
by underlying differences in soil microbial community 
composition (Seitz et  al., 2021). The microbial community 
analysis in Seitz et  al. (2021) was based on long read sequence 
analysis using Oxford Nanopore sequencing technology. However, 
the usefulness of long read sequence data is not yet well 
established for environmental studies. Here, we had the unique 
opportunity to determine whether 16S rRNA gene sequencing 
would show consistent differences in community composition 
compared to the previously obtained nanopore sequences, as 
well as increase our understanding of how disturbance affects 
alpha and beta diversity metrics. In this study, we  combined 
microbial community composition and functional analysis, and 
linked belowground changes with changes in plant productivity, 
which statistically results in a comprehensive understanding 
of disturbance-induced changes in belowground processes 
affecting plant communities.

In this study, we  determined differences in microbial 
community composition and function across the disturbance 
gradient using both 16S rRNA gene sequencing and long read 
metagenomic sequencing based on nanopore sequencing 

technology. Further, we  used linear regression analysis to 
determine whether within disturbance level variation can predict 
plant productivity previously observed in the plant growth 
experiment (Seitz et  al., 2021). We  hypothesized that both 
alpha and beta diversity would increase with disturbance, and 
furthermore, not only would microbial community composition 
differ across disturbance levels, but also potential community 
function. The data of this study significantly add to our previous 
study (Seitz et  al., 2021) providing a more comprehensive 
understanding of how disturbances affect belowground processes 
and that these changes in microbial community composition 
and function indeed significantly impact plant communities.

MATERIALS AND METHODS

Sample Site Description
The soil samples we  collected and used for this study were 
previously described in Seitz et  al., 2021. We collected samples 
from interior Alaska from the Fairbanks Permafrost Experiment 
Station (FPES; 64.877°N, 147.670°W). This forested site was 
established and disturbed in 1946 as part of the United  States 
Army Corps of Engineers Cold Regions Research and Engineering 
Laboratory, which aimed to simulate and study how disturbance 
events influence the ecology of the boreal forest. FPES contains 
three, 3,721 m2 Linell plots, described in Linell, 1973 of varying 
degrees of soil disturbance. When FPES was established, the 
first plot, referenced as undisturbed (UD), was left untouched. 
The second plot (semi-disturbed, SD) was cleared of all above 
ground vegetation and trees, while roots and organic soil layers 
stayed undamaged. The third plot (most disturbed, MD) was 
stripped entirely of surface level vegetation and organic material 
until the mineral soil was reached. Since the original disturbance 
event, permafrost in the SD plot degraded to 4.7 m below the 
surface soils, and the permafrost in the MD plot degraded 
down to 9.8 m below the surface (Douglas et  al., 2008).

Fairbanks Permafrost Experiment Station is an example of 
a Taiga boreal forest found in subarctic regions across the 
world. The untouched UD plot is characterized by a thick 
covering of black spruce (Picea Mariana) with white spruce 
(Picea glauca) scattered throughout. The UD understory is 
largely dominated by low-bush cranberry (lingonberry, Vaccinium 
vitis-idaea) and Labrador tea (Rhododendron groendlandicum), 
and the ground is continuously covered with Sphagnum and 
feather moss, and lichen. The SD plot is characterized by a 
highly mixed stand of black spruce, white spruce, Alaskan 
birch (Betula neoalaskana), and willow (Salix spp.). SD trees 
are taller than those in the MD plot which is characterized 
by young willow, black spruce, and Alaskan birch (Douglas 
et  al., 2008).

Sample Collection and DNA Extraction
To assess how soil microbial communities are shifting based 
on previous soil disturbance, we  collected a total of 48 soil 
samples on 28 May 2018, with 16 each from UD, SD, and 
MD plots. The collection of these cores and their original use 
was described in Seitz et  al. (2021). In brief, we  extracted 
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cores from a selection of quadrats throughout each disturbance 
plot to sample the within disturbance level heterogeneity. Using 
sterile technique, we  removed the top layer of moss at each 
sampling point and then collected the top layer of soil using 
a 4.5 cm diameter by 10 cm height soil corer. We stored samples 
in a cooler throughout the duration of sample collection before 
they were transported back to the lab. After the samples arrived 
at the lab, we  mechanically homogenized each individual soil 
core and stored them at 4°C.

