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Unlocking the therapeutic potential of brown/beige adipose tissue requires technological
advancements that enable the controlled expansion of this uniquely thermogenic tissue.
Transplantation of brown fat in small animal model systems has confirmed the expec-
tation that brown fat expansion could possibly provide a novel therapeutic to combat
obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1
(UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial
reductions in circulating glucose and lipids. The recent discovery that brown adipose
tissue (BAT)-derived secreted factors positively alter whole body metabolism further
expands potential benefits of brown or beige/brite adipose expansion. Unfortunately,
there are no sources of transplantable BATs for human therapeutic purposes at this
time. Recent developments in bioengineering, including novel hyaluronic acid-based
hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used
to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-
engineering systems have provided the methodology to develop metabolically active
brown or beige/brite adipose tissue implants with the potential to be used as a metabolic
therapy. Unlike the pharmacological browning of white adipose depots, implantation of
bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic.
Moving forward, new insights into the mechanisms by which extracellular cues govern
stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant
approaches, which generate a niche sufficient to recruit white adipose tissue-derived
stem cells and support their differentiation into functional beige/brite adipose tissues.
This review summarizes clinically relevant discoveries in tissue-engineering and biology
leading toward the recent development of biomaterial supported beige adipose tissue
implants and their potential for the metabolic therapies.
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INTRODUCTION

Proposing brown adipose tissue (BAT) expansion as a therapeutic treatment for obesity and obesity-
related disorders has recently gained significant traction (1, 2). BAT, as well as beige adipocytes (3,
4), has high metabolic capacity due to high mitochondrial content and expression of uncoupling
protein-1 (UCP1) (5), a long-chain fatty acid anion/proton-symporter (6), found in the inner
mitochondrial membrane. UCP1 decouples the action of ATP-synthase and dissipates the proton
gradient produced by the electron transport chain, thus generating heat. BAT mass inversely
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correlates with bodymass index (BMI), which supports the notion
that BAT may regulate overall bodyweight and metabolic health
(7). The benefits of expanded UCP1-expressing adipose may not
be limited to their metabolic characteristics, as brown adipose has
been shown to possess a potent secretome (8). Notably, implanted
BAT has been shown to produce secretions of IGF-1, which was
reported to enable the insulin-independent reversal of type-1 dia-
betes (9). BAT also appears to exert significant effects on the lipid
metabolism in the liver (10) and bone mineral density (11, 12).
Overall, the generation of functional beige or brown adipocytes
for therapeutic purposes appears to hold significant merit for a
number of possible treatments.

The current strategies to clinically deploy BAT fall into two
main categories: pharmaceutical or genetic interventions to
induce endogenous BAT/beige differentiation pathways, and the
ex vivo generation of autologous cell/tissue transplants (13–17).
Current gene-therapy approaches still have challenges to over-
come before they are applied as anti-obesity therapeutics (18),
but have proven to be significant instruments for investigating
BAT biology (16, 19). Pharmacological activation of the pathways
that drive a white adipose tissue (WAT) to beige/brite transi-
tion, a process known as “browning”, offer little control over
the location and temporal extent of the effects. Transplantation
of autologous BAT in small animal models has shown clear
metabolic enhancements (20–22) but approaches are unlikely to
be suitable for human therapies since there are few sources of
transplantable mature human BAT and immune-rejection would
need to be overcome. To successfully harness the therapeutic
potential of BAT, a readily available source of transplantable cells
with the potential to robustly generate UCP1-positive (UCP1+)
adipocytes must first be identified or created. Second, the basis
to form a functional, non-immunogenic, highly localized, and
metabolically active brown/beige tissue must be defined.

TISSUES FOR TISSUE-BASED THERAPIES

The use of small molecules or growth factors to induce the brown-
ing of WAT is a promising area of research, but systemic dosing
has the potential to produce off target effects with undesirable
consequences. One notable browning agent, rosiglitazone, was
widely used to treat diabetes but has disconcerting side effects that
included heart failure (23). Browning factors (24–39) generally
target conserved signaling pathways, making specificity a con-
cern. By using biomaterials to localize and control release kinetics
of browning factors to desired anatomical locations, an acceptable
level of specificity may be achieved (40–46). When increasing
the number of brown adipocytes, other supporting cell types are
required for producing a functional tissue. For BAT, this includes
interactions between the nervous, vascular, and immune systems,
with UCP1+ adipocytes. Efforts to understand how brown or
beige fat responds to cold temperature have uncovered evidence
that classical brown fat relies on the sympathetic nervous system
(47–49) and immune system (50, 51) to initiate and maintain
the thermogenic response. While immune (33, 34) and nervous
systems (52) also play a major role in beige fat development
and activation, beige adipocytes have the innate ability to sense
temperature and independently respond by either differentiating
into UCP1+ adipose and/or by inducing uncoupled respiration