After homogenizing each soil sample, we  extracted DNA 
from 0.25 g of soil using the Qiagen PowerSoil Kit (Qiagen 
Inc., United States) according to the manufacturer’s instructions. 
We  then checked the quality and concentration of DNA using 
a NanoDrop One spectrophotometer (ThermoFisher Science, 
United  States) and a Qubit 4.0 fluorometer (Fisher Science, 
United  States).

PCR and 16S rRNA Gene Sequencing and 
Analyses
We determined microbial community composition based on 
16S rRNA gene sequencing, which allowed us to determine 
taxonomy at a finer resolution compared to our previous study 
and gave us the unique opportunity to compare the commonly 
used standard of 16S rRNA gene sequences to the not as 
well-established long read based on nanopore sequencing (Seitz 
et  al., 2021). After extracting DNA, we  performed a 1:10 
dilution of all samples to be  used for PCR. We  amplified the 
V4 region using dual-indexed 515F (Parada et  al., 2016) and 
806R (Apprill et  al., 2015) primers following the EMP PCR 
protocol1 to be  used for 16S rRNA gene amplicon analysis. 
Following the first round of amplification, we  used gel 
electrophoresis to determine the presence of PCR products. 
We  ran duplicate PCR reactions and then pooled the two 
reactions for each unique sample. The amplicons were then 
sequenced on an Illumina MiSeq using v3 reagents at the 
Institute of Arctic Biology Genomics Core Lab.

Upon obtaining the 16S rRNA amplicon data, we  first 
demultiplexed all reads using Mr_Demuxy (version 1.2.0, https://
pypi.org/project/Mr_Demuxy/1.2.0/). We  then processed and 
analyzed the paired-end, demultiplexed reads using the 
Quantitative Insights into Microbial Ecology (QIIME2) 
framework (version 2020.8.0). We  used the QIIME 2 plugin 
DADA22 to obtain a table of representative sequences and 
frequencies, remove low quality regions of reads, and to merge 
our paired reads for further processing. Next, we  constructed 
a rooted phylogenetic tree from representative sequences using 
the QIIME 2 alignment plug in and then calculated microbial 
diversity metrics based on amplicon sequence variants (ASVs) 
allowing taxonomic classification at a finer resolution compared 
to the long read data based on nanopore sequencing used in 
our previous study (Seitz et  al.). After constructing the tree, 
we  assigned taxonomy with the QIIME 2 taxonomy classifier 
plugin (Quast et  al., 2012; Bokulich et  al., 2018) using a Naïve 

1 https://earthmicrobiome.org/protocols-and-standards/16s/
2 https://benjjneb.github.io/dada2/index.html

Bayes classifier pre-trained on the Silva 138 99% OTUS 
(515F/806R region). We  next filtered out any chimeric, 
mitochondrial, and chloroplast reads from our samples using 
the QIIME 2 plugin feature table.

Amplicon Statistical Analyses
We determined alpha and beta diversity, tested whether 
diversity differed significantly across disturbance levels, and 
determined whether microbial community composition was 
significantly associated with changes in plant productivity. 
This type of analysis was absent in our previous study (Seitz 
et  al., 2021), and 16S rRNA gene sequences enabled us to 
complete these analyses based on finer taxonomic resolution 
(ASV). All statistical analyses performed in R utilized version 
3.6.1. After obtaining our filtered feature table, we used qiime2R 
(version 0.99.35; Bisanz, 2018) to import our QIIME 2 data 
and artifacts into R Studio. We  converted our taxonomic 
data into a phyloseq (version 1.30.0; McMurdie and Holmes, 
2013) object and filtered out one sample with low sampling 
depth (less than 14,377 reads). We  transformed our data into 
relative abundance measures. We  used vegan (version 2.5.7; 
Oksanen et  al., 2020) to calculate alpha diversity metrics 
(Pielou’s evenness and Faith’s phylogenetic diversity) based 
on ASVs. We  visualized our results with ggplot2 (version 
3.3.3; Wickham, 2016).

To test the significance of overall differences between UD, 
SD, and MD soil communities, we  calculated the Bray–Curtis 
similarity index to compare community beta diversity using 
amplicon sequence variants (ASVs). We  tested the effects of 
disturbance on community composition using the Permutational 
Multivariate ANOVA (PERMANOVA) using the “adonis” 
function in vegan (10,000 permutations). We  visualized beta 
diversity differences using nonmetric multidimensional scaling 
(NMDS) and ggplot2.

To visualize community membership across soil samples 
and taxonomic levels, we  generated heatmaps using the R 
package gplots (version 3.1.1; Warnes et  al., 2020). At the 
phylum level, we  filtered out any phyla that were not present 
in samples at higher than 1% relative abundance. When 
visualizing at the family level, we  filtered out any family that 
was present at a maximum abundance of less than 5% across 
all samples.

To examine the statistical relationship between microbial 
community composition and resulting plant productivity Seitz 
et al. (2021) observed in their growth experiment, we utilized 
linear regression with the lm function in R (R Core Team, 
2019). Since the first NMDS axis from our 16S rRNA amplicon 
analysis describes microbial community variation across soil 
disturbance level, we  extracted the scores from the axis of 
variation, NMDS1, to test whether community variation 
within disturbance level explains leaf count and plant height 
from Seitz et  al. (2021). For example, for bog blueberry 
plants, we performed linear regression using MD community 
variation NMDS scores and plant height as the growth 
measure. We  repeated the regression using SD and then UD 
scores. We  conducted this series of analyses for each plant 
type and growth measure (height and leaf count). We  then 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://pypi.org/project/Mr_Demuxy/1.2.0/
https://pypi.org/project/Mr_Demuxy/1.2.0/
https://earthmicrobiome.org/protocols-and-standards/16s/
https://benjjneb.github.io/dada2/index.html


Seitz et al. Soil Microbiome Shifts With Disturbance

Frontiers in Microbiology | www.frontiersin.org 4 May 2022 | Volume 13 | Article 781051

adjusted p values using the Benjamini-Hochberg method with 
a false discovery rate of 0.25 on the basis that follow up 
studies are relatively low cost (Benjamini and Hochberg, 
1995). We  then used ggplot2 (version 3.3.3) to visualize 
significant relationships between plant productivity and 
microbial community variation within each soil 
disturbance level.

Next, we compared community composition estimates between 
the gold standard 16S rRNA amplicon sequencing and long 
read nanopore sequencing using the base R package, stats 
(version 3.6.1; R Core Team, 2019). We calculated the Pearson’s 
correlation coefficient estimates between 16S and long read 
relative abundances for 10 specific taxonomic groups previously 
highlighted as biomarkers of either UD or MD communities 
in Seitz et  al. (2021).

Functional Analysis
We performed community functional analyses on previously 
collected metagenomic data from our soil cores described in 
Seitz et  al., 2021 (ENA Project: PRJEB42020). Determining 
microbial function based on the metagenomic data was an 
aspect lacking in our previous study (Seitz et  al., 2021), but 
essential to obtain a more complete understanding on the 
effects of disturbances such as permafrost thaw on microbial 
communities. We utilized the MEGAN-LR (long read) pipeline 
(Huson et  al., 2018) following the parameters described by 
Arumugam et  al. (2019). MEGAN-LR is a tool that performs 
both taxonomic and functional community classification. Briefly, 
this pipeline aligns long reads against an NCBI-nr database 
using DIAMOND (Buchfink et  al., 2015) by performing a 
frame-shift aware DNA-to-protein alignment. The alignments 
are then processed by MEGAN using an LCA-based algorithm 
for taxonomic binning and an interval-tree based algorithm 
for functional binning.

Following classification of potential functions via MEGAN-
LR, we utilized the MEGAN comparison function to normalize 
read counts and compare functions across samples. We  then 
extracted the evolutionary genealogy of genes: Non-supervised 
Orthologous Groups (EGGNOG)-Clusters of Orthologous Group 
(COG) functions into a matrix. We  calculated differences in 
functional diversity metrics using the vegan R package (version 
2.5.7; Oksanen et al., 2020) and visualized differences in function 
based on the identified COG functions using nonmetric 
dimensional scaling (NMDS) using ggplot (version 3.3.3; 
Wickham, 2016). We  tested the effects of disturbance level 
through a PERMANOVA using the “adonis” function of vegan. 
To identify potential functional indicators of each disturbance 
level (UD, SD, and MD), we  used the R package indicspecies 
(version 1.7.9; De Caceres and Legendre, 2009). In this 
application, indicator species analysis is using indices of a gene’s 
or taxon’s (in this case gene) relative abundance and their 
occurrence to estimate the strength of its association with 
specific groups (in this instance soil disturbance level). For 
the indicator analysis, we  used only the identified COGs that 
were identified via MEGAN-LR. Within indicspecies, we  used 
the function “multipatt” to determine a list of COGs that are 
significantly associated with each disturbance level. We specified 

999 random permutations. We  visualized the results using the 
R package gplots (version 3.1.1; Warnes et  al., 2020).