(53). Thus, classical brown, but not beige, tissue therapeutics will
likely require sympathetic innervation for thermogenic function
and persistence. The vascular system enables access to metabolic
substrates, as well as the oxygen required for themetabolic activity
of brown/beige fat (10). Additionally, vascular networks circulate
activating or browning signals (25, 30, 35, 54–56). In addition to
innervation and vascularization, tissue-based therapies facilitate
important cell–cell and cell–extracellular matrix (ECM) interac-
tions that provide function altering chemical and physical inputs
(57–62).

Natural ECM is comprised of collagens, elastins, fibronectin,
laminins, proteoglycans, and glycosaminoglycans (63). The ECM
is a highly organized network of physical signals that dynamically
interact with the cells it supports. The topology and composition
of the ECM is heavily remodeled, especially during differentiation.
Remodeling of the ECM is a balance of specific degradation by
matrixmetalloproteinases (MMPs), newmatrix component depo-
sition, unmasking of cryptic binding sites in response to cleavage
or tension, crosslinking or bonding of ECM components, and
inside-out signaling from adhesion receptors on cellular surfaces.
Growth factor signaling is regulated through the ECM by control-
ling their capture or exclusion, rate of delivery to the cell surface
receptor, and molecular presentation (64). The ECM establishes
a biological framework that provides physical support to cells,
but also regulates signaling through adhesion receptors and alters
endocrine, paracrine, autocrine, and juxtacrine signals (62). To
date, many groups have remade “synthetic” tissues by decellular-
izing the desired tissue, then reseeding the remaining native ECM
with cell populations (65, 66). However, given the inaccessibility of
mature BAT, this approach will be difficult to translate to artificial
UCP1+ tissues.

Tissue architecture has been known to exert strong effects on
cell behavior, and in vitro hydrogels, meant to mimic natural
ECMs, appear to be a successful option to improve cell culture
models (67). These 3-dimensional (3D) hydrogels, which are
water swollen polymer networks, have been utilized to enhance
hepatocyte (68) and pancreatic islet function (69). Not only does
3D-organization affect the function and viability of cells (70),
but it mediates the differentiation of many cell types (71), espe-
cially adipocytes. Adipogenesis is highly dependent on cytoskele-
tal rearrangements where cell shape is altered to accommodate
the intracellular accumulation and organization of lipids. This
was discovered when preadipocytes could not differentiate when
cultured on a surface of fibronectin (72); this phenotype was
rescued by disrupting the cytoskeletal response to the supra-
physiological abundance of fibronectin. Laminin also has been
found to play a role in WAT expansion (73). Another adipose
ECM component, Collagen VI, was found to be an essential
microenvironmental signal for adipocytes to regulate the amount
of TAG they accumulate (74). When Collagen VI is removed
from the adipose ECM, adipocytes develop a hypertrophic state
in which the adipocytes are capable of sequestering significantly
more lipids than normal. Specific ECM degradation is also a
critical feature of WAT development (75). These phenomenal
findings support the notion that the adipose ECM is an integral
signal for adipocyte behavior and overall condition and func-
tion of the organ. When working with in vitro models of white
adipocytes, it is also evident that the prototypical unilocular lipid
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droplets observed in vivo are not present unless cultured in 3D-
matrices (76, 77).

Comparatively little is known about the ECMs of WAT, BAT,
and the changes in adipose-matrix during browning. As this
area of research is explored further, ECM-derived signals will
hopefully be identified to build our understanding of adipocyte-
ECM interactions and provide applicable systems to induce the
formation of UCP1+ adipocytes. Biomaterials have utilized the
incorporation of whole ECM components, such as laminin (78)
or collagen (79), to improve their biocompatibility and effec-
tiveness as cell scaffolds. Whether or not specific mixtures of
ECM components can be combined with preadipocytes to form
functional brown fat has yet to be determined, but this approach
has already been applied to WAT (66, 80, 81). ECM molecules
could theoretically be derived from the same tissues used to isolate
the primary precursor cell populations for the generation of an
adipose allograft (66) but thermogenic fat may have a distinct
structural niche capable of engaging specific integrin (82) and
syndecan (83) populations. Integrin expression is known to be
highly dynamic during adipogenisis (84) and the beta-1 integrin
has been extensively used to purify preadipocytes (85). Therefore,

targeting integrin signaling appears to be a logical method to
alter adipogenesis and it is likely that UCP1+ tissue function
is dependent on specific 3D interactions and organization. This
has now been demonstrated via integrin-ligands, in the form
of matrix-derived peptide sequences and secreted molecules, on
both UCP1-expression and lipid accumulation (86, 87).