RESULTS

Microbial Community Composition Differs 
Based on Soil Disturbance Level
We identified a total of 17,005 ASVs within the 47 retained 
samples with a feature count ranging from 14,076 to 66,994, 
and a mean feature count of 50,943. After filtering out ASVs 
that were not seen more than three times in at least 20% of 
samples, we  detected 1,005 ASVs. Using the filtered ASV data, 
we compared both alpha and beta diversity to test for differences 
in bacterial community across soil disturbance level. We  found 
alpha diversity increased significantly within communities as 
the level of soil disturbance increased (Figure  1). A Kruskal-
Wallis test revealed that the Faith’s Phylogenetic Diversity within 
MD soil communities was significantly higher than in either 
SD or UD communities (Table  1). We  also found that Pielou’s 
Evenness did not differ significantly between MD and SD 
communities but did increase from UD to MD and SD soils.

We found that microbial community composition differed 
significantly at the ASV level across the three soil disturbance 
levels (Figure  2; stress = 0.055; PERMANOVA F2,44 = 28.682, 
p < 0.001). Communities clustered based on disturbance level 
along the NMDS first axis. MD communities clustered distinctly 
from both SD and UD communities, while SD and UD 
communities displayed some overlap. The variation in microbial 
community composition along axis 2 was not associated with 
separation of the microbial communities across the disturbance 
level groups. To compare the taxonomic results of 16S and 
metagenomic sequencing, we  completed correlation analyses 
(Pearson’s correlation coefficient) on the relative abundances 
of biomarkers highlighted in Seitz et  al. (2021). We  found 
highly significant positive correlations between 16S and 
metagenomic relative abundances of eight biomarkers ranging 
from 0.641 to 0.942 with an average of 0.808 (Table  2). Two 
biomarkers, the phylum Proteobacteria and the order 
Myxococcales, did not show significant correlations between 
sequencing methods.

Across all three disturbance levels, we  observed shifts in 
community membership and abundances. We  identified 11 
phyla that were present at maximum abundances greater than 
5% within all samples. Out of those 11 phyla, Proteobacteria 
were the most abundant phylum, present at mean relative 
abundances of 40.7% (range 25.2%–58.8%) in UD, 36.1% (range 
27.5%–43.8%) in SD, and 38.0% (range 29.9%–46.4%) in MD 
soil communities. Looking further at the taxonomic composition 
of the soil communities, we  found 17 groups classified to the 
family level that were present at maximum abundances greater 
than 5% (Figure  3). Of those, Acidobacteriaceae was the most 
abundant family in UD, present at a mean relative abundance 
of 16.5% (range 5.46%–24.7%) compared to a mean of 0.33% 
(range 0.00%–3.21%) in MD communities. The most abundant 
families found in MD communities were Comamonadaceae 
and Nitrosomonadaceae, both Proteobacteria, present at mean 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Seitz et al. Soil Microbiome Shifts With Disturbance

Frontiers in Microbiology | www.frontiersin.org 5 May 2022 | Volume 13 | Article 781051

relative abundances of 3.33% (range 2.0%–5.7%) and 6.53% 
(range 3.8%–10.3%), respectively. Within UD communities, 
Comamonadaceae and Nitrosomonadaceae were present at mean 
relative abundances of 0.28% (range 0.03%–1.57%) and 0.05% 
(range 0.00%–0.51%), respectively. Within the phylum 
Acidobacteria, Subgroup  2 and “uncultured” bacteria, and 
WD260, a group of uncultured bacteria belonging to the phylum 
Proteobacteria were present at relative abundances greater than 
5% throughout our samples.

Microbial Community Composition as a 
Predictor for Plant Growth
Following observing significant changes in microbial community 
diversity depending on the level of soil disturbance, we  sought 
to determine whether variation within disturbance level 
community composition could predict the growth of plants 

from an earlier experiment described in Seitz et  al. (2021). 
Within each disturbance level we  regressed the productivity 
measures (height or leaf count) against the NMDS1 values for 
each corresponding microbial community used as an inoculant 
in the plant growth experiment (Seitz et al., 2021). We observed 
significant negative linear relationships between MD microbial 
community composition and plant growth within bog blueberry 
height, low-bush cranberry height and leaf count, and Labrador 
tea height and leaf count (Table 3; Figure 4). For bog blueberry, 
low-bush cranberry, and Labrador tea plants grown with MD 
microbes, plant growth continued to decrease as microbial 
communities became more extreme and more positive along 
the NMDS1 axis (NMDS1 > 0.5. Microbial community 
composition within SD and UD communities was not a significant 
predictor of height or leaf count in any plant species except 
for black spruce (height) from Seitz et  al., 2021; Table  3).

Differences in Community Function Based 
on Soil Disturbance Level
Based on the observed EggNOG annotations from our 
metagenomic data, we  identified 2,891 clusters of orthologous 
genes (COGs) and 7,980 non-supervised orthologous groups 
across all samples. Using Bray-Curtis distances and a 
PERMANOVA analysis, we  found that potential community 
function varied significantly based on the level of soil disturbance 
(Figure 5; stress = 0.14; PERMANOVA F2,44 = 0.17431, p = 0.001).

To identify specific functions that are characteristic of 
the three levels of soil disturbance, we performed an indicator 
analysis on the observed potential genomic functions of 
our microbial communities. After filtering the results for 

A B

FIGURE 1 | Boxplots of (A) Faith’s Phylogenetic Diversity and (B) Pielou’s Evenness.

TABLE 1 | All groups and pairwise comparison of alpha diversity by Kruskal-
Wallis.

Group 1 Group 2 H value p Value q Value

Evenness MD SD 2.626562 0.105089 0.105089
UD 21.840909 0.000003 0.000007

SD UD 21.025 0.000005 0.000007
All groups 30.194481 2.78E−07

Faith’s PD MD SD 17.226562 0.000033 0.00005
UD 23.272727 0.000001 0.000004

SD UD 16.25625 0.000055 0.000055
All groups 35.637824 1.83E-08

Bold denotes significance of p < 0.05.
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a high specificity (A ≥ 0.8) and sensitivity (B ≥ 0.5), we found 
14 COG indicators, with 11 belonging to MD, two SD, 
and one UD (Supplementary Figure S1; Table  4). Within 
the indicator COGs, we  identified a variety of clusters. 
The only COG identified from UD encodes for a 
chloramphenicol acetyltransferase an enzyme involved in 
the detoxification of the antibiotic chloramphenicol associated 
with resistance to chloramphenicol in bacteria. The COGs 
from SD were associated with basal transcription factors 
and nucleic acid binding. From MD, we  identified a variety 
of COGs including those encoding for a for alpha-N-
arabinofurandase (ABF), a cell-wall degrading enzyme, 
disulfide reductases, and a hydrogenase iron–sulfur subunit 
involved in methanogenesis and a nitrate reductase beta 
subunit necessary in denitrification.

DISCUSSION

This study provides a thorough microbial analysis including 
determining differences in microbial community composition 
at a fine taxonomic resolution, in alpha diversity, and in 
microbial function based on indicator species analysis results. 
Combined with the findings in our previous study (Seitz et al., 
2021), our data give a more comprehensive picture of how 
disturbance affects microbial communities and mediates changes 
in plant communities.

Supporting our hypothesis that soil disturbance drives 
community shifts; we  found that microbial community 
composition significantly differed with level of soil disturbance 
at the ASV level (Figures 1, 2) despite within site heterogeneity 
especially in UD and SD. This is consistent with our previous 
findings that community composition differed across these three 
disturbance levels (Seitz et  al., 2021). We  continued to look 
at these shifts in taxonomic composition through the lens of 
biomarkers previously identified in our metagenomic data as 
either over- or underrepresented in UD and MD communities 
(Seitz et  al., 2021). We  found that the relative abundances of 
these biomarkers were significantly positively correlated between 
our 16S and metagenomics datasets, further underlining that 
long read metagenomic sequences are a useful tool to assess 
differences in microbial community composition across different 
environmental conditions (Seitz et  al., 2021).

We detected significant increases in alpha diversity with 
increasing in soil disturbance. This is a phenomenon that is 
observed within many ecosystems subject to many different 
types of disturbance, suggesting that disturbance promotes 
diverse communities due to the creation of new niches within 
the environment (Violle et  al., 2010; Galand et  al., 2016). Our 
findings of microbial community diversity increasing with 
disturbance are consistent with long-term (Feng et  al., 2020) 
and short-term (Luláková et  al., 2019) studies of the effects 
of warming soils and permafrost thaw on active layer bacterial 
communities. Feng et  al. (2020) and Luláková et  al. (2019) 
both saw alpha diversity measures significantly increase as 
topsoil temperatures increased. This trend of alpha diversity 
increasing along with soil disturbance has also been demonstrated 
in soils from a variety of land and forest types that have been 
subject to physical disturbances, such as logging, agricultural 
conversion, and fires (Chatterjee et al., 2008; de Carvalho et al., 
2016; Shen et  al., 2016; Zhou et  al., 2018). The physical soil 
disturbance and resulting deep permafrost thaw that the MD 
level plot underwent has created a heterogenous landscape 
(Douglas et  al., 2008), which may be  contributing to this 
increased diversity by affecting the ecological niches and 
competition ability of bacteria for resources, similar to what 
can occur after forest fires (Shen et  al., 2016).