MATERIALS TO BUILD TISSUES

Decellularized tissue-based tissue-engineering is not the only
method to produce synthetic tissues (81, 88, 89). Polymeric bio-
materials with bioactive modifications have been employed to
generate many tissue types (61, 90–92). Tissue-engineering is a
sophisticated endeavor that requires significant tuning, therefore
modular approaches should be considered for the construction
of functional synthetic tissues. Specifically, the physical proper-
ties, degradation kinetics, and biologically interactive components
should be able to be altered independently. Bioengineered tis-
sues can be generated through the selection of a core polymer,
a crosslinking system, bioactive modifications, and the incor-
porated cell populations (Figure 1). The core material of the

Desired Cell Types Core Biomaterials Adhesion Ligands Crosslinking Agent Growth Factors

FIGURE 1 | Modular tissue-engineering. Here, we visually depict the five bioengineering variables discussed throughout this review. By tailoring the properties
biochemical and physical properties of the biomaterial, synthetic tissues for therapeutic purposes can be successfully generated.
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biomaterial determines the method of deployment (injectable-
vs.-implantable), macrostructure, and the behavior of the cellular
payload.

While many biocompatible materials have been proposed to
engineer beige/brown-adipose tissue (93), HyA-based hydrogels
show particular promise for the engineering of adipose tis-
sue for therapeutic purposes (94, 95) and is the only mate-
rial that has been successfully used to establish brown/beige fat
implants in vivo (86). HyA is a naturally occurring glycosamino-
glycan, consisting of β-1,4--glucuronic acid– β-1,3-N-acetyl--
glucosamine, that is highly tractable for tissue-engineering for
biomedical purposes (94, 95). Endogenous HyA is synthesized
by hyaluronic acid synthase and extruded into the extracellular
microenvironment, where it functions as an essential component
of the native ECM and interacts with cell surface receptors such
as CD44 or RHAMM (96). HyA is highly variable in length, span-
ning lengths up to 10 μM and ranging from 100 kDa to 8mDa.
Hyaluronic acid plays a pivotal role in ECM organization through
its interactions with the othermajor components of the ECM (63).

HyA scaffolds enhance survival of autologous adipose stem-cell
implants (97–100) and possibly promote adipose expansion (101).
Not only are HyA-based hydrogels naturally occurring, biocom-
patible, modifiable, injectable, biodegradable, non-immunogenic,
and anti-thrombogenic (94, 102), but also HyA has already been
FDAapproved for a number of clinical applications such as correc-
tion of facial lipoatrophy, wrinkle and scar removal, amelioration
of osteoarthritic joint pain, dietary supplementation, ulcers, and
cataract surgery. HyA has also showed clinical success for the
temporary esthetic augmentation of lips, breasts, and buttocks
(103), and achieved impressive results as a replacement of tra-
ditional dressings of epidermal burns and lesions (104). Impor-
tantly, utilizing HyA avoids fibrotic encapsulation of implants, a
problem that has plagued the early literature of bioengineering
(105). In general, avoiding encapsulation requires the use of non-
immunogenic materials and cells, biodegradable materials, nearly
anisotropic physical properties to the surrounding tissues, and
possibly growth factors to induce recruitment of host-derived cells
into the implant. HyA has been shown to have significant effects
on tissue remodeling and cell signaling, and is naturally degraded
by hyaluronidase or oxidizing agents (106).

CELLS FOR METABOLIC THERAPEUTICS

Generation of bioengineered-BAT will rely on an easily acces-
sible and ample source of progenitor cells. A key discovery in
this regard came from the observation that UCP1+ adipocytes
can be generated by certain WAT depots (107). These distinct
adipocytes are described as beige/brite, and they express unique
surface markers (3). While genetic factors play a major role in
the ability to generate beige adipocytes (108, 109), the expansion
of beige adipose mass has been linked to improved metabolic
health. Therefore, the isolation of adipose-derived multipotent
stem cells (MSCs) from undesirable WAT depots and subsequent
reintroduction as autologous BAT shows therapeutic promise.
One of the most abundant sources of preadipocytes is WAT, and
the implantation of WAT-derived stem cells is an FDA accepted
procedure (110).