We observed a lower community evenness that within our 
UD communities compared to our MD and SD communities. 
The relative abundance of Acidobacteria decreased drastically 
while relative abundance of Nitrosomanadaceae and 
Comamonadaceae increased with increasing soil disturbance. 
When ASVs were grouped at the family level, Acidobacteriaceae 
was the most abundant bacterial family within the UD 

FIGURE 2 | Nonmetric multidimensional scaling (NMDS) based on Bray–
Curtis dissimilarity distances showing the differences in beta diversity between 
undisturbed (UD), semi disturbed (SD), and most disturbed (MD) soil 
communities. Points colored by the level of Fairbanks Permafrost Experiment 
Station (FPES) soil disturbance with blue = UD (n = 16), gold = SD (n = 15), and 
red = MD (n = 16).

TABLE 2 | Pearson’s correlation estimates (r) between 16S and long read 
relative abundances.

Taxonomic rank Taxon Estimate P value

Phylum Acidobacteria 0.641225 1.20 × 10−06

Phylum Proteobacteria 0.3013 0.154
Order Myxococcales −0.0129658 0.931
Order Propioniales 0.7038802 3.40 × 10−08

Order Burkholderiales 0.771654 2.17 × 10−10

Order Acidobacteriales 0.8856192 2.20 × 10−16

Family Acidobacteriaceae 0.9225034 2.20 × 10−16

Family Comamonadaceae 0.7906535 3.82 × 10−11

Family Micromonasporaceae 0.9424725 2.20 × 10−16
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FIGURE 3 | Heatmap of bacterial families present at maximum abundances greater than 5%. Each row corresponds to a family, and each column corresponds to 
an individual soil core community. The top row signifies the level of soil disturbance of each core with blue = undisturbed (UD; n = 16), gold = semi disturbed (SD; 
n = 15), and red = most disturbed (MD; n = 16). The rows are clustered by Bray-Curtis distance and the color of each box displays the relative abundance of the taxon 
within that core.

TABLE 3 | Results from linear models of plant growth measures predicted by 16S NMDS1.

Plant FPES level Growth measure Estimate SE t Value p Value
BH adjusted p 

value

BB UD Height 47.4 39.0 1.21 0.246 0.486
SD Height 27.0 23.0 1.17 0.264 0.486
MD Height −83.5 36.7 −2.27 0.041 0.244
UD Leaf count 13.4 36.4 0.37 0.719 0.719
SD Leaf count 14.6 14.3 1.02 0.329 0.486
MD Leaf count −21.9 25.5 −0.86 0.405 0.486

CB UD Height 23.8 37.9 0.63 0.542 0.542
SD Height −17.6 12.1 −1.45 0.172 0.344
MD Height −38.5 18.6 −2.07 0.06 0.181
UD Leaf count −26.2 30.7 −0.85 0.411 0.493
SD Leaf count −9.6 9.5 −1.02 0.33 0.493
MD Leaf count −17.3 7.0 −2.48 0.029 0.175

LT UD Height 4.2 36.0 0.12 0.909 0.948
SD Height −11.0 13.4 −0.82 0.429 0.858
MD Height −23.4 4.2 −5.57 0.001 0.003
UD Leaf count 1.4 21.2 0.07 0.948 0.948
SD Leaf count −3.5 8.0 −0.44 0.669 0.948
MD Leaf count −17.4 1.6 −11.14 <0.001 <0.001

BS UD Height 37.7 16.6 2.27 0.04 0.238
SD Height −7.3 8.3 −0.88 0.396 0.756
MD Height 7.3 11.7 0.62 0.543 0.756
UD Leaf count 70.8 47.3 1.50 0.156 0.469
SD Leaf count −10.0 27.1 −0.37 0.721 0.756
MD Leaf count 18.7 59.2 0.32 0.756 0.756

FW UD Height 3.4 25.4 0.13 0.896 0.896
SD Height −31.6 27.6 −1.14 0.277 0.613
MD Height 9.4 22.6 0.42 0.682 0.833
UD Leaf count −6.2 5.8 −1.07 0.306 0.613
SD Leaf count −1.7 4.2 −0.40 0.694 0.833
MD Leaf count −6.2 3.4 −1.82 0.091 0.545

Bold denotes significant Benjamini-Hochberg (BH; Benjamini and Hochberg, 1995) adjusted p value < 0.25.
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communities, compared to being nearly absent in MD 
communities. Members of Acidobacteriaceae are typically found 
to be  present at higher abundances in acidic soils that are 

carbon poor (Kielak et  al., 2016; Osburn et  al., 2019). In 
contrast, Nitrosomonadaceae, a copiotrophic bacterial family 
of ammonia oxidizers, was found to be  the most abundant 

A B

C D

E F

FIGURE 4 | Scatterplots showing the effects of microbial community variation and plant productivity (16S rRNA amplicon NMDS1 and height/leaf count) of bog 
blueberry (A,B), low-bush cranberry (C,D), and Labrador tea (E,F). Each point represents a soil community, colored by the level of FPES soil disturbance with 
blue = undisturbed (UD; n = 16), gold = semi disturbed (SD; n = 15), and red = most disturbed (MD; n = 16). Solid lines represent a significant linear relationship.
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family within the MD soil communities, followed by 
Comamonadaceae. Nitrosomonadaceae are ammonia oxidizing 
bacteria (AOB) that are commonly found in carbon-rich 
environments such as wastewater and soils (Prosser et  al., 
2014). An increase of copiotrophic bacteria with disturbance 
is consistent with the body of literature (Masse et  al., 2017; 
Mickan et  al., 2019; Osburn et  al., 2019). Masse et  al. (2017) 
previously detected that oligotrophic bacteria, such as 
Acidobacteriaceae, were more abundant in natural boreal forest 
soils, compared to soils that were reclaimed or reconstructed 
after disturbance which displayed higher abundances of 
copiotrophic bacteria.

We found that the microbial community composition across 
soil disturbance is a significant predictor of plant productivity 
measures for bog blueberry (Vaccinium uliginosum), low-bush 

cranberry (Vaccinium vitis-ideae), and Labrador Tea (Rhododenron 
groenlandicum). Specifically, we can predict that plants inoculated 
with a microbial community indicative of the most extreme 
disturbance, will demonstrate decreased growth compared to 
plants inoculated with communities from less disturbed soils. 
This significant relationship between microbial community 
composition and plant productivity was observed within plants 
inoculated with MD microbes, whereas we  saw no significant 
relationships between plant productivity of plants inoculated 
with microbial communities from SD or UD and microbial 
community composition. This suggests that there is a threshold 
effect occurring across the disturbance levels, and that soil 
microbial communities subject to disturbance resulting in 
permafrost thaw may not have the capacity to influence plant 
productivity of these boreal species until affected by an event 
of large enough magnitude. This microbial threshold we  are 
observing could potentially be linked to a disturbance threshold 
of deep permafrost thaw. Over the past 20 years, researchers 
have observed accelerated permafrost thaw within the northern 
boreal Taiga plains likely due to a combination of hydro-
climactic changes and increases in annual air temperatures 
(Jorgenson et al., 2006; Lara et al., 2016; Chasmer and Hopkinson, 
2017). As permafrost thaw is accelerated and other disturbance 
events are increasing in the artic, we  may start to observe 
the effects through changes in soil microbial communities and 
plant productivity.

Our previous study (Seitz et  al., 2021) lacked any analysis 
of community function, and based on the disturbance-associated 
community membership shifts we  observed, we  predicted that 
observed functional community will shift as well. Using the 
metagenomic sequencing data, we identified functional indicators 
across all our FPES sites representative of each level of soil 
disturbance, with most indicators belonging to MD soils. The 
gene cluster with the highest specificity within MD is COG3940, 
which encodes for alpha-N-arabinofurandase (ABF). ABFs are 
mainly extracellular enzymes that degrade lignocelluloses and 
cell walls (De Ioannes, 2000; Numan and Bhosle, 2006), and 
have been shown to play a role in triggering plant immune 
responses. In 2016, Wu et  al. found that a novel ABF plays 
a critical role in the pathogenicity of the fungal pathogen, 

FIGURE 5 | NMDS of Bray–Curtis dissimilarity distances of community 
function. Functions based on MEGAN-LR evolutionary genealogy of genes: 
Non-supervised Orthologous Groups (EGGNOG) Clusters of Orthologous 
Group (COG) classifications. Points colored by the level of FPES soil 
disturbance with blue = undisturbed (UD; n = 16), gold = semi disturbed (SD; 
n = 15), and red = most disturbed (MD; n = 16).