The most common source of WAT-derived stem cells is
the stromal vascular fraction (SVF), which contains T cells, B
cells, mast cells, adipose tissue macrophages, and MSCs such
as preadipocytes and endothelial progenitor cells. This cellular
fraction can be further purified to enrich preadipocytes by select-
ing for cell surface markers such as Pref-1+, Lin−, CD29+,
CD34+, Sca-1+, CD24+, CD45−, Mac1−, PDGFRα+ (15, 17,
111). Additionally, preadipocyte sorting can be used to enrich
for populations that are known to readily transdifferentiate into
beige/brite fat such as CD137, TMEM26, ASC-1, PAT2, and
P2RX5 (112). Alternatively, as stem-cell therapies become more
accepted, induced pluripotent cells might be a suitable option
since iPSC-derived brown adipocytes have also been generated
and transplants of these cells show promising metabolic effects
(16, 113).

While a purified population of preadipocytes or adipocytesmay
provide more conclusive insights for biological experiments, it
may not be optimal for building a functional tissue. As previously
mentioned, the immune system and vascular systems are essential
for supporting the function and formation of beige adipose tissue
and other SVF components could contribute to these tissue types.
For example, macrophages and T cells have been shown to be an
important part of beige/brown-adipose function anddevelopment
(33, 51, 114) and interactions between the adipocytes and the
vascular niche may also be important for browning (115–118)
particularly through cell–cell interactions, cytokines, and growth
factors such as Il-33 (35) or VEGF-A (119). Thus, the use ofmulti-
ple purified cell population or utilization of non-purified-SVF, as
recently demonstrated for the generation of bioengineered-BAT
(86), may offer distinct advantages.

BIOMATERIAL OPTIMIZATION

Degradation and remodeling ability of the synthetic ECM is just
as important as the initial structure itself. If the synthetic tissues
are not biodegradable throughmechanisms that cells naturally use
for movement and reorganization, integrating with the host will
be jeopardized. Specifically, to facilitate effective remodeling and
reorganization of the tissue by the immune and vascular systems,
biodegradable and biologically interactive biomaterials should be
utilized. The simplest way to imbue a biomaterial with biodegrad-
ability is to use MMP-sensitive crosslinking agents. Most of the
available core materials can be easily modified to accommodate
the current MMP-sensitive crosslinkers, which are short peptides
containing an MMP-specific cleavage site (61, 120–122). Most
of these core materials will be modified to facilitate efficient
crosslinking by spontaneous aqueous phase reactions, such as the
Michael addition where a thiol and acrylate form a thio-ether
bond (92, 123). These types of biodegradable crosslinkers have
been shown to be essential for the recruitment of host cells for the
successful in vivo integration of biomaterial implants (122, 124).

Additionally, the elastic modulus of biomaterials has been
shown to be highly instructive for the differentiation ofMSCs into
adipocytes (125–127). This mechanotransductive control of dif-
ferentiation can be accomplished without applying direct physical
forces to cells. By presenting a cell with an adhesion-promoting
environment, matrix-associated adhesions form and produce an
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intrinsic mechanotransductive signal for the cell, as well as adja-
cent cells in the microenvironment. Therefore, a soft biomate-
rial optimized with specific adhesion-promoting ligands may be
capable of inducing the same mechanotransductive signals as a
much stiffer material. Numerous biological processes are affected
by mechanical signals; notably, nuclear envelope plasticity and
permeability (128, 129), splicing (130), and signal transduction
(131). The prominent browning factor, BMP7, is known to alter
cytoskeletal dynamics in adipocytes and other cell types, which
supports the notion that physical cues may be important for
bioengineered-BAT (32, 132–134). Interestingly, our group found
that the storage modulus of WAT seems to differ from that of
BAT (WAT~ 3 kPa, BAT~ 4 kPa). How important this difference
in modulus is for brown fat development and function remains to
be explored more systematically.

Bioactive modifications, such as integrin-binding domains
conjugated to hydrogels, have become commonplace to enhance
the bioactivity of biomaterials (61, 90, 91) and HyA-hydrogels
augment integrin signaling (135). These materials provide some
degree of ECM-mimicry without replicating the entire complex-
ity of the native ECM. For example, alginate conjugated with
RGD-containing ligands is supportive to cardiomyocytes and also
promotes adipogenisis (136, 137). However, alginate’s effects on
adipogenisis may be due to the rounded morphology, shown to
be strongly instructive to adipogenesis (72), cells undergo when
encapsulated in alginate-based materials (138). Other peptide-
modified hydrogels promote the formation of bone via colla-
gen mimetic peptides (139). ADMSC-spheroids entrapped in
Poly(ethylene glycol)-hydrogels have been proposed to form beige
adipocytes in vitro (140) and have been modified to drive MSCs
toward adipogenic or osteogenic fates (141). Interestingly, Vaicik
et al. find UCP1-expression highest when the storage modulus of
the hydrogel is BAT-equivalent.