TABLE 4 | Highly sensitive and specific indicator functions from EggNOG annotations.

FPES COG Sensitivity (A) Specificity (B) Statistic p Value Function

UD COG4845 0.8029 0.875 0.838 0.001 Chloramphenicol O-acetyltransferase
SD COG5163 0.9804 0.5 0.7 0.001 Component of the NOP7 complex
SD COG5033 0.852 0.5 0.653 0.001 Myeloid lymphoid
MD COG3940 0.9239 0.625 0.76 0.001 Alpha-N-arabinofurandase, hydrolase activity
MD COG5598 0.8921 0.75 0.818 0.001 Trimethylamine methyltransferase
MD COG1423 0.88 0.5625 0.704 0.001 ATP dependent DNA ligase
MD COG4305 0.8765 0.5625 0.702 0.001 Rare lipoprotein a
MD COG1908 0.8745 0.6875 0.775 0.001 Methyl-viologen-reducing hydrogenase, delta subunit
MD COG4559 0.8584 0.625 0.732 0.001 Part of the ABC transporter complex HmuTUV
MD COG1140 0.8409 0.75 0.794 0.001 Nitrate reductase beta subunit
MD COG3487 0.8401 0.625 0.725 0.002 Iron-regulated protein
MD COG1148 0.8199 0.8125 0.816 0.001 CoB--CoM heterodisulfide reductase activity
MD COG4452 0.806 0.5 0.635 0.007 Cell envelope integrity protein CreD
MD COG2231 0.8051 0.5 0.634 0.009 Hhh-gpd family
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Magnaporthe oryzae, that causes rice blast disease. The secreted 
ABF degrades cell walls, further leading to a decrease in 
productivity in infected plants (Wu et  al., 2016). The presence 
of a gene cluster encoding for alpha-N-arabinofurandase in 
our MD communities provides a possible mechanism behind 
the decrease in plant productivity demonstrated in Seitz et  al. 
(2021), yet further studies involving gene expression and enzyme 
activity would be  required to identify if this is part of a 
mechanism at play.

The critical gene involved in ammonia oxidization (amoA; 
Prosser et  al., 2014; Bárta et  al., 2017) was present across all 
our sample communities, however, this gene cluster was not 
identified as a functional indicator of MD communities where 
Nitrosomonadaceae were very abundant. Curiously, we identified 
COG1140, a gene cluster encoding for a nitrate reductase beta 
subunit indicative of denitrification, to be  a highly specific 
and significant indicator of MD soil communities. Nitrate losses 
within soils have long been known to follow disturbance events 
in forests such as fire, disease, or clear cutting (Vitousek et  al., 
1979; Neary et  al., 1999; Hobara et  al., 2001; Pardo et  al., 
2002). However, comparatively little is known about 
denitrification in the boreal system. This potential loss of 
available nitrate could be  part of the mechanism at play in 
the reduced plant productivity that Seitz et  al. (2021) observed 
within plants grown in MD community inoculated soils.

As climate change and anthropogenic-driven soil disturbance 
events including wildfires (Calef et  al., 2008; Chapin et  al., 
2008; Partain et  al., 2016) and permafrost thaw (Jorgenson 
et  al., 2006; Lara et  al., 2016; Chasmer and Hopkinson, 2017) 
are increasing across the north, we  need to continue to study 
how disturbance influences the microbiomes of active layer 
soils that are both directly and indirectly involved in mediating 
plant structure within boreal forests. In this study, we  show 
that active layer soil microbial communities are influenced 
by the initial disturbance event and permafrost thaw at FPES, 
however we  cannot conclude whether specific environmental 
factors are associated with community shifts. We  observed 
significant shifts in microbial community composition, in 
microbial diversity, as well as microbial community function. 
Our evidence for microbial community composition being a 
significant predictor of decreased plant productivity in response 
to the most severe soil disturbance associated with significant 
permafrost thaw suggests that this effect may occur once a 
threshold level of disturbance is reached. These consistent 
effects of disturbance on active layer microbial communities, 
combined with the knowledge of how they in turn can 
significantly affect plant productivity (Seitz et  al., 2021), 
highlight the need for more research into how on-going and 

future disturbance events will influence the ecological dynamics 
in boreal forests.
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