Recent work by our laboratory to develop bioengineered-BAT
with HyA-based biomaterials, differentiation promoting adhe-
sion ligands, MMP-sensitive crosslinkers, and ADMSCs has pro-
duced a synthetic beige adipose tissue. The discovery of these
bioactive modifications came from an effort to screen for lig-
ands that preferentially promoted the attachment of UCP1+
adipocytes. Incidentally, it was discovered that some of these

bioactive components, derived from laminin, directly enhanced
UCP1-expression (86). The identified bioactive peptides were
then conjugated to a HyA core material to promote brown-
ing. The assembly of the optimized hydrogel with adipocytes
was termed beige adipose tissue-matrix-assisted cellular trans-
plant (BAT-MACT), and was shown to successfully scaffold beige
adipocytes for therapeutic purposes in animal models. What
is particularly exciting about these HyA-hydrogels and MMP-
sensitive crosslinkers is that they are injectable, making this
approach as non-invasive as possible. Due to HyA’s viscoelastic
properties, it can be easily mixed with the desired cell populations
and just before implantation, mixed with the crosslinker. This
allows for a short period of time where the cell-laden hydrogel
is still a liquid and can be injected to the desired anatomical
location with subsequent crosslinking to solidify a functional
organoid.

The BAT-MACT implant system (Figure 2) has shown that
implanted beige fat can have a nearly immediate effect on glucose
homeostasis that persists during the duration of the implant’s lifes-
pan. Implanted beige adipose, similar to brown adipose, responds
to cold stimulus by increasing lipid uptake an oxidation. The
expansion of beige fat attenuates weight gain on a high-fat diet
and induces a thermo-responsive metabolic augmentation to the
recipient (86). Being that adipocytes derived from WAT sources
are capable of sensing temperature independent neuronal sig-
naling, it is not surprising that an implant of beige fat behaves
this way. However, implanted classical brown adipose may not
necessarily function in this manner, as the organ relies heavily on
the sympathetic neuronal stimulation to induce the thermogenic
program.

FUTURE DIRECTIONS

The first iteration of BAT-MACTs had an in vivo lifespan of
approximately 3–4weeks (86), which allows for well-controlled
spatio-temporal applications but may be too short for single-
application-based metabolic interventions. Further effort is
needed to understand what would promote the maintenance of
such a metabolically active depot for longer periods of time
and if a microenvironment capable of promoting beige adipose

1

2 3

4

5

6

FIGURE 2 | Beige adipose tissue-matrix-assisted cellular transplant (BAT-MACT). The strategy used to expand beige adipose tissue for therapeutic purposes
can be deconstructed into six stages: (1) Isolation of white adipose tissue (WAT) from patient. (2) Purification of stromal vascular fraction from the explanted WAT. (3)
In vitro differentiation of SVF-derived preadipocytes toward the beige fat phenotype. (4) Suspension of beige adipocytes (SVF) into optimized hydrogel for
implantation. (5) Post implantation, the hydrogel is biocompatible and degradable so that it is permissive to integrate the recipient’s vascular, immune, and nervous
systems. (6) The established beige adipose tissue functions as a metabolically active organ. If a sufficient increase of metabolic rate is achieved via BAT-MACT
implantation, weight loss will occur.
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self-renewal could be created (71). The inclusion of modifica-
tions that enhance beige adipogenesis or metabolic activity, such
as sequestered growth factors, small molecules, or mixed mate-
rials will certainly be pursued. Incorporating metabolic activa-
tors of beige adipocytes into the BAT-MACT system may be
an essential step toward promoting weight loss and metabolic
improvement in the face of thermoneutrality. At this stage,
by using immobilized synthetic physical cues, the biomate-
rial component has a significantly lower risk of off target
effects relative to a similarly functioning implant generated
with secreted factors temporarily sequestered within the matrix.
At its extreme, the implanted matrix could be endowed with
sufficient biochemical and biophysical clues for the recruit-
ment and directed differentiation of stem cells to allow for
cell-free implants that are sufficient to establish beige adipose
tissue. Such an acellular implant would be attractive as it could

avoid many cost and health concerns associated with cellular
implants.

Overall, extension of tissue-engineering principles to brown
fat biology holds the promise of furthering both our mechanistic
understanding of the factors required for brown/beige fat function
and development, the rapid testing of hypothesis regarding the
physiological impact of brown/beige tissue expansion, and ulti-
mately novel treatment options for metabolic disorders.
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